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The bending modulus of air-water interfaces covered by a monolayer of bidisperse particles is probed
experimentally under quasistatic conditions via the compression of the monolayer, and under dynamical
conditions studying capillary-wave propagation. Simple averaging of the modulus obtained solely with small or
large particles fails to describe our data. Indeed, as observed in other configurations for monodisperse systems,
bidisperse rafts have both a granular and an elastic character: chain forces and collective effects must be taken
into account to fully understand our results.
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Particles adsorbing at liquid interfaces can stabilize inter-
faces in foams or Pickering emulsions [1–3] or encapsulate and
protect isolated droplets and bubbles [4–6]. They constitute the
key component of flotation where particles are sorted accord-
ing to their hydrophobicity. Consequently, many fundamental
studies have focused on the properties of these interfaces,
noting, for example, the main role of interparticle interactions
on raft crystalline phases [7–9]. Since the adsorbed particle
monolayer can constitute a protection against coalescence,
or can delay coarsening in multiscale materials, its mechan-
ical properties have also been investigated extensively. For
example, the influence of particle diameter on the monolayer
collapse threshold [10], the interface bending [11,12], and
the robustness against coalescence upon impact [4,13] have
been determined. A complete description of these interfaces,
granular by nature, must sometimes account for local elastic
properties or overall parameters such as stress propagation in
the media [14,15].

Yet, while bidisperse particles are often assemble to
increase the monolayer density, polydispersity effects have
barely been considered. Surface pressure isotherm of bidis-
perse assemblies at liquid-liquid interfaces have been studied
experimentally [8,16], and they showed no difference with
monodisperse systems. However, the bending ability, crucial
for limiting coarsening, for example, remains unexplored.
In this study, we characterize experimentally the density
of bidisperse granular rafts, and we show how it affects
their bending modulus, measured via static compression and
propagation of surface waves. It appears that simple averaging
of the properties obtained solely with the small or large
particles cannot accurately describe our experimental results.
Instead, both local individual properties of the adsorbed beads
and collective effects must be considered.

To prepare the rafts, silanized spherical glass beads [12]
with a density of 2500 kg m−3 and a contact angle θ =
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107◦ ± 10 are used. The beads are sifted mechanically to
obtain monodisperse distributions with mean bead diameters
ranging from 32 to 565 μm, and a standard deviation of 8%. To
achieve bidisperse distributions, the sifted particles are mixed
in known proportion. The resulting mixtures are characterized
by d, D, n, and N , the small- and large-particle diameters and
numbers, respectively. Four particle size ratios are considered
that correspond to seven samples for which the mean particle
diameters are reported in Table I.

The particles are then gently deposited at the water interface
in a few-cm-wide recipient by blowing air. A moving barrier
allows us to adjust the laden interface area to the monolayer
collapse threshold [11]. The proportion of small and large
particles is measured using many top-view snapshots such as
those shown in Fig. 1(a), and it is found to be the same as that
in the samples. The monolayers are further characterized by
their apparent surface density φ = (NπD2 + nπd2)/4S, with
S the investigated area. Variations of φ against the large particle
fraction ψl = ND2/(nd2 + ND2) are reported in Fig. 1(b) for
different d/D.

For important diameter differences (samples 1 and 3), a
maximum is observed for ψl ≈ 0.8, while the curves remain
flat for moderate ones (samples 5 and 7). The packing of
continuous polydisperse assemblies, exhibiting, for example,
Gaussian polydispersity, has been tackled extensively [17].
Yet, despite their wide use, noncontinuous distributions have
been less studied. The problem has been investigated ana-
lytically and numerically in three dimensions [18,19] and
numerically in two dimensions [20,21], but the results are not
directly applicable to our systems. Indeed, since the particles
lay at the water interface with a contact angle different from
π/2, they are not in contact at their equator, and our systems
are neither two-dimensional (2D) nor 3D. Corrections to the
simple 2D case are thus proposed, and the calculations are
detailed in the Appendix.

Two cases are considered. For diameter ratios close to
1 (d/D ∼ 1), the monodisperse regime is achieved and
the surface density is expected to be constant, equal to
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TABLE I. Sample number; d and D are the small- and large-
particle diameters, respectively.

Sample 1 2 3 4 5 6 7

d/D 0.13 0.22 0.39 0.57
d (μm) 72 32 128 32 128 83 72
D (μm) 565 146 565 83 312 146 128

φm = π/2
√

3 � 0.9, as observed for samples 5 and 7 in
Fig. 1(b). The other one corresponds to low size ratios,
where the small particles can partially fill the voids between
large ones (samples 1 and 3). This effect is maximum if the
small particles perfectly fill the voids. Taking θ = 107◦ as
for our particles leads to d/D � 0.179 (see the Appendix).
In this case, two limits can be described analytically. When
ψl approaches 1, the large particles form a dense network
that occupies the maximum surface fraction of monodisperse
systems φm. The small particles fill the voids between the
large ones. The surface fraction reads

φ = φm/ψl. (1)

For ψl = 1
2−φm

, the densely packed small particles
exactly fill the gaps, and the maximum surface density,
φmax = φm(2 − φm), is reached. Surface density variations
are slightly affected by the not truly 2D character of the rafts.
Deviations are smaller than 0.03 (see the Appendix) and will
be neglected thereafter. In contrast, if ψl approaches zero,
the raft is made of a dense packing of small particles having
a surface fraction φm, in which a few spots constituted of
isolated large particles are found. The number nr of small

FIG. 1. (a) Particle monolayer snapshots (sample 3, Table I) for
different ψl . (b) Surface density φ vs large particle fraction ψl

(symbols) for different samples (Table I). Plain lines correspond to
Eq. (1), horizontal dashed lines to φ = φm, and tilted dashed lines to
Eq. (2).

FIG. 2. (a) Scheme of the quasistatic assay producing wrinkles in
the monolayer. (b) Left: Scheme of the dynamical assay for wave
propagation. Right: wave propagation image (side view) used to
obtain the dispersion relations.

particles replaced by large ones is nrπd2/φm = NπD2. The
measured surface density reduces to

φ = φm/[1 − ψl(1 − φm)]. (2)

These predictions [Eqs. (1) and (2)] are compared to the
experimental results in Fig. 1(b) for samples 1 and 3. They
show very good agreement, confirming that the surface density
is barely affected by the approximative 2D character of the raft.

Along with the description of raft surface density, we
evaluate the effects of bidispersity on the raft-bending
modulus. The first experimental setup, designed to probe
quasistatic conditions, consists of a 6-cm-wide trough filled
with deionized water, covered with silanized beads [11]. The
confined monolayer is compressed by a moving barrier, as
shown in Fig. 2(a). Wrinkles that appear above a certain
compression are visualized via their shades under low-angled
light. Both the overall compression and the local structure are
recorded via top imaging.

For monodisperse rafts, we report in Fig. 3 the variations
of λstatic, which is the wrinkle wavelength, with d the particle
diameter.

FIG. 3. (◦), Quasistatic wavelengths obtained by quasistatic
compression of monodisperse rafts as a function of the particle
diameter d . (♦), Equivalent dynamic wavelengths deduced from the
dynamic bending modulus measured via capillary-wave propagation
on monodisperse rafts as a function of the particle diameter d . The
straight and dashed lines correspond to λ ∝ d1/2, in good agreement
with the experimental points.
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FIG. 4. Open symbols: wrinkles wavelength from quasistatic
compression (λstatic), normalized by the one of the large particles
(λstatic,l), for different d/D (Table I). The error bars are standard devi-
ations. The dashed horizontal straight lines represent the quasistatic
wavelengths of monodisperse cases. The plain lines correspond to
Eq. (3). Plain symbols: fourth root of the dynamic bending modulus—
obtained studying capillary-wave propagation—normalized by its
value for large particles (Bdyn/Bdyn,l)1/4, also referred to as λdyn/λdyn,l

for similar d/D (Table I). The vertical dashed lines correspond to φc

(see the text).

As for elastic plates or lipidic membranes, these wrinkles
are attributed to a bending stiffness. Yet here, the bending
modulus B originates from wetting, and it has been shown that
λstatic ∝ B1/4, where B = φσd2f (θ ), with σ the liquid surface
tension, d the particle diameter, and f (θ ) a function depending
on a geometrical factor and the contact angle θ [11,22,23]. Our
results obtained with monodisperse rafts, reported in Fig. 3 (◦),
are in good agreement with the commonly accepted scaling
λstatic ∝ d1/2 except for the smallest particles, where we note
some small deviation. This discrepancy may be attributed to the
practical difficulties encountered to form a regular monolayer
while using small particles.

To estimate the effect of bidispersity on raft-bending abili-
ties, we report in Fig. 4 the observed wavelength normalized
by that of the large particles (λstatic/λstatic,l) as a function of
ψl . The two values of large- and small-particle wavelengths
(λstatic,l and λstatic,s) are recovered when ψl tends to 1 and 0,
respectively. Moreover, one can observe that despite error bars,
the wavelength can become larger than that of large particles
alone; see Fig. 4, samples 1 and 5.

To confirm this feature and to investigate the effect of
dynamical friction among the beads on the raft-bending
abilities, capillary-wave propagation is considered [12]. A
glass slide, fixed to a mechanical oscillator, is placed in contact
with the monolayer as sketched in Fig. 2(b), transmitting
its movements to the covered interface. Wave celerity, c,
is recorded by side view imaging (4000 fps, phantom) for
oscillation frequencies, f , ranging from 150 to 900 Hz. The
resulting wave number, k, is measured as a function of f . The
experimental dispersion relation c(k) with c = 2πf/k is then

constructed for different bidisperse rafts and fitted using the
model and procedure described in [12] and in the Appendix.
Following this approach, the dynamic bending modulus, Bdyn,
is derived from the fitting procedure. To compare these results
with those from quasistatic compression, the dynamic bending
modulus is converted into an equivalent dynamic wavelength,
λdyn, using the relation λdyn = 2π (Bdyn/ρg)1/4, ρ being the
liquid density, here water [11].

For monodisperse rafts, the behavior λdyn ∝ d1/2 is recov-
ered (Fig. 3 (♦)). A discrepancy in the numerical factor is
observed, however, between the static and dynamical experi-
ments, as already found (but in the other way) before [12]. This
highlights the fact that wetting is indeed a key ingredient to
understand raft-bending ability, but that some other additional
sources of interactions, such as dynamical interparticle friction
or contact angle hysteresis, must be taken into account.

The results obtained on bidisperse rafts are compared
to those of the quasistatic assay by plotting the values of
(Bdyn/Bdyn,l)1/4, corresponding to λdyn/λdyn,l as a function
of ψl in Fig. 4 (plain symbols). Here, Bdyn,l corresponds to
the measured value of Bdyn for the large particles only, using
the same method. In both cases, the error bars represent the
variations resulting from the fitting procedure. Nevertheless,
the dynamical results confirm that the bending modulus of
bidisperse rafts can become larger than that found for rafts
constituted of the large particles only (sample 4).

A natural way to compute the bending modulus of compos-
ite material composed of two materials of different moduli
is to average the bending modulus obtained for each of
the monodisperse rafts, as generally performed in predicting
mechanical properties of composite materials [24].

The simplest approach, justified by energy arguments, con-
sists in averaging according to surface density. Indeed, surface
energy is a possible origin of the bending stiffness of the
particle raft: assuming that there is no contact angle hysteresis,
the particles at the interface independently self-adjust under
bending of the interface to fulfill the condition of static contact
angle. This induces surface energy variations proportional to
the number of particles. Using the definitions of φl , φs , and
ψl , it should read B = σf (θ )(φlD

2 + φsd
2), with φs and φl

the surface fraction of small and large particles, respectively.
Using λdyn ∝ Bdyn

1/4, λ/λl , the normalized wavelength (static
or dynamic) of bidisperse mixtures reads

λ

λl

=
√

d

D

(
φ

φm

)1/4(
1 − ψl + ψl

D2

d2

)1/4

. (3)

Equation (3) (continuous lines) is compared, using Eqs. (1)
and (2), with the experimental results in Fig. 4. Two main
discrepancies can be identified. First, for small ψl , the bending
modulus is systematically smaller than model predictions.
This may not be explained solely by the deviation of the
scaling λ ∝ d1/2 for the smallest particles (d = 72 μm) since
this observation is also made for sample 3, whose small
particles have a diameter of 128 μm. A possible origin of
this deviation is the following: when the distance separating
large particles is greater than the small-particle wavelength,
the latter is expected to be recovered. Approximating φ by φm,
this threshold is reached for ψl = πD2/2

√
3φmλs

2 = D2/λs
2,

where λs is the wavelength measured for small particles only.
Numerical application leads to 0.07, 0.12, 0.02, and 0.31 for,
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respectively, samples 5, 3, 7, and 1. This is in agreement with
our data, as can be seen in Fig. 4, where this threshold φc is
highlighted using dashed vertical lines. On the other hand, for
large ψl , the maxima observed in both static and dynamical
measurements are not captured by Eq. (3). This suggests the
need for a more complex modeling for this composite material.

To go further, two main routes are proposed. On the one
hand, a more complex averaging of the two monodisperse
moduli can be envisaged, as was explored extensively both the-
oretically and experimentally in continuum mechanics [24,25].
This would only be applicable for small particles to ensure that
the continuity hypothesis holds. Moreover, it would require
a full determination of the stress and strain in the media
by knowing the material’s constitutive equation. The latter
requires a better local modeling of the forces between the
particles, taking into account the full determination of the air-
water interface deformation between the particles, the effect
of contact angle hysteresis, and the potential heterogeneity of
contact forces between particles of different sizes. On the other
hand, in the limit of large particles, an alternative route consists
in taking into account the granular character of these interfaces.
Indeed, it has been shown that in truly 2D granular media, force
chains build up between particles that distribute and propagate
the stress within the media. The force chains are known to
adopt specific directions in monodisperse systems that are
fixed by the lattice and its orientation [26]. In nonmonodisperse
systems exhibiting a relatively narrow size distribution, these
chains lose their specific orientation due to the loss of order
within the granular lattice, and they tend to disappear in favor
of a more homogeneous stress distribution [26]. For a wider
size distribution, Voivret et al. showed in a numerical study
that the orientation of contact force chains follows the spatial
distribution of the largest particles, which mediate most of
the stress via their interactions [27]. In bidisperse systems, the
order being lost, it is therefore expected that the selection of the
contacts involved in force chains does not follow any specific
orientation. Instead, the selection is driven by preferred particle
interactions. In our systems, pair interactions can involve two
particles of the same kind or one of each kind. Since to satisfy
the contact angle with water, the large and small particles are
not in the same plane (see the Appendix), it seems reasonable
to consider that contacts between two particles of the same
kind are more efficient to propagate forces and stress. As a
result, when the system is percolated with the small particles,
chain forces preferably build up between small particles only,
thus bidisperse rafts can be seen as monodisperse rafts made
of small particles with the inclusion of stiffer isolated areas of
limited size where the large particles are found. The effective
bending modulus of such composite materials is thus expected
to be found between average values provided by Eq. (3)
and the values given by small particles alone. In contrast,
when the system is percolated with the large particles, its
bending modulus is expected to take an intermediate value
between that obtained for large particles only and that provided
by the averaging approach. Numerical simulations evaluate
the percolation threshold for ψl between 0.5 and 0.6 [28].
This is in agreement with our observations, since for low ψl

the wavelength is below Eq. (3), while above ψl = 0.5 all
the measured wavelengths are equal to or larger than those of
the large particles alone.

However, the existence of wavelengths greater than those
of large particles alone cannot be captured by any of these
interpretations. A plausible qualitative explanation is the
formation of patterns whose elementary unit size exceeds
that of large particles, as observed in curved geometries for
monodisperse lattices.

In conclusion, the bending modulus of bidisperse particle
rafts has been investigated by two distinct tests probing
the raft quasistatic and dynamic responses. We propose to
describe our data using two different frameworks. In the
framework of continuum mechanics, we show that surface
averaging of the moduli of small and large particles only
produces a qualitative agreement. Indeed, it fails to accurately
reproduce two experimental observations. First, the bending
modulus of the bidisperse raft undergoes a relatively sharp
transition for ψl ≈ 0.25–0.5, which can only be explained in
the framework of granular matter assuming that force chains
are preferably mediated by contacts between particles of the
same size. When the system is percolated with small particles,
the bending modulus deviates from the averaging predictions
toward the value corresponding to the monodisperse raft of
small particles, and, by analogy, a similar deviation toward
the bending modulus of the large-particle raft is observed
when the system is percolated with large particles. The second
observation, which could not be reproduced by our modeling,
involves the existence for both quasistatic and dynamical
measurements of maxima in the bending modulus that exceed
the values obtained by large particles only. We propose to
explain this observation by structural interactions with the
formation of a lattice involving both small and large particles.
It has yet to be determined how these results can be refined to
predict the bending modulus maximum, and how they apply
to wider particle distributions.

A.L.B. would like to thank T. Yanagashima for fruitful
discussions. P.P. is thankful to RCPE for the financial support
of her stay in Graz.

APPENDIX

1. Apparent diameter

In bidisperse rafts, an apparent particle radius can be defined
that is different from the real radius since small- and large-
particle equators are not in the same plane. This concept is
further used to correct our 2D analysis of raft solid surface frac-
tion. Using a simple geometric argument, see Fig. 5, we deter-
mine the altitude zt at which the beads are touching each other.

At this altitude, the apparent diameters of the small sphere
da and the large sphere Da are given by (introducing q = d/D)

Da = D

√
1 − cos2 θ

(
q − 1

q + 1

)2

, (A1)

da = d

√
1 − cos2 θ

(
q − 1

q + 1

)2

. (A2)

We can try to calculate the consequences of equator shift
between large and small particles on the surface fraction of
bidisperse rafts in the limit cases defined in the paper. When
the two diameters are similar, d/D → 1, the apparent diameter
is close to the real one and no deviation is reported (φ → φm).
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FIG. 5. Scheme of a side view of two particles laying on the water
surface, with a contact angle θ . The small and large particles touch
each other at the altitude zt , corresponding to their apparent diameter
da and Da , respectively.

When the two diameters are different, d/D → 0, deviations
are then expected. In the first regime where ψl is close to 1 (the
great proportion of large particles), the large particles form a
network of monodisperse particles having a surface fraction
φ = φm. Within the voids, small particles can be inserted.
As in the 2D case, the surface fraction is then given directly
by definition of ψl by φ = φm/ψl . In two dimensions, we
expect that the maximum surface fraction is reached when the
small-particle surface fraction is at random close packing in
the void, i.e., when φ = φm + (1 − φm)φm, which corresponds
to ψl = 1/(2 − φm). Deviations are expected, however, due to
the 3D character of bidisperse rafts. Indeed, small particles
have a larger area they can fill and can reach random close
packing in the voids, based on the apparent diameter of the
large particles. Thus, at the altitude zt , the large particles
cover a surface fraction given by φl,t = φmD2

a/D
2. At their

maximum coverage, the small particles will cover in this plane
a surface fraction φs,t = φm(1 − φl,t ). So, at its maximum, the
total surface fraction of the small particles is

φs = φs,t

d2

d2
a

= φm

(
1 − φm

D2
a

D2

)
d2

d2
a

. (A3)

Denoting K = cos2(θ )( q−1
q+1 )

2
, the maximum surface fraction,

in this case, is given by

φ = φm

1 − K
[2 − K − (1 − K)φm] (A4)

corresponding to

ψl = 1 − K

2 − K − (1 − K)φm

. (A5)

If we compare these expressions to that of a pure 2D
system [φ = φm/ψl,ψl = 1/(2 − φm)], in the worst case of
our experimental conditions, K = 0.04. This generates a shift
of surface fraction below 0.03, which is smaller than our
experimental incertitude.

Let us now consider the other limit ψl → 0. In this case, the
small particles create a network of surface fraction φm. Some
spots of large particles replace the small ones. The number of
small particles replaced by large ones is given by nrπd2

a /φm =
NπD2

a . The measured surface density then satisfies

φm − φmφψl + ψlφ = φ (A6)

FIG. 6. Top view of three large particles touching each other. A
small particle (bright, center) is inserted in the cavity formed by the
three large particles.

so the surface density as defined here is not affected by this
3D geometry:

φ = φm

1 + φmψl − ψl

. (A7)

2. Critical radius ratio q

Considering the 3D geometry represented below, we look
for the maximum diameter d of a particle inserted in the void
between three large particles of diameter D, densely packed
(see Fig. 6). It is given by

Da + da

D
= 4

3
cos(π/6) = 2

√
3

3
, (A8)

which reduces to

d/D = q =
3 + cos(2θ ) − 4√

3

√
2 + cos(2θ )

cos(2θ ) − 1
. (A9)

For θ = 107◦, this yields a critical radius ratio of 0,179,
very close to 2/

√
(3) − 1 � 0.154 obtained for a truly 2D

bidisperse configuration.

FIG. 7. Experimental dispersion relation of water and of a
monodisperse raft of particles of 146 μm diameter.
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3. Bending modulus from capillary-wave propagation

To obtain the raft curvature modulus, B, the experimental
dispersion relation is fitted by a modified wave propagation
relation [13]. To limit the details, we simply reproduce the
classical (A10) and modified (A11) equations,

c2 = g

k

(
1 + σk2

ρg

)
, (A10)

with c the wave celerity, k the modulus of the wave vector, σ

the surface tension of the liquid, and ρ its density. The modified
relation reads

c2

(
1 + ρ0

ρ
ak

)
= g

k

(
1 + sk2

ρg
+ B

k4

ρg

)
. (A11)

To take into account the raft inertia, the monolayer average
thickness a and its density ρ0 are introduced [Eq. (A11), second
term on the left-hand side]. The surface tension of the bare
liquid is replaced by an effective surface tension, s, since it is
known that the presence of a particle monolayer reduces the
surface tension of the interface [8,29]. The last term on the
right-hand side accounts for the bending itself.

Using this theoretical expression, we adjust two parameters,
s and B, to fit the experimental data. Typical results obtained
for pure water and a monodisperse raft are presented in Fig. 7.
In contrast with pure water, the raft dispersion relation cannot
be reproduced without introducing a bending modulus. The
same procedure was applied to various monodisperse and
bidisperse rafts, as illustrated in Fig. 8.

FIG. 8. Experimental dispersion relations (symbols) and corre-
sponding fits (lines) of samples 2 and 6 with ψl = 0.91 and 0.59,
respectively (red). The dispersion relations and fits of corresponding
monodisperse rafts are also plotted (black).
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