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Abstract

We propose in this article a M/G/c/c state dependent queuing model for road traffic flow. The

model is based on finite capacity queuing theory which captures the stationary density-flow rela-

tionships. It is also inspired from the deterministic Godunov scheme for the road traffic simulation.

We first present a reformulation of the existing linear case of M/G/c/c state dependent model,

in order to use flow rather than speed variables. We then extend this model in order to consider

upstream traffic demand and downstream traffic supply. After that, we propose the model for

two road sections in tandem where both sections influence each other. In order to deal with this

mutual dependence, we solve an implicit system given by an algebraic equation. Finally, we derive

some performance measures (throughput and expected travel time). A comparison with results

predicted by the M/G/c/c state dependent queuing networks shows that the model we propose

here captures really the dynamics of the road traffic.

Keywords: Traffic flow modeling, finite queuing systems, M/G/c/c state dependent.

1. Introduction

Congestion is a phenomenon that arises in a variety of contexts. The most familiar repre-

sentation is urban traffic congestion. Congested networks involve complex traffic interactions.

Providing an analytical description of these intricate interactions is challenging. The dynamics of

traffic flows is submitted to stochastic nature of traffic demand and supply functions of vehicles5

passing from one section to another.

One of the well known macroscopic traffic model on a road section is the LWR (Lighthill-

Whitham-Richards) first-order continuum one [23, 26], which assumes the existence of a steady-

state relationship for the traffic, called the fundamental diagram, giving the traffic flow in function

of the vehicular density in the road section. In this paper, we present a reformulation of the10

M/G/c/c state dependent queuing model [5] working with flows rather than speeds, and propose
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a stochastic traffic model based on this new formulation and inspired from the Godunov scheme [15,

22] of the LWR traffic model. We derive a stationary probability distribution of the M/G/c/c state

dependent queuing model on a road section, by considering density-flow fundamental diagrams

rather than density-speed ones. The model assumes a quadratic fundamental diagram which15

correctly captures the stationary density-flow relationships in both non-congested and congestion

conditions. By this, we consider the traffic demand and supply functions for the section, and

distinguish three road section systems, an open road section, a constrained road section and a

closed road section. Finally, we present a model of two road sections in tandem, derive some

performance measures and show on an academic example that the model captures the dynamics20

of the road traffic. The model we present here can be used to the analysis of travel times through

road traffic networks (derive probability distributions, reliability indexes, etc), as in [9, 10, 11],

where an algebraic deterministic approach is used. The approach present here remains also valid

with a triangular fundamental diagram (which is the most used), but the formulas will change [14].

The remainder of this article is organized as follows. In Section 2, we first present a review25

of the existing works. In this regard, we present in Section 3 a short review of the M/G/c/c

state dependent queuing model of Jain and Smith [27]. We then propose a new reformulation

of this model by working with flows rather than speeds. We rewrite the stationary probability

distribution of the number of cars on the road section. In Section 4, we present a model of two

road sections in tandem where both road sections influence each other. An implicit system given30

by an algebraic equation is solved, in order to deal with this mutual dependence. We derive some

performance measures of both road sections (throughput and expected travel time) and compare

our simulation results with those of existing M/G/c/c state dependent queuing models (Kerbache

and Smith model). In Section 5, we briefly summarize our findings and future work.

2. Literature review35

Congestion is a phenomenon that arises on local as well as large areas, whenever traffic de-

mand exceeds traffic supply. Traffic flow on freeways is a complex process with many interacting

components and random perturbations such as traffic jams, stop-and-go waves, hysteresis phenom-

ena, etc. These perturbations propagate from downstream to upstream sections. During traffic

jams, drivers are slowing down when they observe traffic congestion in the downstream section,40

causing upstream propagation of a traffic density perturbation. A link of the network is modeled

as a sequence of road sections, for which fundamental diagrams are given. As the sequence of

sections is in series, if any section is not performing optimally, the whole link will not be operating

efficiently. We base here on the LWR first order model [23, 26], for which numerical schemes

have been performed since decades [8, 15, 22]. In the Godunov scheme [22], as well as in the45

cell transmission model (CTM) [8], traffic demand and supply functions are defined and used.
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The demand-supply framework provides a comprehensive foundation for the LWR first order node

models. Flow interactions in these models result from limited inflow capacities of the downstream

links. Recently, in [28] framework has been supplemented with richer features such as conflicts

within the node. In [25], a dynamic network loading model that yields queue length distribu-50

tions was presented. This model is a discretized, stochastic instance of the kinematic wave model

(KWM). In [4], the compositional stochastic model extends the cell transmission model [8] by

defining demand and supply functions explicitly as random variables, and describing how speed

evolves dynamically in each link of the road network. Several simulation models based on queueing

theory have been developed, but few studies have explored the potential of the queueing theory55

framework to develop analytical traffic models. The development of analytical, differentiable, and

computationally tractable probabilistic traffic models is of wide interest for traffic management.

The most common approach is the development of analytical stationary models [25]. A review of

stationary queueing models for highway traffic and exact analytical stationary queueing models

of unsignalized intersections is given in deferent literatures [17, 29, 30]. In [1, 13, 16], the authors60

contributed to the study of signalized intersections and presented a unifying approach to both

signalized and unsignalized intersections. These approaches resort to infinite capacity queues, and

thus fail to account for the occurrence of breakdown and their effects on upstream links. Modeling

and calculating traffic flow breakdown probability remains an important issue when analyzing the

stability and reliability of transportation system [3, 31].65

Finite capacity queueing theory imposes a finite upper bound on the length of a queue. This

allows to account for finite link lengths, which enables the modeling and analysis of breakdowns.

Finite capacity queueing network (FCQN) model are of interest for a variety of applications such

as the study of hospital patient flow, manufacturing networks, software architecture networks,

circulation systems, prison networks [5], etc. The methods in [2, 5, 27] resort to finite capacity70

queueing theory and derive stationary performance measures. The stationary distribution of

finite capacity queueing network exist only for networks with two or three queues with specific

topologies [12, 20, 21]. An analytic queueing network model that preserves the finite capacity for

two queues, under a set of service rate scenarios proposed in [24].

For more general networks, approximation methods are used to evaluate the stationary distri-75

butions, and the General Expansion Method (GEM) was developed [18, 19]. The GEM charac-

terized by an artificial holding node, which is added and preceded each finite queue in the network

in order to register all blocked cars caused by the downstream section. The interested reader may

check details in [19]. In [6], the authors describe a methodology for approximate analysis of open

state dependent M/G/c/c queueing networks, and a system of two queues in tandem topology was80

analyzed. The evacuation problem was analyzed using M/G/c/c state dependent queuing net-

works in [7] when an algorithm was proposed to optimize the stairwell case and increase evacuation
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times towards the upper stories. In [14], the authors present another version of M/G/c/c state

dependent queuing model, where a triangular fundamental diagram is considered, which leads to

apply the demand and supply functions in order to analyze a system of two queues in tandem85

topology.

3. Review on the M/G/c/c state dependent queuing model

In this section, we present the M/G/c/c state dependent queuing model [5, 27]. A link of a

road network is modeled with c servers set in parallel, where c is the maximum number of cars that

can move on the road (density-like). The car-speed is assumed to be dependent on the number of90

cars n on the road, according to a non-increasing density-speed relationship. Two cases of speed

are considered, linear and exponential. In the linear case, we have

vn = v1

(
c− n+ 1

c

)
, (1)

where vi is the speed corresponding to i cars moving on the road, and v1 is the free flow speed.

In the exponential case, we have

vn = v1 exp

[
−
(
n− 1

β

)γ]
, (2)

in which β and γ are shape and scale parameters respectively.

β = a−1
[ln(v1/va)]1/γ

= b−1
[ln(v1/vb)]1/γ

.

γ = ln[ ln(va/v1)ln(vb/v1)
]/ ln(a−1b−1 ).

The values a and b are arbitrary points, used to adjust the exponential curve [5, 27]. The arrival95

process of cars into the link is assumed to be Poisson with rate λ, while the service rate of the c

servers depend on the number n of cars on the road. A normalized service rate f(n) is considered,

and is taken f(n) = vn/v1 ≤ 1. In the linear case, we have f(n) = (c−n+1)/c. In the exponential

case, we have f(n) = exp[−((n − 1)/β)γ ]. We notice here that v1 is the speed corresponding to

one car in the road (ie. the free speed).100

The stationary probability distribution Pn = Prob (N = n) of the number of cars N in the

M/G/c/c state dependent model have been developed and shown in [5] to be stochastic equivalent

to M/M/c/c queueing model. Therefore, these probabilities can be written as follows.

Pn =
(λL/v1)n∏n
i=1 if(i)

P0, P0 =

(
1 +

c∑
n=1

(λL/v1)n∏n
i=1 if(i)

)−1
, n = 1, ..., c. (3)

where L is the length of the road section.

From Pn, other important performance measures can be easily derived.105
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1. The blocking probability : Pc = P0(λL/v1)c/
∏c
i=1 if(i).

2. The throughput : θ = λ(1− Pc).

3. The expected number of cars in the section : N̄ =
∑c
n=1 nPn.

4. The expected service time : W = N̄/θ.

In the following section, we rewrite the model presented in this section, by considering a110

car density-flow relationship rather than a density-speed one. This reformulation permits us to

consider demand and supply functions which model limit conditions for car-traffic, and by that,

to model two road sections in tandem, in Section 4.

3.1. Reformulation of the M/G/c/c state dependent model

In this section, we first reformulate the M/G/c/c state dependent model of Jain and Smith,115

by considering car-flows rather than car-speeds. Indeed, the linear case of that model considers a

linear relationship of the speed as a function of the car-density. This is equivalent to considering

a quadratic relationship of the car-flow as a function of the car-density; see Figure 1. It is easy to

check that this quadratic relationship is written as follows.

qn = qmax

(
1−

(
c− 2n+ 1

c+ 1

)2
)
. (4)

Indeed, one can for example verify that parting from (4), we retrieve (1)120

vn
v1

:=
qn/ρn
q1/ρ1

=
c− n+ 1

c
,

where ρn = n/L.

Figure 1: In the left side, the car-density - speed relationship. In the right side, the corresponding car-density -

flow relationship.

The stationary probabilities (3) are then rewritten as follows.

Pn =
(λ/qmax)n∏n
i=1 ig(i)

P0, P0 =

(
1 +

c∑
n=1

(λ/qmax)n∏n
i=1 ig(i)

)−1
, n = 1, ..., c. (5)
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where

g(i) =
qi/qmax

i
.

The objective of working with flows rather than speeds here is to consider the demand and

supply functions which we will use in the following sections, for the model of two road-sections in

tandem. From (1) and (4), the relationship between the free speed v1 and the maximum car-flow125

qmax is given as follows.

qmax = v( c+1
2 )ρ( c+1

2 ) =
v1
Lc

(
c+ 1

2

)2

. (6)

The demand ∆n and the supply Σn functions are given as follows.

∆n =

qn if 0 ≤ n ≤ c+1
2 ,

qmax if c+1
2 < n ≤ c+ 1.

(7)

Σn =

qmax if 0 ≤ n ≤ c+1
2 ,

qn if c+1
2 < n ≤ c+ 1.

(8)

Demand and supply diagrams are shown in Figure 2, where the parameters of Table 1 are

considered.

Figure 2: Demand diagram (left). Supply diagram (right).

In the following section, we consider three configuration models of a road section: open, con-130

strained and closed road section. We will explain the role of each model, and tell how these models

will be used for the model of two sections in tandem.

3.2. Open, constrained and closed road sections

We distinguish here three road section systems.

• An open road section is a road section where the traffic out-flow from the section is only135

constrained by the traffic demand of the section, given in function of the number of cars

in the section. It is equivalent to the traffic system presented above in Section 3.1, where
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the traffic fundamental diagram is restrained to only its traffic demand part (ie with infinite

traffic supply). In such a road section, which we index by i, if we denote by ∆i and Σi

the traffic demand and supply of the section (induced by the car-density of the section)140

respectively, and qout the outflow from the section, then we have (see Figure 3)

qout = ∆i. (9)

• A constrained road section is a road section out flowing to another downstream section, and

where the outflow of the considered road section is constrained by the traffic demand of that

section, and by the traffic supply of the downstream section. If we index the downstream

section by the index i+ 1, denote by Σi+1 the traffic supply of the downstream section, and145

consider the same notations used above, then we have (see Figure 3)

qout = min(∆i,Σi+1). (10)

• A closed road section is the road section system presented above in Section 3.1, for which

the outflow is given by the fundamental traffic diagram with both demand and supply parts,

and where both the parts are constrained by the car-density of the section. Using the same

notation as above, the out-flow from the section is given as follows (see Figure 3)150

qout = min(∆i,Σi). (11)

Figure 3: open, constrained and closed road section systems, respectively from left to right sides.

Basing on the three systems presented above, we present in the following section, a model of

two road sections in tandem. It is a kind of a constrained section where the downstream section

is a closed one.

4. Two road sections in tandem

We propose in this section a state-dependent M/G/c/c model for two road sections in tandem.155

The whole system is a concatenation of two road sections: a M/G/c/c state dependent constrained
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section (section 1), with an M/G/c/c state dependent closed section (section 2); see Figure 4.

Since the downstream section (section 2) is a closed one, which corresponds to the traffic system

presented in Section 3.1, the supply flow of section 2 is stochastic, and is given in function of the

probability distribution of the number of cars in section 2.160

Figure 4: The system of two sections in tandem.

We assume quadratic flow-density fundamental diagrams for the two sections. The car-flow

outgoing from section 1 and entering to section 2 (q12(n1, n2)) is given by the minimum between

the traffic demand on section 1 and the traffic supply of section 2.

q12(n1, n2) = min(∆1(n1),Σ2(n2)). (12)

The car-flow outgoing from section 2, and also from the whole system is denoted by q2. The

objective here is to determine the stationary probability distributions P (1) and P (2) of the number165

of cars in section 1 and section 2 respectively, as well as the stationary probability distribution

P (1,2) of the couple (n1, n2) of numbers of cars in sections 1 and 2 respectively.

We notice here that this cannot be calculated directly since both road sections influence each

other. Indeed, P (2) depends on q12 which depends on the traffic demand of section 1. Similarly,

P (1) depends on the traffic supply of section 2, since section 1 is constrained by section 2. We170

propose below an iterative approach for the calculus of such probabilities.

4.1. The model

The procedure we propose here for the determination of P (1), P (2) and P (1,2) consists in solving

an implicit system given by an algebraic equation, in order to deal with the mutual dependence

between sections 1 and 2. We denote by θ the average outflow from section 1 (average of q12),175

which is also the average inflow to section 2; and by δ the average outflow from section 2 (average

of q2), which is the average outflow of the whole system.

We notice that if θ is known, then the probability distributions P (1), P (2) and P (1,2) can be

obtained in function of θ. Indeed, section 2 being a M/G/c/c state dependent closed section with

an average arrival flow θ), P (2) can be obtained in function of θ. After that, section 1 being180

constrained by the supply of section 2 (with known P (2)), P (1,2) and then P (1) can be obtained
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in function of P (2) and thus in function of θ. Moreover, from P (1) we can obtain q12 in function

of θ, and then the expectation of q12 gives θ in function of itself.

From the latter remark, we propose the following iterative algorithm for the calculus of θ and

of the probabilities P (1), P (2) and P (1,2).185

Step 0. Initialize θ = θ0.

Step k (for k ≥ 1).

(1) P (2) is obtained in function of θ = θk−1.

Section 2 is a M/G/c/c state dependent closed section, with an average arrival flow θ, which

is unknown. According to (5), the stationary probability distribution of the number n2 of190

cars on section 2 is given, in function of θ, as follows.

P
(2)
n2 (θ) =

(θ/qmax2
)n2∏n2

i=1 ig2(i)
P

(2)
0 (θ), n2 = 1, ..., c2.

P
(2)
0 (θ) =

(
1 +

∑c2
n2=1

(θ/qmax2
)n2∏n2

i=1 ig2(i)

)−1
.

(13)

where

g2(i) =
q2(i)/qmax2

i
.

(2) P (1,2) and then P (1) are obtained from λ and P (2), and thus in function of θ = θk−1.

Section 1 is constrained by the supply of section 2. As the normalized service rate g1(i1, i2)

of section 1 depends on the number of cars on section 2, which itself depends on θ, the

stationary probability distribution P (1) of the number of cars in section 1, is also given in195

function θ. The normalized service rate g1(i1, i2) of section 1 is given as follows.

g1(i1, i2) =
q12/qmax1

i1
=

min(∆1(i1),Σ2(i2))/qmax1

i1
. (14)

In order to write P (1), let us first write the stationary probability distribution of the number

of cars on section 1, conditioned by the number of cars on section 2, which we denote by

P (1|2), and which is independent of θ.

P
(1|2)
(n1|n2)

(λ) = Prob (N1 = n1 | N2 = n2) =
(λ/qmax1

)n1∏n1
i=1 ig1(i1,n2)

P
(1|2)
(0|n2)

(λ),

P
(1|2)
(0|n2)

(λ) = Prob (N1 = 0 | N2 = n2) =
(

1 +
∑c1
n1=1

(λ/qmax1
)n1∏n1

i=1 ig1(i1,n2)

)−1
.

(15)

Thus, the stationary probability distribution P (1) of the number of cars in section 1, which200

depends on λ and θ, is given as follows.

P
(1)
n1 (λ, θ) =

∑c2
n2=1 P

(1|2)
(n1|n2)

(λ)P
(2)
n2 (θ),

P
(1)
0 (λ, θ) =

∑c2
n2=1 P

(1|2)
(0|n2)

(λ)P
(2)
n2 (θ).

(16)
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(3) q12 is obtained from P (1), and in function of θ = θk, and finally θk+1 = E(q12(θk)).

The average outflow from section 1, θ, is given in function of P (1) as follows.

θk = λ
(

1− P (1)
c1 (λ, θk−1)

)
. (17)

The procedure consists then in solving the following implicit equation on the scalar θ.

θ = λ
(

1− P (1)
c1 (λ, θ)

)
. (18)

The solution of that equation, if it exists, and if it is unique, gives the value of the asymptotic205

average flow passing from section 1 to section 2, and by that, the stationary probability distribu-

tions P (2), P (1|2) and P (1). The stationary probability distribution P (1,2) can be easily deduced

from P (1|2) and P (2). We notice here that equation (18) is a fixed-point-like equation.

In the following section, we give some results on the fixed-point equation solving.

4.2. Fixed-point equation solving210

We use the following notations.

• h(θ) = λ
(

1− P (1)
c1 (λ, θ)

)
,

• e(θ) = h(θ)− θ.

Equation (18) is written θ = h(θ), and it is equivalent to e(θ) = 0.

Below, we give some results on the resolution of equation (18).215

Theorem 4.1. A solution for equation (18) exists and is unique.

Proof. See AppendixA.

The following result gives a condition on the couple (λ, θ), under which the sequence θk, k ∈ N

defined by fixed point iteration (17) (i.e. θk = h(θk−1)) converges for every initial value θ0 ∈ [0, λ].

Theorem 4.2. If ∃ε > 0 such that ε < θ/λ, and if

c2∑
n2=1

P
(1|2)
c1|n2

(λ)P (2)
n2

(θ)

(
n2 −

c2∑
k2=1

k2P
(2)
k2

(θ)

)
≤ ε,

then the fixed point iteration converges to the unique fixed point of the fixed point equation.220

Proof. See AppendixB.

We do not have other explicit formulas than the condition of Theorem 4.2. We know that for

low values of λ, we have −1 < d h(θ)/dθ ≤ 0,∀θ ∈ [0, λ], and the iteration of the fixed point

equation converges, independently of the initial value of θ, to the unique fixed point. However,

we also know that for high values of λ, there exists an interval (θ1, θ2) where d h(θ)/dθ < −1. In225

such cases, the fixed point is unstable. Nevertheless, the sequence θk, k ∈ N oscillates between two
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Figure 5: On the x-axis: θ. On the y-axis: in blue the function h(θ) for different values of λ: 1000, 2000 and 3000;

in red: θ.

adherence values h(0) = λ and h(λ), giving (λ+ h(λ))/2 as the asymptotic average value of θ, see

Figures 5 and 6.

In Figure 5, we give in blue color the function h(θ) for different values of λ. The red line is the

first bisector. The fixed point verifying h(θ) = θ is then the intersection of the blue curve with230

the red one. We see in this figure that the derivative of h(θ) with respect to θ on the fixed point

is decreasing with λ, starting from zero. Indeed, for low values of λ, we have dh(θ)/θ = 0. As

λ increases, dh(θ)/θ decreases. As explained above, while dh(θ)/θ > −1, we know that the fixed

point is stable. However, once dh(θ)/θ > −1, the fixed point is unstable.

Figure 6 illustrates the two cases of stable and unstable fixed points, depending on the value235

of λ. In the first case (left side of the figure), we have λ = 2000 veh/h; see also Figure 5. In this

case, the fixed point is stable, and the iteration converges to it. In the second case (right side of

Figure 6), we have λ = 3000 veh/h; see also Figure 5. In this case, the fixed point is unstable, and

the iteration oscillates from the two values h(0) = λ and h(λ).

In the following section, we explain how to compute the stationary probability distributions in240

function of the average flow θ, calculated by the fixed point iteration.

4.3. The stationary probability distributions

Once θ is obtained, the whole stationary regime of the system of two road sections in tandem

is determined. Indeed, the stationary probability distributions P (1), P (2) and P (1|2) are given

by (16), (13) and (15) respectively. The stationary joint probability distribution P (1,2) of the

couple (n1, n2) of the number of cars in sections 1 and 2 respectively, is then easily deduced.

P
(1,2)
(n1,n2)

= P
(1|2)
n1|n2

P (2)
n2
, ∀0 ≤ n1 ≤ c1, 0 ≤ n2 ≤ c2.

In the following, we illustrate those probability distributions for given parameters of the system.
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Figure 6: Fixed point iteration. On the left side: λ = 2000 veh/h and the iteration converges to the fixed point.

On the right side: λ = 3000 veh/h and the iteration oscillates between two values h(0) = λ and h(λ).

Table 1 gives the fixed parameters for the illustrations, where L, v1, ρj and qmax denote respectively

section length, free speed, jam-density and maximum car-flow.

Table 1: Parameters for sections 1 and 2.

Section i L (km) v1 (km/h) ρj (veh/km) qmax (veh/h)

1 0.1 100 180 5000

2 0.1 50 180 2500

245

Let us notice that ρcr = ρj/2 (quadratic fundamental diagram), and c = Lρj .

ρcr and c denote respectively critical car-density and road section capacity in term of maximum

number of cars.

Figure 7 compares the stationary distribution probability of the two following cases.

• One closed road section (Jain and Smith model), with parameters of section 2 in Table 1.250

(Blue color in Figure 7).

• One constrained road section, with parameters of section 1 in Table 1. The section is assumed

to be constrained by a closed road section whose parameters are those of section 2 in Table

1. (Red color in Figure 7).

The average car inflow λ is varied from one illustration to another in Figure 7.255

We notice here that the constrained road has a maximum flow capacity of 5000 veh/h, but it

is constrained by a closed road with a maximum flow capacity of 2500 veh/h. We remark from

Figure 7, that the constrained section is more likely to be congested than the closed one, even

though a priori they are both constrained by a maximum flow capacity of 2500 veh/h.

12



Figure 7: Stationary probability distributions. λ = 1000 veh/h, 2000 veh/h and 3000 veh/h respectively from left

to right sides.

Figure 8 gives the stationary probability distributions P (1,2) of the couple (n1, n2) of numbers260

of cars in sections 1 and 2 respectively. The average arrival rate λ is varied from one illustration

to another. Parameters of Table 1 are used. λ takes the values of 1000 veh/h, 2000 veh/h, 2500

veh/h and 3000 veh/h.

Figure 8: Stationary probability distribution of the number of cars in two road sections in tandem. The arrival

rate λ = 1000 veh/h, 2000 veh/h, 2500 veh/h and 3000 veh/h.

In Figure 9, we give the throughputs of sections 1 and 2 in the case where the two sections are265

set in tandem. The throughput θ of section 1 is given by (18), and it is the solution of the fixed

point iteration. The throughput δ (see 4) is computed by the same way (Little’s law), once θ is

13



determined.

δ = θ
(

1− P (2)
c2 (θ)

)
.

Figure 9 displays for an increasing arrival rate, λ, the throughput through sections 1 and 2

of the whole system of two road sections in tandem. The parameters of each road section are270

those given in Table 1. We remark from Figure 9, that throughput through the sections 1 and 2

is equal to the arrival rate λ up to roughly 2200 veh/h. This comes directly from the fact that the

capacities are not restrictive. However, the trend changes at about 2300 veh/h (well below 2500

veh/h), and the throughput does not increase anymore.

Figure 9: Throughputs θ in red color and δ in blue color in function of the average arrival rate λ. The two road

sections are set in tandem.

4.4. Performance measures of two sections in tandem topology275

We consider the system of two sections in tandem topology presented in Figure 4, with param-

eters of Table 1. The bottleneck in section 2 is most difficult to be analyzed because of the mutual

dependence between the two sections set in tandem. In the next, we compare the throughput and

the expected service time of our method with the method of Kerbache and Smith [19].

Figure 10 compares the throughputs of sections 1 and 2 of our method with the expansion280

method of Kerbache and Smith (open M/G/c/c state dependent queueing networks) [19].

We remark from Figure 10, that when the arrival rate λ is low, our throughputs (θ of section

1 and σ of section 2) are similar to the throughputs of the expansion method of Kerbache and

Smith. In this case, the arrival rate is very light and easily accepted by section 2 without any285

blocking. When the arrival rate λ is large, our throughputs is low as compared to the throughputs

of M/G/c/c state dependent queueing networks, because the constrained section (section 1 of our

model ) is more likely to be congested than the open section (section 1 in the expansion method

of Kerbache and Smith).

290
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Figure 10: Comparison of the throughputs. In left, section 1 (θ). In right, section 2 (σ). In red color, our model of

two sections in tandem. In blue color, open M/G/c/c state dependent queueing networks in tandem

Using Little’s Law, Figure 11 compares the expected service time of sections 1 and 2 of our

method with the one of method of Kerbache and Smith [19]. We remark here that under a light

arrival rate λ, the expected service time almost corresponds to the free service time (L/v1). Under

a heavy arrival rate, vehicles slow down and the expected service time increases in value for the

two models. Our expected travel time remains near the upper bound of the expansion method of295

Kerbache and Smith.

Figure 11: Comparison of the expected service time. In left, section 1. In right, section 2. In red color, our model

of two sections in tandem. In blue color, open M/G/c/c state dependent queueing networks in tandem.

5. Conclusion and future work

In this paper, we have presented a queuing model for road traffic that preserves the finite

capacity property of the real system. Based on the M/G/c/c state dependent queuing model,

we have proposed a stochastic queuing model for the road traffic which captures the stationary300

density-flow relationship in both uncongested and congestion conditions. First results of the
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proposed model are presented. A comparison with results predicted by the classical M/G/c/c

state dependent queuing model shows that the proposed model correctly captures the interaction

between upstream traffic demand and downstream traffic supply. Future work shall derive more

analytic results on the proposed model, and include the extension of the model to complicated305

tree-topologies (complex series, merge, and split networks). Another interesting extension is the

treatment of the case where the arrival rate follow a general distribution (general state dependent

queuing model). The case where traffic demand, traffic supply and fundamental diagrams are

stochastic will also be treated.
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AppendixA. Proof of Theorem 4.1

1. Existence. We have e : [0, λ]→ [0, λ].

315

• e(0) = h(0) = λ(1− P (1)
c1 (λ, 0)) = λ

(
1−

∑c2
n2=1 P

(1|2)
(c1|n2)

(λ)P
(2)
n2 (0)

)
.

P
(2)
n2 (0) = 0,∀n2 6= 0 and P

(2)
0 = 1.

Therefore, e(0) = λ(1− P (1|2)
(c1|0)(λ)) > 0

since P
(1|2)
(c1|0)(λ) < 1, because P

(1|2)
(0|0) (λ) > 0 and λ > 0.

• e(λ) = h(λ)− λ = λ(1− P (1)
c1 (λ))− λ = −λP (1)

c1 (λ) < 0320

since P
(1)
c1 (λ) > 0 and λ > 0.

Using the theorem of intermediate values, e is continuous from [0, λ] into [0, λ], and we have

e(0) > 0 and e(λ) < 0. We conclude that ∃θ ∈ [0, λ] such that e(θ) = 0.

2. Uniqueness. For the uniqueness of the fixed point, it is sufficient to show that e is decreasing

in [0, λ]. Let us calculate d e(θ)/dθ.325

d e(θ)

dθ
=
d
(
λ− λ

∑c2
n2=1 P

(1|2)
(c1|n2)

(λ)P
(2)
n2 (θ)− θ

)
dθ

.

One can easily show that

dP
(2)
n2

dθ
=

1

θ
P (2)
n2

(θ) (n2 − n̄2(θ)) ,

where

n̄2(θ) = EP (2)(n2) =

c2∑
k2=1

k2P
(2)
k2

(θ).
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Then
d e(θ)

dθ
= −λ

θ

c2∑
n2=1

P
(1|2)
c1|n2

(λ)P (2)
n2

(n2 − n̄2(θ)) − 1.

Let us show that

S
def
=

c2∑
n2=1

P
(1|2)
c1|n2

(λ)P (2)
n2

(θ)(n2 − n̄2(θ)) ≥ 0. (A.1)

We have P
(1|2)
c1|n2

(λ) is increasing with respect to n2; see (14) and (15).

Let n∗2 = n∗2(θ) be defined as follows n∗2 = max{n2 ≤ c2, n2 − n̄2(θ) < 0}. Then

S =
∑n∗

2
n2=1 P

(1|2)
c1|n2

(λ)P
(2)
n2 (θ)(n2 − n̄2(θ)) +

∑c2
n2=n∗

2
P

(1|2)
c1|n2

(λ)P
(2)
n2 (θ)(n2 − n̄2(θ))

≥
∑n∗

2
n2=1 P

(1|2)
c1|n∗

2
(λ)P

(2)
n2 (θ)(n2 − n̄2(θ)) +

∑c2
n2=n∗

2
P

(1|2)
c1|n∗

2
(λ)P

(2)
n2 (θ)(n2 − n̄2(θ))

= P
(1|2)
c1|n∗

2
(λ)
∑c2
n2=1 P

(2)
n2 (θ)(n2 − n̄2(θ)) = 0.

Hence d e(θ)/dθ < 0, and the fixed point is unique.

AppendixB. Proof of Theorem 4.2330

Following the proof of Theorem 4.1 ( AppendixA), we have

d h(θ)

dθ
=
d e(θ)

dθ
+ 1 = −λ

θ
S,

where S is given by (A.1) in the proof of Theorem 4.1.

The condition of Theorem 4.2 can be written ∃0 ≤ ε < θ/λ such that S ≤ ε. Therefore, if this

condition is satisfied, then ∃0 ≤ η < 1 such that d h(θ)/dθ > −1.

Then since we have already shown in the proof of Theorem 4.1 ( AppendixA) that s ≥ 0, and

by that, d h(θ)/dθ ≤ 0, then, under the condition of Theorem 4.2, we have 0 ≤ d h(θ)/dθ < 1.335

Hence the fixed point iteration converges to the unique fixed point of the fixed point equation.
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