
HAL Id: hal-01611591
https://hal.science/hal-01611591v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positive isotropic curvature and self-duality in
dimension 4

Thomas Richard, Harish Seshadri

To cite this version:
Thomas Richard, Harish Seshadri. Positive isotropic curvature and self-duality in dimension 4.
Manuscripta mathematica, 2015, 149 (3-4), pp.443 - 457. �10.1007/s00229-015-0790-2�. �hal-01611591�

https://hal.science/hal-01611591v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

31
1.

52
56

v2
  [

m
at

h.
D

G
] 

 2
9 

Ja
n 

20
14

Positive isotropic curvature and

self-duality in dimension 4

Thomas Richard and Harish Seshadri

We study a positivity condition for the curvature of oriented Riemannian
4-manifolds: The half-PIC condition. It is a slight weakening of the positive
isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore.

We observe that the half-PIC condition is preserved by the Ricci flow
and satisfies a maximality property among all Ricci flow invariant positivity
conditions on the curvature of oriented 4-manifolds.

We also study some geometric and topological aspects of half-PIC mani-
folds.

1. Introduction

Let (M,g) be an oriented Riemannian 4-manifold. We say that M has positive isotropic
curvature on self-dual 2-forms (which we abbreviate as PIC+) if the complex linear
extension of the curvature operator R : Λ2TpM ⊗ C → Λ2TpM ⊗ C satisfies

〈R(v ∧ w), v ∧w〉 > 0

for every p ∈ M and v ∧w ∈ Λ2
+TpM ⊗C ∩ S0, where 〈 , 〉 denotes the Hermitian inner

product on Λ2TpM⊗C, Λ2
+TpM denotes the self-dual 2-forms at p and S0 ⊂ Λ2TpM⊗C

denotes the set of complex 2-forms that can be written as v∧w where v,w ∈ TpM⊗C span
a complex plane which is isotropic for the complex bilinear extension of the Riemannian
metric on TpM ⊗C.

This condition is a variation of the PIC condition introduced by Micallef and Moore
in [19], which requires positivity for all v ∧ w such {v,w} spans an isotropic complex
plane, without requiring v ∧w to be self dual.

One has the following alternative definitions (see Proposition 2.10):

1. If “Scal” denotes scalar curvature, I : Λ2TM → Λ2TM is the identity operator
and RW+

: Λ2
+TM → Λ2

+TM denotes the self-dual part of the Weyl tensor of R
then

Scal
6 I−RW+

> 0

on Λ2
+TM.
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2. M is PIC+ if for any p ∈ M and any oriented orthonormal basis (e1, e2, e3, e4) of
TpM , we have

R1313 +R1414 +R2323 +R2424 − 2R1234 > 0

where Rijkl = 〈R(ei ∧ ej), ek ∧ el〉.

One has similar definitions in the nonnegative case, which we denote by NNIC+ and
the case of ∧2

−TpM , which we denote by PIC− and NNIC−. If a metric is either PIC+

or PIC− we say that it is half-PIC. As examples we note that:

1. Any anti-self-dual 4-manifold i.e., a manifold with RW+
= 0, with positive scalar

curvature is PIC+.

2. All 4-manifolds with positive isotropic curvature are PIC+. This includes S4,
S3 × S1. It is also known that connected sums of manifolds with positive isotropic
curvature admit metric with positive isotropic curvature.

3. Any Kähler 4-manifold whose scalar curvature is nonnegative is NNIC+ but not
PIC+ (with its standard orientation, see Proposition 2.13). Thus CP2 is NNIC+.
Moreover, since CP2 is half conformally flat (it satisfies RW

−

= 0), it is also PIC−.

These examples show that the PIC+ condition is strictly weaker than the usual PIC

condition.
By applying Wilking’s criterion [24] it is easy to see (see Proposition 2.11) that the

NNIC± conditions are preserved by Ricci flow. We were informed by S. Brendle that
R. Hamilton knew this fact and the proof is similar to Hamilton’s proof that PIC is
preserved by the Ricci flow in dimension 4 (The fact that PIC is prserved by Ricci
flow in all dimensions is a relatively recent result due to S. Brendle-R. Schoen [6] and
H.T. Nguyen [21]). The main result of this note is that the NNIC± conditions are the
minimal Ricci flow invariant nonnegativity conditions in dimension 4. More precisely, if
S2
BΛ

2R4 denotes the space of algebraic curvature operators in dimension 4, we have the
following:

Theorem 1.1. Let C ( CScal ⊂ S2
BΛ

2R4 be an oriented Ricci flow invariant curvature
cone. C is then contained in one of the cones NNIC+ or NNIC−. Moreover, if C is an
unoriented curvature cone, it is contained in the NNIC cone.

This is proved in Section 3. We note that the above result applies to all Ricci flow
invariant cones. In [13] a similar result is proved in dimensions ≥ 5: All the Ricci flow
invariant cones constructed by Wilking [24] are contained in the NNIC cone.

In Section 5, we show that compact Einstein 4-manifolds which are PIC+ are rigid:

Proposition 1.2. A compact oriented Einstein PIC− 4-manifold is isometric, up to
scaling, to S4 or CP2 with their standard metrics. Moreover, an Einstein NNIC−

manifold is either PIC− or flat or a negatively oriented Kähler-Einstein surface with
nonnegative scalar curvature.
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The method of proof we use is based on a Bochner type formula for Einstein curvature
operators arising from Ricci flow, which was introduced by S. Brendle in [4]. Our method
of proof is based on a subsequent work of Brendle [5]). Another proof can be given using
the equality case of a theorem of M. Gursky and C. LeBrun in [12].

In Section 4 we consider the topological implications of the PIC+ condition. These
results are obtained using standard geometric techniques, and their proofs are thus only
sketched.

The first observation is a modification of a result of Micallef-Wang [20]

Proposition 1.3. Let Mi, i = 1, 2, be compact oriented 4-manifolds admitting metrics
with PIC+. Then the connected sum M1#M2 admits a metric with PIC+.

Next, a standard Bochner formula argument shows:

Proposition 1.4. If an oriented 4-manifold (M4, g) is compact and PIC+, then b+2 (M) =
0. If (M,g) is NNIC+ then b+(M) ≤ 3, moreover, if b+(M) ≥ 2 then (M,g) is either
flat or isometric to a K3 surface.

We conclude this introduction with some speculative remarks. It would be natural to
try to extend Proposition 1.2 to Ricci solitons. Note that such a result is known for PIC

solitons. More generally, it might be interesting to study if a Ricci flow with surgery
procedure holds for PIC+ manifolds. Note that 4-manifolds with positive isotropic
curvature have been classified using Ricci flow with surgery (see [14] and [8]). A similar
classification might yield a diffeomorphism classification of 4-manifolds with PIC+.

2. Elementary observations about the half-PIC cone

2.1. Curvature operators and curvature cones

Definition 2.1. The space of algebraic curvature operators S2
BΛ

2Rn is the space of
symmetric endomorphisms R of Λ2Rn which satisfy the first Bianchi identity:

〈R(x ∧ y), z ∧ t〉+ 〈R(z ∧ x), y ∧ t〉+ 〈R(y ∧ z), x ∧ t〉 = 0

for all x, y, z, t ∈ Rn.

Remark 2.2. Here, as in the rest of the paper, Rn is endowed with its standard Euclidean
structure, and the scalar product on Λ2Rn is given by:

〈x ∧ y, z ∧ t〉 = 〈x, z〉 〈y, t〉 − 〈x, t〉 〈y, z〉 .

Similarly if (M,g) is a Riemannian manifold, Λ2TM will be equipped with the inner
product coming from the Riemannian metric on TM .

The Ricci morphism: ρ : S2
BΛ

2Rn → S2Rn is defined by

〈ρ(R)x, y〉 =

n
∑

i=1

〈R(x ∧ ei), y ∧ ei〉

3



where (ei)1≤i≤n is an orthonormal basis of Rn. R is said to be Einstein if ρ(R) is a
multiple of the identity operator id : Rn → Rn. Similarly, the scalar curvature of an
algebraic curvature operator is just twice its trace.

The action of O(n,R) on Rn induces the following action of O(n,R) on S2
BΛ

2Rn:

〈g.R(x ∧ y), z ∧ t〉 = 〈R(gx ∧ gy), gz ∧ gt〉 . (1)

Recall that the representation of O(n,R) given by its action on S2
BΛ

2Rn is decomposed
into irreducible representations in the following way:

S2
BΛ

2Rn = R I⊕(S2
0R

n ∧ id)⊕W (2)

where the space of Weyl curvature operators W is the kernel of the Ricci endomorphism
ρ and S2

0R
n ∧ id is the image of the space of traceless endomorphims of Rn under the

application A0 7→ A0 ∧ id. The wedge product of two symmetric operators A,B : Rn →
Rn is defined by

(A ∧B)(x ∧ y) =
1

2
(Ax ∧By +Bx ∧Ay) .

This corresponds to the half of the Kulkarni-Nomizu product of A and B viewed as
quadratic forms.

In dimension 2, only the first summand of (2) exists. In dimension 3 the W factor is
0.

Starting in dimension 4, all three components exist. Moreover in dimension 4, if we
restrict the O(4,R) action to an SO(4,R) action, the decomposition (2) is no longer
irreducible: the Weyl part splits into self-dual and anti-self-dual parts:

S2
BΛ

2R4 = R I⊕(S2
0R

4 ∧ id)⊕W+ ⊕W−. (3)

This comes from the fact that the adjoint representation of SO(4,R) on so(4,R) ≃ Λ2R4

split into two three dimensional irreducible components, which correspond to self-dual
and anti-self-dual 2-forms. See the Appendix for more details.

We will write R = RI+R0+RW to denote the decomposition of a curvature operator
along the three components of (2). Similarly we will write R = RI +R0 +RW+

+RW
−

for the decomposition of R ∈ S2
BΛ

2R4 along (3).

Definition 2.3. An oriented (resp. unoriented) curvature cone is a closed convex cone
C ⊂ S2

BΛ
2Rn such that:

• C is invariant under the action of SO(n,R) (resp. O(n,R)) given by (1).

• The identity operator I : Λ2Rn → Λ2Rn is in the interior of C.

Remark 2.4. The condition that I is in the interior of C implies that C has full dimension.

Each of these cones defines a nonnegativity condition for the curvature of Riemannian
manifold in the following way: the curvature operator R of a Riemannian manifold (M,g)
is a section of the bundle S2

BΛ
2TM which is built from TM the same way S2

BΛ
2Rn is
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built from Rn. For each x ∈ M , one can choose a orthonormal basis of TxM to build
an isomorphism between S2

BΛ
2TxM and S2

BΛ
2Rn. Thanks to the O(n,R)-invariance of

C, this allows us to embed C in S2
BΛ

2TxM in a way which is independent of the basis of
TxM we started with.

We then say that (M,g) has C-nonnegative curvature if for any x ∈ M the curvature
operator of (M,g) at x belongs to the previously discussed embedding of C in S2

BΛ
2TxM .

Similarly, (M,g) is said to have positive C-curvature if its curvature operator at each
point is in the interior of C. By definition, the sphere Sn has positive C-curvature for all
curvature cones C.

2.2. Ricci flow invariant curvature cones

Let Q be the quadratic vector field on S2
BΛ

2Rn defined by

Q(R) = R2 +R#.

Here, R2 is just the square of R seen as an endomorphism of Λ2Rn. R# is defined in the
following way:

〈

R#η, η
〉

= −
1

2

n(n−1)/2
∑

i=1

〈[

η,R
(

[η,R(ωi)]
)]

, ωi

〉

where (ωi)i=1...n(n−1)/2 is an orthonormal basis of Λ2Rn and the Lie bracket [ , ] on Λ2Rn

comes from its identification with so(n,R) given by:

φ : x ∧ y 7→ (u 7→ 〈x, u〉 y − 〈y, u〉 x).

This expression for R# can be found in [2].

Definition 2.5. A curvature cone C is said to be Ricci flow invariant if for any R ∈ ∂C
of C, Q(R) ∈ TRC, the tangent cone at R to C.

Remark 2.6. This condition is equivalent to the fact that the solutions to the ODE
d
dtR = Q(R) which start inside C stay in C for positive times.

We now discuss the relevance of this notion to the actual Ricci flow equation. This is
the content of Hamilton’s maximum principle:

Theorem 2.7. (R. Hamilton [14]) Let n ≥ 2 and C ⊂ S2
BΛ

2Rn be a Ricci flow invariant
curvature cone. If (Mn, g(t))t∈[0,T ) is a Ricci flow on a compact manifold such that
(M,g(0)) has C-nonnegative curvature, then for t ∈ [0, T ), (M,g(t)) has C-nonnegative
curvature.

Next we recall Wilking’s method for generating Ricci flow invariant cones. We begin
with the isomorphism φ : ∧2Rn −→ so(n,R) given by

φ(u ∧ v)(x) = 〈u, x〉v − 〈v, x〉u x ∈ Rn.

Under the above identification of Λ2Rn with so(n,R) the inner product on so(n,R)
is given by 〈A,B〉 = −1

2tr(AB). Extend this inner product to a Hermitian form
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on so(n,R) ⊗R C = so(n,C). We also extend any algebraic curvature operator R ∈
S2(so(n,R)) to a complex linear map so(n,C) → so(n,C). Denoting the extensions by
the same symbols, one has :

Theorem 2.8 ([24]). Let S be a subset of the complex Lie algebra so(n,C). If S is
invariant under the adjoint action of the corresponding complex Lie group SO(n,C),
then the curvature cone

C(S) = {R ∈ S2(so(n,R)) | 〈R(X),X〉 ≥ 0 for all X ∈ S}

is Ricci flow invariant.

We also have Wilking’s generalization of the Brendle-Schoen strong maximum princi-
ple [7] (which is based on a maximum principle of J. M. Bony [3]):

Theorem 2.9 ([24]). Let S be an AdSO(n,C) invariant subset of so(n,C) and (M,g)
be a compact n-manifold with nonnegative C(S)-curvature. Let g(t) be the solution to
Ricci flow starting at g. For p ∈ M and t > 0, let St(p) ⊂ ∧2Tp(M)⊗R C be the subset
corresponding to S at time t i.e., St(p) = ρ−1

g(t)(S) and let

Tt(p) := {x ∈ St(p) : 〈R(t)(x), x〉t = 0}.

Then the set
⋃

p∈M Tt(p) is invariant under parallel transport.

2.3. The half-PIC cone

Proposition 2.10. R ∈ S2
BΛ

2Rn is PIC+ if and only if the symmetric operator on
Λ2
+R

4 defined by the quadratic form 〈Rη, η〉 is 2-positive. This is also equivalent to the
condition Scal

6 − RW+
> 0.

As a corollary, we get that a PIC+ curvature operator has positive scalar curvature
and a NNIC+ curvature operator with zero scalar curvature has vanishing RW+

. Similar
statements hold for PIC− and NNIC−.

Proof. This comes from Micallef and Moore [19]. Let ω = (e1 + ie2)∧ (e3 + ie4) ∈ Λ2C4

where (ei)i=1...4 is a oriented orthonormal basis of R4. Then :

〈Rω, ω〉 = 〈R(e1 ∧ e3 − e2 ∧ e4), e1 ∧ e3 − e2 ∧ e4〉

+ 〈R(e1 ∧ e4 + e2 ∧ e3), e1 ∧ e4 + e2 ∧ e3〉 .

Since e1 ∧ e3 − e2 ∧ e4 and e1 ∧ e4 + e2 ∧ e3 are in Λ2
+R

4 and any pair of orthonormal
2-forms in Λ2

+R
4 can be written in this way for some oriented orthonormal basis of R4,

this shows that R is PIC+ if and only if the quadratic form η 7→ 〈Rη, η〉 on Λ2
+R

4 is
2-positive.

To see the second equivalence, first notice that 〈Rη, η〉 =
〈

(RI +RW+
)η, η

〉

for any

η ∈ Λ2
+R

4. So R is PIC+ if and only if Scal
12 +RW+

is 2-positive. Let λ+ ≤ µ+ ≤ ν+ be the

eigenvalues of RW+
. Scal

12 +RW+
is 2-positive if and only if (Scal12 +µ+)+ (Scal12 +λ+) > 0.

The tracelessness of RW+
implies that R is PIC+ if and only if : Scal

6 − ν+ > 0, which

is exactly the condition Scal
6 − RW+

> 0.

6



Proposition 2.11. The cone CIC+
= {R ∈ S2

BΛ
2R4 | R is NNIC+} is a Ricci flow

invariant curvature cone.

Proof. We remark that :

CIC+
= {R | ∀ω ∈ S, 〈Rω, ω〉 ≥ 0}

with S = {ω ∈ so(4,C) | trace(ω2) = 0, ω ∈ Λ2
+C

4}. This comes from the fact that
ω = ω1 + iω2 ∈ S if and only if |ω1|

2 = |ω2|
2 = 1 and 〈ω1, ω2〉 = 1, and thus R is

nonnegative on S if and only if it is 2-nonnegative on Λ2
+R

4. Thus C is a Wilking cone
and is therefore Ricci flow invariant (see [24]).

Remark 2.12. This result contradicts Theorem 1.1 in [13], which says that any Wilking
cone is contained in the cone of curvature operators with nonnegative isotropic curvature.
The proof is however valid in dimension n ≥ 5. The point is that it uses (p. 4 of [13])
the simplicity of the Lie algebra so(n,C), which holds only if n 6= 4. However, on should
notice that the cone CIC+

is only SO(4,R)-invariant. We will prove in Section 3, that,
regardless of the Wilking condition, the cone of curvature operators with nonnegative
isotropic curvature is maximal among O(4,R)-invariant Ricci flow invariant cones strictly
smaller than the cone of operators with nonnegative scalar curvature.

The cone CIC
−

is defined similarly and is also Ricci flow invariant. Moreover, we have
that CIC+

∩CIC
−

is the cone of curvature operators with nonnegative isotropic curvature.
An oriented 4-manifold (M,g) is said to be positive Kähler if g is Kähler for some

almost complex structure J and the orientation of M induced by J coincide with the
given orientation of M . This is equivalent to the Kähler form being a section of the
bundle Λ2

+T
∗M . Similarly (M,g) is negative Kähler if g is Kähler for some almost

complex structure J and the orientation of M induced by J is the opposite of the given
orientation of M . With these condition, CP2 is positive Kähler.

Proposition 2.13. Any positive Kähler manifold with nonnegative scalar curvature is
NNIC+ but not PIC+. A NNIC− positive Kähler manifold is biholomorphic to CP2.

Proof. A theorem of Derdziński (see [9]) shows that if (M4, g) is positive Kähler and of
real dimension 4, then the eigenvalues of RW+

are Scal
6 , −Scal

12 and −Scal
12 , so Scal

6 − RW+

is nonnegative (with a zero eigenvalue). Hence (M4, g) is NNIC+ and not PIC+.
If in addition (M4, g) is NNIC−, then (M4, g) is Kähler and has nonnegative isotropic

curvature, earlier results of one of the authors ([23]) imply that M4 is actually biholo-
morphic to CP2.

3. Half-PIC as a maximal Ricci flow invariant curvature

condition

In this section we prove:

7



Theorem 3.1. Let C ( CScal ⊂ S2
BΛ

2R4 be an oriented Ricci flow invariant curvature
cone. C is then contained in one of the cones PIC+ or PIC−. Moreover, if C is an
unoriented curvature cone, it is contained in the PIC cone.

We will need a couple of results from [22].

Proposition 3.2 (Proposition A.5 from [22]). If an oriented curvature cone C contains
a non zero R ∈ W+ (resp. R ∈ W−), then C contains W+ (resp. W−).

Proposition 3.3 (Proposition 3.6 from [22]). If an oriented curvature cone C contains
W and is Ricci flow invariant, then C is the cone CScal of curvature operators whose
scalar curvature is nonnegative.

We begin with a lemma:

Lemma 3.4. Let C be an oriented curvature cone and R ∈ C, then RI +RW+
∈ C.

Proof. Consider the subgroup G = S3− ⊂ SO(4,R) defined in the appendix. It acts

trivially on Λ2
+R

4 and irreducibly on Λ2
−R

4. Set R̃ =
∫

G g.Rdg where dg is the Haar

measure on G. Since C is convex and invariant under SO(4,R) ⊃ G, R̃ ∈ C. We claim
that R̃ = RI +RW+

.

Since G acts trivially on R I and W+, we have R̃I = RI and R̃W+
= RW+

.

We now prove that R̃0 = 0. We have that R0 = A0 ∧ id for some A0 ∈ S2
0R

4. Then
g.R0 = g−1A0g ∧ id. This implies that : R̃0 = Ã0 ∧ id where Ã0 =

∫

G g−1A0gdg. As
described in the appendix, G, viewed as the group of unit quaternions, acts on R4,
identified with the quaternions H, by left multiplication. This implies that, for any
u ∈ R4 :

〈

Ã0u, u
〉

=

∫

G
〈A0(gu), gu〉 dg =

∫

‖x‖=‖u‖
〈A0x, x〉 dx

where dx is the usual measure on the sphere of radius ‖u‖ scaled to have total mass 1.
Since the last integral is just a multiple of the trace of A0, we have shown that Ã0 = 0.

It remains to show that R̃W
−

= 0. But the action of G on the three dimensional
space Λ2

−R
4 is isomorphic to the standard action of S3 on R3 by rotations. Thus the

action of G on W− is isomorphic to the irreducible action of S3 on traceless symmetric
3×3 matrices. This implies that W− is irreducible as a reprensention of G, thus R̃W

−

=
∫

G g.RW
−

dg = 0.

Proof of Theorem 3.1. We assume that C is contained in neither CIC+
nor CIC

−

and we
will show that C = CScal. By Proposition 3.3. It is enough to show that C contains W.

Since C is not contained in NNIC+, we can find some R ∈ C such that RE+ =
RI + RW+

is not 2-nonnegative. Thanks to Lemma 3.4, we can assume that R = RE+ .
Let v1, v2, v3 ∈ Λ2

+R
4 be the eigenvectors of R and µ1 ≤ µ2 ≤ µ3 be the associated

eigenvalues. We have that µ1 + µ2 + µ3 > 0 and µ1 + µ2 < 0.
The action on SO(4) on Λ2

+R
4 is transitive on oriented orthonormal basis, thus we

can find some g ∈ SO(4,R) such that ge1 = e2, ge2 = −e1 and ge3 = e3. We consider
the curvature operator R̃ = 1

2(R+g.R). It has eigenvectors e1, e2 and e3 with associated

8



eigenvalues µ̃1 = µ̃2 < 0 < µ̃3. From this we deduce that up to scaling R̃ + |µ̃1| I is the

curvature operator of CP
2
. Thus the curvature operator of CP

2
is in the interior of C.

Arguing as in the proof of corollary 0.3 in [22], we get that W+ ⊂ C.
Similarly, using that C contains some R which is not in NNIC−, one can show that

the curvature operator of CP2 is in the interior of C and get that W− ⊂ C. We have thus
proved that W ⊂ C. This proves the first part of the theorem.

The unoriented case follows: any orientation reversing element of O(4,R) will exchange
Λ2
+R

4 and Λ2
−R

4, consequently it will exchange the cones PIC+ and PIC−. Thus a cone
which is invariant under the full O(4,R) will have to be contained in the intersection of
the PIC+ and PIC− cones, which is exactly the PIC cone.

4. The topology of half-PIC manifolds

Theorem 4.1. The connected sum of two PIC+ manifolds admits a PIC+ metric.

Proof. This follows from [13] since the curvature operator of R× S3 is in the interior of
CIC+

. See also the recent work of Hoelzel [17].

The following Bochner-Weitzenbock formula for self-dual 2-forms ω+ can be found in
[10, appendix C] :

∆dω+ = ∆ω+ + 2

(

Scal

6
− RW+

)

ω+.

From this we easily deduce:

Theorem 4.2. Let (M,g) be a compact oriented 4-manifold.

• If (M,g) is PIC+ then b+(M) = 0.

• If (M,g) is NNIC+ then b+(M) ≤ 3, moreover, if b+(M) ≥ 2 then (M,g) is
either flat or isometric to a K3 surface.

5. Rigidity of Einstein half-PIC manifolds

We recall the classical rigidity theorem for half-conformally flat Einstein 4-manifolds:

Theorem 5.1. (N. Hitchin [16], T. Friedrich - H.Kurke [11]) Let (M,g) be a compact
oriented half-conformally flat Einstein 4-manifold.

1. If M has positive scalar curvature then it is isometric, up to scaling, to S4 or CP 2

with their canonical metrics.

2. If M is scalar flat then it is either flat or its universal cover is isometric to a K3
metric with its Calabi-Yau metric.

The following result can be regarded as a generalization of the above theorem. This
result also follows from the work of C. LeBrun - M. Gursky in [12].

9



Theorem 5.2. An Einstein PIC− 4-manifold is isometric, up to scaling, to S4 or CP2

with their standard metrics. Moreover, an Einstein NNIC− manifold is either PIC− or
flat or a negatively oriented Kähler-Einstein surface with nonnegative scalar curvature.

Proof. We first deal with the case where (M4, g) is PIC−. By Theorem 5.1 it is enough
to show that RW

−

= 0. The proof of this fact closely follows the proof by Brendle in
[5] that Einstein manifolds which have certain Ricci flow invariant positive curvature
properties are spherical space-forms.

We can assume that Ric = 3g. Let κ > 0 be the largest real number such that
R̃ = R − κ I is NNIC−. Note that the scalar curvature of R̃ is a constant equal to
12(1 − κ), in particular, κ ∈ (0, 1]. Since (M,g) is Einstein, Proposition 3 in [4] shows
that:

∆R+ 2Q(R) = 6R.

We compute :

∆R̃ + 2Q(R̃) = ∆R+ 2Q(R)− 4κB(R, I) + 2κ2Q(I)

= 6R− 12κ I +6κ2 I

= 6R̃ + 6κ(κ − 1) I .

Here we used that since R is Einstein and has scalar curvature 12, B(R, I) = B(RI, I) =
B(I, I) = Q(I) = 3 I (these identities come from [2]).

Note that at each point we have that ∆R̃, Q(R̃) and −R̃ are in TR̃C, where C is the
cone of NNIC− curvature operators. This follows from the fact that C is a convex Ricci
flow invariant cone. This implies that 6κ(κ− 1) I ∈ TR̃C.

We claim that the scalar curvature of R̃ is zero, this will imply that R̃W
−

= RW
−

vanishes.
Assume that the scalar curvature of R̃ is positive. This implies that κ < 1. Conse-

quently − I ∈ TR̃C, and we can find ε > 0 such that R̃− ε I ∈ C. Thus R̃ = (R̃− ε I)+ ε I
is in the interior of C since I is in the interior. This contradicts the definition of κ.

We now deal with the borderline cases. First, since the only locally reducible Einstein
4-manifold with nonnegative scalar curvature are quotients of R4 and S2 × S2, and both
of them are negative Kähler, we can assume that (M,g) is irreducible. So the only thing
to show is that if (M,g) is irreducible NNIC− and not negative Kähler, then it is PIC−.

Using Berger’s classification of holonomy groups, we see that (M,g) is irreducible not
negative Kähler if and only if the holonomy group of (M,g) G ⊂ SO(4,R) contains the
group S3− ⊂ SO(4,R) defined in the appendix. This implies in particular that G acts
irreducibly on Λ2

−R
4.

It follows from the strong maximum principle that the set :

K = {ω ∈ Λ2
−T

∗M | Scal
6 |ω|2 −

〈

RW
−

ω, ω
〉

= 0}

is invariant under parallel transport. The irreducibility of the action of G implies that
K is either 0, in which case (M,g) is PIC−, or the whole Λ2

−T
∗M . This implies that

Scal = 0 and RW
−

= 0 and hence, by Theorem 5.1, (M,g) is a negative K3 surface,
hence negative Kähler, a contradiction.
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A. SO(4,R), Λ2R4 and the curvature of 4 manifolds

In this section we recall a small number of classical facts rekated to the splitting of
Λ2TM in dimension 4. For practical purposes, we interpret them using quaternions.

We identify R4 with the quaternions H by (x, y, z, t) 7→ x + iy + jz + kt. We denote
by S3 the group (isomorphic to SU(2)) of unit quaternions. The classical double cover
of SO(4,R) by S3 × S3 is given by :

π : S3 × S3 → SO(4,R)

(q1, q2) 7→ (x ∈ H 7→ q1xq
−1
2 ).

This shows that the Lie algebra of SO(4,R) (which is isomorphic to Λ2R4) splits as a
direct sum :

Λ2R4 = so(3,R)⊕ so(3,R)

This decomposition is exactly the same as the decomposition Λ2R4 = Λ2
−R

4 ⊕ Λ2
+R

4 of
two-forms into anti-self-dual and self-dual parts.

We denote by S3+ ⊂ SO(4,R) (resp. S3− ⊂ SO(4,R)) the image of {1} × S3 (resp.
S3 × {1}) under π. S3+ acts irreducibly on Λ2

+R
4 and trivially on Λ2

−R
4.

From this decomposition, the following decomposition of the representation of SO(4,R)
on the space S2

BΛ
2R4 of algebraic curvature operators holds :

S2
BΛ

2R4 = R I⊕S2
0R

n ∧ id⊕W+ ⊕W−,

where I : Λ2R4 → Λ2R4 is the identity operator, S2
0R

n ∧ id is the space of pure traceless
Ricci tensor, and W+ (resp. W−) is the space of self-dual (resp. anti-self-dual) Weyl
curvature tensors. Note that W+ (resp. W−) is in fact the space of traceless symmet-
ric operators on Λ2

+R
4 (resp. Λ2

−R
4). If R is a curvature operator, we will write its

decomposition as R = RI +R0 +RW+
+RW

−

.
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