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Abstract

Aim: Leaf traits strongly impact biogeochemical cycles in terrestrial ecosystems. Understanding

leaf trait variation along environmental gradients is thus essential to improve the representation of

vegetation in Earth system models. Our aims were to quantify relationships between leaf traits

and climate in permanent grasslands at a biogeographical scale and to test whether these relation-

ships were sensitive to (a) the level of nitrogen inputs and (b) the inclusion of information

pertaining to plant community organization.

Location: Permanent grasslands throughout France.
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Methods: We combined existing datasets on climate, soil, nitrogen inputs (fertilization and deposi-

tion), species composition and four traits, namely specific leaf area, leaf dry matter content and

leaf nitrogen and phosphorus concentrations, for 15,865 French permanent grasslands. Trait–cli-

mate relationships were tested using the following four climatic variables available across 1,833

pixels (5 km 3 5 km): mean annual temperature (MAT) and precipitation (MAP), and two indices

accounting for the length of the growing season. We compared these relationships at the pixel

level using either using community-level or species’ trait means.

Results: Our findings were as follows: (a) leaf traits related to plant nutrient economy shift consis-

tently along a gradient of growing season length accounting for temperature and soil water

limitations of plant growth (GSLtw); (b) weighting leaf traits by species abundance in local commun-

ities is pivotal to capture leaf trait–environment relationships correctly at a biogeographical scale;

and (c) the relationships between traits and GSLtw weaken for grasslands with a high nitrogen

input.

Main conclusions: The effects of climate on plant communities are better described using com-

posite descriptors than coarse variables such as MAT or MAP, but appear weaker for high-

nitrogen grasslands. Using information at the community level tends to strengthen trait–climate

relationships. The interplay of land management, community assembly and bioclimate appears cru-

cial to the prediction of leaf trait variations and their effects on biogeochemical cycles.

K E YWORD S

community functional structure, environmental gradients, fertilization, functional biogeography,

functional diversity, growing season length, land management, permanent grasslands, plant traits

1 | INTRODUCTION

Leaf traits strongly impact the nutrient, carbon and water cycles of ter-

restrial ecosystems (Chapin et al., 2000; Wang et al., 2012); for exam-

ple, primary productivity across ecosystems is related to foliar nitrogen

concentration (Lavorel et al., 2011; Pontes, Soussana, Louault,

Andueza, & Carrère, 2007), and litter decomposition to leaf dry matter

content (Fortunel et al., 2009; Pakeman, Eastwood, & Scobie, 2011).

Scaling information from traits, which are usually measured at the pop-

ulation or species level, to the ecosystem requires accounting for plant

community organization (which results from community assembly proc-

esses; Lavorel & Garnier, 2002; Suding et al., 2008), which appears to

be a pivotal step to predict terrestrial biogeochemistry (Grime, 1998;

reviewed by Garnier, Navas, & Grigulis, 2016). These advances contrast

with the current representation of vegetation in Earth system models

(e.g., Verheijen et al., 2013), in which (a) the existing trait variation

within broadly defined plant functional types (e.g., C3 and C4 herbs,

deciduous and evergreen trees) is largely ignored (but see Wang et al.,

2012), and (b) the plant community, although a relevant level of organi-

zation to capture the relationships between traits, environments and

ecosystem properties, is overlooked.

So far, studies of leaf trait responses to climate variables over bio-

geographical gradients reveal inconsistencies (Reich, 2014; Violle,

Reich, Pacala, Enquist, & Kattge, 2014). For example, specific leaf area

(SLA; the ratio of leaf area to leaf mass) is found to increase (Read,

Moorhead, Swenson, Bailey, & Sanders, 2014; Simpson, Richardson, &

Laughlin, 2016), decrease (Moles et al., 2014; Wright et al., 2005) or

remain invariant (Onoda et al., 2011) with increasing mean annual tem-

perature (MAT). Likewise, although some studies find an increase in

SLA with mean annual precipitation (MAP) (Moles et al., 2014; Wright

et al., 2004), others show a lack of variation (Sandel et al., 2010) or

even a slight decrease (Wright et al., 2005 for deciduous species) with

MAP. Such inconsistent patterns might arise for several reasons. First,

the climate variables used in these studies might be poor descriptors of

the actual bioclimate sensed by plants (van Ommen Kloeke, Douma,

Ordo~nez, Reich, & van Bodegom, 2012). Second, analyses across bio-

geographical and bioclimatic gradients might be influenced by the pres-

ence or absence of functional groups (e.g., evergreen versus deciduous)

or species with contrasting leaf traits whose response to climate might

differ in strength and even direction (Kikuzawa, Onoda, Wright, &

Reich, 2013; Wright et al., 2005). Third, large-scale studies generally

tend to ignore local drivers, such as soil nutrient availability and land

use, which critically affect leaf traits (Cunningham, Summerhayes, &

Westoby, 1999; Hodgson et al., 2011; Ordo~nez et al., 2009; but see

Simpson et al., 2016). Finally, with very few exceptions (Simpson et al.,

2016; Wang et al., 2016), studies conducted at large spatial scales

ignore the fact that populations of plant species are organized locally in

communities, in which they occur almost always at strongly uneven

abundances. In the majority of such studies, whether a species is abun-

dant or rare is not accounted for, although it can be hypothesized that

the fit between traits and the environment is stronger for abundant

species (Cingolani, Cabido, Gurvich, Renison, & Díaz, 2007; Grime,

1998; Muscarella & Uriarte, 2016). Furthermore, to inform a future

generation of Earth system models, robust relationships between
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climate, soil and traits are required that account for effects of species

abundance within communities (encapsulated into so-called ‘commu-

nity-weighed means’ of traits, hereafter CWM) (Garnier et al., 2016;

Reich, 2014). CWMs capture the fact that traits of dominant species

have a stronger effect on ecosystem properties than traits of species

with low abundance (Garnier et al., 2004; Grime, 1998). To date, how-

ever, very few studies have tested to what extent climate and land

management control the CWM of leaf traits at a biogeographical scale

(but see Pakeman et al., 2009 for an exception).

To investigate the interplay between climate, land management

and leaf traits, we assembled a dataset of unprecedented coverage

across French permanent grasslands, a case study for semi-natural tem-

perate grasslands dominated by C3 herbaceous species. Based on

15,865 botanical relev�es and 1,939 species, leaf trait variations were

characterized across 1,833 pixels at a 5 km 3 5 km grid resolution.

Considering four traits of the leaf economics spectrum (Reich, 2014;

Shipley, Lechowicz, Wright & Reich, 2006; Wright et al., 2004), namely

SLA, mass-based leaf nitrogen and phosphorus concentrations (LNC

and LPC, respectively) and leaf dry matter content (LDMC), we

addressed the following questions. (a) Which bioclimatic descriptor

best captures the spatial variation of leaf traits across the investigated

biogeographical gradients? (ii) What is the benefit of accounting for

plant community structure when examining these trait–environment

relationships? (c) To what extent do local land management drivers

modulate the effect of bioclimatic drivers on trait variation?

2 | METHODS

2.1 | Vegetation relev�es, species distribution and trait

data

We used several sources to assemble a dataset of 51,485 geo-

referenced vegetation relev�es (i.e., a list of species with local abun-

dance) in French permanent grasslands (Appendix, Figure S1 in the

Supporting Information and see Violle et al., 2015 for further details).

The data consist of visually estimated relative cover of all present spe-

cies in homogeneous plots, usually from 25 to 100 m2, using a six-level

abundance scale following the Braun-Blanquet method (Braun-

Blanquet, 1932): 0%–1%, 1%–5%, 5%–25%, 25%–50%, 50%–75% and

75%–100%. We used the median of each class to estimate species’

local abundance within the community. As a result of varying taxo-

nomic conceptions among authors, we merged all intraspecific ranks

(subspecies and varieties) to the species level. In addition to these rele-

v�es, the spatial distribution of 2,464 plant species was retrieved from

the electronic atlas of the French flora (http://siflore.fcbn.fr). These

data, for which the original scale of recording is the administrative terri-

tory of councils (‘cantons’), were aggregated at a resolution level of 5

km 3 5 km.

We extracted individual values of SLA (in in square metres per kilo-

gram), LDMC (in milligrams per gram), LNC (in milligrams per gram) and

LPC (in milligrams per gram) from the TRY database (Kattge et al.,

2011), complemented by data from regional databases (Appendix) to

calculate a mean trait value per species. Trait data from artificial

conditions (e.g., greenhouses or growth chambers) were not retained

for this analysis. Previous analyses have shown that, in spite of a cer-

tain degree of intraspecific variation (e.g., Albert et al., 2010; Kichenin,

Wardle, Peltzer, Morse, & Freschet, 2013), species and community

rankings for traits values measured on site and in TRY remained gener-

ally consistent (Borgy et al., 2017; Kazakou et al., 2014). In addition, a

recent meta-analysis has demonstrated that the relative amount of

intraspecific compared with interspecific variation decreased with

increasing spatial extent (Siefert et al., 2015). We thus assumed that

taking a mean trait value per species does not impede the detection of

trait–environment relationships at the biogeographical scale of the

present study. Further details on trait data availability can be found in

the paper by Violle et al. (2015).

2.2 | Bioclimate and soil data

Monthly means of air temperatures (in degrees Celsius) and monthly

sums of rainfall (in millimetres) for the 1961–1990 period over the

French metropolitan territory were provided by the 1 km resolution

gridded dataset of M�et�eoFrance (Benichou & Le Breton, 1987). Incom-

ing net radiation accounting for topographic effects was calculated at

the French national level according to Piedallu and G�egout (2008). A

one-bucket water-balance model was implemented to estimate the

dynamics of soil available water content (AW; in millimetres). This

model used a Turc-based (Turc, 1961) estimate of potential evapo-

transpiration (PET; in millimetres). Soil water-holding capacity (WHC)

was derived from the 1/1,000,000-scale Soil Geographical Database of

France, following the methodology of Le Bas, King, and Daroussin

(1997) and using the pedotransfer functions from Al Majou, Bruand,

Duval, Le Bas, and Vautier (2008). All climate and soil variables were

spatially interpolated to the 5 km 3 5 km grid cell resolution to match

vegetation data. Monthly climate time series were interpolated at a

daily time step to calculate growing season length (GSL). For each pixel,

AW of day n equalled AW of day n 2 1, plus precipitation and minus

PET. AW was bound between 0 and WHC. The model was run for 10

years with the same climate forcing to estimate the yearly time course

of AW. Growing season length (GSLtw) corresponded to the number of

days in the year for which (a) mean daily temperature was above 5 8C

and (b) the ratio AW/WHC was > 0.2. We also estimated a GSL based

only on temperature (GSLt) or on soil water content (GSLw; Figures S2

and S3 in Supporting Information).

To compare the climatic space covered by permanent grasslands in

France with that covered by grasslands in Europe, MAT (in degrees

Celsius) and MAP (in millimetres) were obtained at the European scale

from the WorldClim global climate data base (http://www.worldclim.

org/current) extracted at a 30 s resolution and aggregated at 5

km 3 5 km to match the final grid cell resolution.

2.3 | Nitrogen input data

Nitrogen input was the sum of organic fertilization, mineral fertilization

and nitrogen deposition. Data were obtained from the census Nopolu-

Agri information system of the French Ministry of Agriculture (http://
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www.statistiques.developpement-durable.gouv.fr). These data were

collected in 2010 through national surveys of the amount of nitrogen

excreted by herbivores and from statistics of the fertilization industry

sector. The dataset for nitrogen atmospheric deposition in 2010 was

provided by the European Monitoring and Evaluation Program (http://

www.emep.int/mscw/SR_data/sr_grid.html). Given that the current

mode of fertilization of French permament grasslands has been in

practice since the beginning of the 1980s (Huyghe, 2009; Palacio-

Rabaud, 2000), we assumed that these nitrogen input data are repre-

sentative of the average input corresponding to the period over which

botanical relev�es were retained for the analyses (see section 2.4

below). These data were available for each French council, whose

mean area is c. 8 km2, similar to the order of magnitude of the climate

grid cell. Given that these data represent coarse estimates of nitrogen

FIGURE 1 Schematic representation of the four methods used to calculate aggregated trait values. Metrics used to calculate average trait
values either take community organization into account (CArM and CWM) or not (GCM_r and GCM_a). For the calculation of community
arithmetic mean (CArM), a mean value was calculated for each trait and relev�e by giving an equal weight to each species. For the
community-weighted mean (CWM) calculation, a mean value was calculated for each trait and relev�e by weighting the species trait values
by the relative abundances of these species within the community. Averages for these two metrics were then calculated at the
5 km 3 5 km grid cell level, by giving an equal weight to each relev�e within each cell. For metrics that do not account for community orga-
nization, trait values of all species occurring in a grid cell, derived from either vegetation relev�es (GCM_r) or distribution maps (GCM_a),
were averaged, with an equal weight given to each species. There is therefore one value per 5 km 3 5 km grid cell for each of the four
metrics. The figure shows examples of calculations for the four metrics using hypothetical trait values for five species; the number of times
a letter representing a species is repeated in a plot amounts to the abundance of this species
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inputs in grasslands at the grid cell level (see section 2.4 below and Fig-

ure S4 in Supporting Information), we did not use these as a continu-

ous variable, but rather subdivided grasslands into two classes

corresponding to low (< 73 kg[N]/ha, the median value of inputs) and

high (> 73 kg[N]/ha) inputs.

2.4 | Data analyses

Four averaging metrics were used to derive aggregated values of leaf

traits (Figure 1). The first two were calculated at the grid cell level and

do not explicitly take into account the organization of species in com-

munities: (a) a grid cell mean (GCM_a hereafter; Figure 1) was calcu-

lated by averaging trait values of all species occurring in a 5 km3 5 km

grid cell (species presence in a grid cell derived from the electronic atlas

of the French flora), irrespective of plant community organization, and

with equal weight given to each species, and (b) a GCM where the spe-

cies presence occurring in a 5 km 3 5 km grid cell are derived from the

geo-referenced relev�es (GCM_r hereafter). Two additional metrics

were calculated at the community level: these are (c) community arith-

metic means (CArM) assessed for each relev�e by calculating a mean

trait value in which equal weight was given to each species, and (d)

community-weighted means (CWM), calculated as for CArM, but in

which trait values were weighted by the relative abundances of species

within the community (Borgy et al., 2017; Garnier et al., 2004). In order

to be able to compare trait–climate relationships for all four metrics

and obtain an accurate estimate of community-level metrics at the

pixel level (cf. Borgy et al., 2017), CArM and CWM values were then

averaged for all botanical relev�es available within a 5 km 3 5 km grid

cell (Figure 1). Overall, there was therefore a single value per pixel for

each of the four metrics compared. To acknowledge the fact that the

FIGURE 2 Climate envelope of grasslands in Europe and in France. Distribution of mean annual temperature (MAT; in degrees Celsius)
and mean annual precipitation (MAP; in millimetres) covered by European grasslands (black), French grasslands (red) and the French
grasslands investigated in this study (green). Distributions of quartiles are shown at the top and at the right-hand side of the figure for each
dataset and each climate variable
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climate signal on traits is more likely to be detected for pixels with a

high proportion of grasslands, values of the four metrics were weighted

by the proportion of grassland in each pixel.

Only relev�es conducted after 1980 were retained, and because

trait values were not available for all species (cf. Violle et al., 2015), we

removed relev�es if the proportion cover (PCover) of species included for

the calculation of the CWM of at least one trait was < 60% (Pakeman

& Quested, 2007; see Borgy et al., 2017 for a detailed discussion on

issues related to threshold values). Grid cells containing at least 20%

grassland cover were retained (cf. Supporting Information Figure S1),

and grid cells with fewer than three relev�es were discarded (see Borgy

et al., 2017; Violle et al., 2015). The final dataset based on vegetation

relev�es included values of the four averaging metrics calculated for

1,833 pixels, representing 15,865 relev�es and 1,939 species (with a

median of five relev�es per pixel). Of these, 9,692 relev�es grouped into

918 pixels corresponded to low-nitrogen-input grasslands, and 6,173

relev�es grouped into 915 pixels corresponded to high-nitrogen-input

grasslands. The dataset based on the electronic atlas, which corre-

sponds to the approach most used in functional biogeography (e.g.,

Swenson et al., 2012), included 1,833 pixels.

We used generalized least-squares (GLS) models to test the rela-

tionships between metrics of aggregated leaf traits and climatic varia-

bles (MAT, MAP, GSLt and GSLtw), while acknowledging the influence

of spatial autocorrelation using the R package nlme. For each trait, we

built alternative GLS models with all climatic predictors but different

spatial structures. One of the models did not include spatial autocorre-

lation structure, whereas the other four included respectively a spheri-

cal, rational quadratic, Gaussian or exponential spatial autocorrelation

structure. We selected the most appropriate spatial structure based on

the lowest Akaike information criteria (Zuur, Ieno, Walker, Saveliev, &

Smith, 2009). For the four traits considered here, the quadratic ratio

spatial structure was the most appropriate spatial structure in GLS

models.

Given that we used GLS models, the goodness of fit of relation-

ships was assessed by calculating the square of the correlation coeffi-

cient (so-called pseudo-R2) between the observed and the fitted

variables (Hosmer, Lemeshow, & Sturdivant, 2013, p. 182). Analyses

were conducted for the whole set of grasslands and by sorting grass-

lands according to the level of nitrogen inputs (low or high; see above).

For each model, we assessed the slope differences between the two

nitrogen input levels using ANOVAs. All statistical operations were per-

formed in R 3.3.2 (R Development Core Team, 2016).

Trait–environment relationships are shown as figures in the main

body of the paper and Supporting Information for selected variables,

and as a Shiny application for all combinations, available at https://

shiny.cefe.cnrs.fr/trait_environment_relationships (see Supporting

Information Application S1 for details).

3 | RESULTS

Permanent grasslands in France are found over a broad climatic range,

from 600 to > 2,000 mm MAP and from 23 to 15.5 8C MAT (red

cloud in the bivariate plot shown in Figure 2); the ranges in precipita-

tions and temperatures covered by the 1,833 pixels of the present

study correspond respectively to 91 and 96% of these ranges (green

cloud in Figure 2). This climate envelope encompassed nearly 80% of

the MAT range and 57% of the MAP range covered by European grass-

lands (grey cloud in Figure 2).

Whatever the metrics used to calculate aggregated trait values,

the GSL that integrates both temperature and soil water limitation on

plant growth (GSLtw) was the best descriptor of leaf trait variation

(Table 1). Compared with GSLtw, the GSL not accounting for soil water

limitations (GSLt), MAT and MAP explained a lower proportion of leaf

trait variation (Supporting Information Application S1). Among the two

latter descriptors, trait variations were more strongly related to MAT

than to MAP, for all four metrics (Table 1). SLA, LNC and LPC were

positively related to GSLtw, GSLt and MAT, and negatively to MAP

(Table 1, Figure 3, and Figure S5 and Application S1 in Supporting

Information); opposite relationships were found for LDMC.

TABLE 1 Pseudo-R2 and direction of relationships of linear models
relating leaf traits to climate descriptors

Trait Averaging metrics MAT MAP GSLt GSLtw

CWM 0.22 (1) 0.038 (2) 0.23 (1) 0.32 (1)

SLA CArM 0.20 (1) 0.018 (2) 0.21 (1) 0.31 (1)

GCM_r 0.21 (1) 0.017 (2) 0.21 (1) 0.30 (1)

GCM_a 0.26 (1) 0.0011 (2) 0.23 (1) 0.38 (1)

CWM 0.16 (2) 0.069 (1) 0.17 (2) 0.21 (2)

LDMC CArM 0.17 (2) 0.048 (1) 0.17 (2) 0.19 (2)

GCM_r 0.15 (2) 0.055 (1) 0.15 (2) 0.14 (2)

GCM_a 0.20 (2) 0.15 (1) 0.21 (2) 0.12 (2)

CWM 0.11 (1) 0.035 (2) 0.12 (1) 0.16 (1)

LNC_m CArM 0.08 (1) 0.0098 (2) 0.08 (1) 0.14 (1)

GCM_r 0.061 (1) 0.012 (2) 0.063 (1) 0.11 (1)

GCM_a 0.041 (1) 0.017 (2) 0.059 (1) 0.11 (1)

CWM 0.14 (1) 0.041 (2) 0.15 (1) 0.19 (1)

LPC_m CArM 0.16 (1) 0.035 (2) 0.16 (1) 0.23 (1)

GCM_r 0.14 (1) 0.026 (2) 0.14 (1) 0.21 (1)

GCM_a 0.092 (1) 0.0091 (2) 0.11 (1) 0.19 (1)

GSLt5 growing season length accounting for temperature limitation;
GSLtw5 growing season length accounting for both temperature and soil
water limitations (for further details, see the Methods and Figure S3 in
Supporting Information); LDMC5 leaf dry matter content; LNC_m5mass-
based leaf nitrogen concentration; LPC_m5mass-based leaf phosphorus
concentration; MAP5mean annual precipitation; MAT5mean annual
temperature; SLA5 specific leaf area. Note. Results are given for the four
averaging metrics used (see Methods and Figure S4 in Supporting Informa-
tion): community arithmetic means (CArM), community-weighted means
(CWM) and grid cell means calculated from relev�es (GCM_r) and from the
electronic atlas of the French flora (GCM_a). The direction of the relation-
ship is given in parentheses. For all models, p-value<1023; n51,833 data
points were included in the models.
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We also investigated whether nitrogen input modulates the cli-

mate signal on leaf traits. Nitrogen input had significant impacts on trait

values irrespective of climate. For any given value of GSLtw, our results

indicated significant upward shifts in SLA, LNC and LPC and a down-

ward shift in LDMC in high-nitrogen-input grasslands (Figure 3). Conse-

quently, the ability to detect significant trait–climate relationships was

dependent upon the level of these inputs; under low nitrogen inputs

the leaf traits were strongly related to GSLtw, whereas under high nitro-

gen inputs the leaf traits were slightly or not significantly responsive to

GSLtw (Figure 3). This translates into significantly higher slope values of

trait–environment relationships for low-nitrogen-input compared with

high-nitrogen-input grasslands for all metrics apart from GCM_a (Figure

4 and Supporting Information Application S1).

Finally, we tested whether the strength of the climate signal on leaf

traits differed when trait means were obtained by accounting for species

abundances in plant communities (calculations of CWM values), neglecting

species abundances (calculations of CArM values), or by simply averaging

trait values of all species occurring within a grid cell (calculation of GCM_r

and GCM_a values; see Figure 1). Results for all combinations of (climate

descriptors 3 metrics) analysed separately for the two nitrogen levels are

FIGURE 3 (a) and (b) Relationships between growing season length (GSLtw) and leaf traits with different levels of nitrogen input. GSLtw
accounts for growth limitations by temperature and soil water availability (see Figure S2 in Supporting Information). In (a), average leaf
traits were calculated taking community organization into account, whereas this is not the case in (b) (see Figure 1 for details). Red and
black dots and lines correspond respectively to high (915 pixels grouping 6,173 relev�es) and low (918 pixels grouping 9,692 relev�es) levels
of nitrogen input, as defined by the median of nitrogen input distribution (see Methods section). In (a), the averaging metrics are as follows:
community-weighted means (CWM; four panels on the left) and community arithmetic means (CArM; four panels on the right), which aver-
age data for all available botanical relev�es within a 5 km 3 5 km grid cell. In (b), the averaging metrics are as follows: grid cell means based
on vegetation relev�es (GCM_r; four panels on the left) and grid cell means based on the electronic atlas of the French flora (GCM_a; four
panels on the right), which average trait values of all species occurring in a grid cell irrespective of plant community organization.
LDMC5 leaf dry matter content; LNC5mass-based leaf nitrogen concentration; LPC5mass-based leaf phosphorus concentration; SLA5

specific leaf area. Equations of linear regressions between traits and climatic descriptors are given in each panel for each nitrogen level (red
characters: high nitrogen; black characters: low nitrogen). For each trait and averaging metrics, an ANCOVA was run to test for the differ-
ence between slopes of the two nitrogen input levels. Results are displayed in each panel, showing the value of F statistics and its signifi-
cance. ***p< .001. **p< .01. *P <.05. 1p<0.1. nsp > .1. The significance level of each individual regression is given in Supporting
Information Application S1

1144 | BORGY ET AL.



provided in the Supporting Information Application S1. Here, we focus on

the relationships with GSLtw, the best climate predictor of trait–environ-

ment relationships. Overall, for a fixed trait 3 environmental descriptor

combination, pseudo-R2 values were comparable for all metrics (Table 1,

Figure 3 and Supporting Information Application S1), but slopes differed

substantially among metrics. These were generally steeper for CWMs (Fig-

ures 3 and 4 and Supporting Information Application S1). The same conclu-

sion generally held when GSLtw–CWM and GSLtw–GCM_r relationships

were compared, with generally even gentler slopes for the latter (Figure 4).

There was much less difference between the slopes of the GSLtw–CArM

and GSLtw–GCM_r relationships. Finally, the slopes of the GSLtw–GCM

relationships assessed with floristic relev�es (GCM_r) and species distribu-

tion (GCM_a) were steeper for GCM_r (Figures 3 and 4). The spread of

data points around the regression lines was substantially lower for the

GSLtw–GCM_a relationships than for the three other metrics (compare, in

particular, the GSLtw–LNC relationships for the four metrics in Figure 3).

4 | DISCUSSION

The climate space encompassed by the grasslands studied here is rela-

tively wide and covers a fairly broad extent of the climate space cov-

ered by European grasslands in particular (Figure 2) and by temperate

grasslands in general (cf. Sala, Austin, & Vivanco, 2001). This gives

some confidence as to the generality of the trait–climate relationships

found in the present study for this type of ecosystem.

Among the four climate descriptors tested here, the growing sea-

son length accounting for both temperature and water limitations

(GSLtw) was a stronger predictor of trait–climate relationships than basic

temperature and rainfall variations (i.e., MAT and MAP) commonly used

to study these relationships (e.g., Moles et al., 2014; Onoda et al., 2011;

but see Kikuzawa et al., 2013; Ordo~nez et al., 2009). Large-scale assess-

ments of climate control on vegetation types have already highlighted

the predominant role of soil water balance (Stephenson, 1990) in addi-

tion to that of temperature (e.g., Harrison et al., 2010). Given that GSL

was estimated using the same temperature and soil water content

thresholds for all types of grasslands, its values cannot be considered as

an absolute estimate of the time available for plant activity in a particu-

lar climate. Instead, it should be regarded as a simple way to quantify

the climate constraints that are influential on primary productivity (see

below). Depending on plant community, these values may change (i.e.,

mountain plants having lower threshold values for Growing Degree

Day, and mediterranean plants having the capacity to maintain activity

at lower Soil Water Content than other plants). Using the coarser cli-

mate descriptors, our study showed that leaf traits were more strongly

FIGURE 3 Continued
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related to MAT than to MAP, a result already found in the most exten-

sive study conducted to date at the species level on a worldwide scale

for SLA, LNC and LPC, although with low predictive power (Moles

et al., 2014).

The predominance of species with high rates of resource acquisi-

tion (high SLA, high LNC and low LDMC) under high GSLtw is

consistent with the hypothesis that temperature and water-controlled

estimates of GSL are proximate drivers of ecosystem primary produc-

tivity (Jolly, Nemani, & Running, 2005). Using remotely sensed data to

implement a radiation use efficiency model of gross primary productiv-

ity (GPP) indeed shows that the annual GPP of the studied grasslands

is strongly related to GSL (P. Choler, C. Violle, E. Garnier and the

FIGURE 4 Testing differences in the slopes of trait–climate relationships for the two levels of nitrogen input (N2: low input, in black; N1:
high input, in red). Generalized least-squares (GLS) models, taking into account spatial autocorrelation, were tested for each trait between
growing season length accounting for temperature limitation (GSLtw) and each trait averaging metric: community arithmetic means (CArM),
community-weighted means (CWM) and grid cell mean using relev�es (GCM_r) or the electronic atlas of the French flora (GCM_a). For each
of the 16 models (four traits and four different metrics), we assessed whether the slope difference between the two nitrogen input levels
was significant. Each panel shows the results of the analyses for one trait: LDMC5 leaf dry matter content; LNC_m and LPC_m5 leaf nitro-
gen and phosphorus concentration per unit mass, respectively; SLA5 specific leaf area. Vertical bars show the 95% confidence intervals of
slope estimates for the corresponding GLS model. F statistics from ANOVAs between the two nitrogen levels are shown. ***p< .001.
**p< .01. *p <.05. 1p< .1. nsp> .1
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DIVGRASS consortium, unpublished results), which agrees with the

biogeographical trend of grassland yield observed across France

(Dziewulska, 1990). The trend in trait variation detected here at a bio-

geographical scale complies with what is usually found at a local scale,

where SLA and leaf nutrient concentrations, including nitrogen, usually

increase (e.g., Chollet et al., 2014; Gebauer, Rehder, & Wollenweber,

1988; Poorter & de Jong, 1999), whereas LDMC decreases (e.g., Chollet

et al., 2014; Hodgson et al., 2011), along productivity gradients.

Although our results agree qualitatively with those of Moles et al.

(2014) in terms of the strength of the relationships between traits and

temperature, on the one hand, and traits and precipitation, on the other

hand (see above), the slope of most relationships was actually opposite

in the two studies. Moles et al. (2014) indeed found that SLA, LNC and

LPC tend to decrease with increasing temperature, whereas SLA and

LNC (respectively LPC) tend to increase (respectively decrease) with

increasing precipitation. Among the potential reasons for such discrep-

ancies, two of them might be particularly relevant here. First, the range

of climate conditions covered in the present study represents respec-

tively 40 and 25% of the temperature and precipitation ranges spanned

in the study by Moles et al. (2014), which included a broader range of

climates from tropical to polar. Given that trait response to environ-

mental factors might not be linear (cf. Poorter, Niinemets, Poorter,

Wright, & Villar, 2009 for a curvilinear positive response of SLA to tem-

perature; Wang et al., 2016 for a unimodal relationship between lati-

tude and SLA), spanning different ranges might yield different

outcomes. Second, the response of traits to temperature or precipita-

tion of C3 herbaceous species of the temperate grassland biome might

be more homogeneous than that of species included in the study by

Moles et al. (2014), which encompasses a wide range of species types

(herbaceous, woody, deciduous and evergreens); for example, Wright

et al. (2005) showed contrasting patterns of SLA variation in response

to both temperature and precipitation for deciduous and evergreen

shrubs and trees. More generally, inconsistencies in trait–environment

relationships have been observed for a wide range of trait–environ-

ment combinations, so often that Shipley et al. (2016) identified this

area of research as one of the loose foundation stones of trait-based

research. These authors stressed that the poor identification of envi-

ronmental factors that drive trait variations was one of the main factors

explaining this state of affairs. Here, we argue that GSLtw represents an

ecologically meaningful combination of local environmental parameters

(e.g., soil water-holding capacity) and seasonal climatic variations that

captures the spatial variation of leaf traits at a biogeographical scale

better than the commonly used variables, MAT and MAP.

Differences in the slopes of trait–climate relationships between

the two nitrogen levels were mainly attributable to trait differences in

the lower part of the GSLtw gradient; SLA, LNC and LPC are higher,

whereas LDMC is lower in high-nitrogen grasslands, which are

acknowledged effects of nutrient availability on these traits (see Gar-

nier et al., 2016 for a synthesis). These changes between low- and

high-nitrogen-input grasslands were much smaller in the upper part of

the GSLtw, suggesting that relaxing nutrient stress constraints either by

increasing nitrogen or by improving climatic conditions for plant growth

leads to comparable effects on leaf traits. Under high GSLtw and high

nitrogen inputs, values of SLA, LNC and LPC reached an upper limit,

suggesting that factors other than nitrogen (such as light) then become

limiting or that plants primarily respond by growing to a larger size

while maintaining LNC and LPC. These results differ qualitatively from

those obtained in temperate forests across New Zealand, where the

increase in SLA (CWM) with temperature was found to be higher with

high soil phosphorus availability (Simpson et al., 2016).

The differences in the slopes of the trait–climate relationships

between low- and high-nitrogen grasslands might be the consequence

of differences in species turnover along the climatic gradient. Further

analyses indicated that low-nitrogen grasslands had relatively high spe-

cies compositional turnover along the GSLtw gradient, whereas species

turnover in high-nitrogen grasslands was substantially lower, especially

in the upper range of GSLtw values (Figure S6 in Supporting Informa-

tion). Further refinements on these issues should account for (a) the

impact of disturbance regimes (e.g., frequency and intensity or grazing

and mowing) in addition to that of fertilization for a better assessment

of the effects of grassland management on traits (e.g., Gardarin et al.,

2014; McIntyre, Lavorel, Landsberg, & Forbes, 1999) and (b) intraspe-

cific trait variability (Lep�s, de Bello, �Smilauer, & Dole�zal, 2011; Violle

et al., 2012); the recent meta-analysis conducted by Siefert et al.

(2015) showed that this effect accounted for approximately one-third

of the total trait variation among communities on average, a proportion

which decreases with increasing spatial extent. This study also showed

that the effects were greater for leaf chemical than leaf morphological

traits. It is thus likely that trait–environment relationships detected in

the present study are noisier for LNC and LPC than for SLA and

LDMC. Taking into account these two potential effects would certainly

improve our understanding of trait–environment relationships, but

there are currently no datasets available at regional to continental

scales allowing us to do so.

By neglecting community structuring and/or local species abun-

dance, averaging procedures using GCM and CArM tend to underesti-

mate the effect of climate on leaf trait variations. Our results indicate

that accounting for local species abundance (i.e., when CWM and

CArM, on the one hand, and CWM and GCM_r, on the other hand, are

compared) has the strongest effect on the detection of trait–climate

relationships. Accounting for higher local abundance of stress-tolerant

species (exhibiting low SLA and high LDMC) in the lower part of the

GSLtw gradient and the higher local abundance of species with high

rates of resource acquisition in the upper part of the GSLtw gradient led

to models of trait–climate relationships with stronger slopes and higher

explanatory power. Stronger trait–environment relationships when spe-

cies abundance is taken into account have also been found at a local

scale for several factors (light, soil depth, disturbance, etc.; reviewed by

Garnier et al., 2016), suggesting that more abundant species are better

fitted to local environmental conditions than less abundant species

(Cingolani et al., 2007; Muscarella & Uriarte, 2016). Such effects of

varying species abundance across plant communities cannot be cap-

tured by solely using species presence/absence information per grid

cell, as commonly done in trait-based biogeography (e.g., �Símov�a et al.,
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2015; Swenson et al., 2012). The study of trait–environment relation-

ships at the species level is nonetheless relevant to address issues

related to species distribution or adaptation, for example. The lack of

differences in slopes of the climate–CArM and climate–GCM_r relation-

ships suggests that considering that species are organized in commun-

ities does not carry additional information at this scale, if local species

abundance is not taken into account. Finally, the lower variation in trait

values observed along the gradient when the GCM_a metrics is used is

likely to be related to the reduced turnover of species between grid

cells compared with species turnover between plant communities.

Based on these results, we conclude that species abundances within

plant communities, and thus accounting for plant community organiza-

tion, should not be overlooked in further attempts to predict trait–cli-

mate relationships at regional or continental scales (Reich, 2014).

4.1 | Conclusions

As the traits investigated are key to plant nutrient economy (Reich,

2014), our findings provide a baseline for improving process-oriented

models of biogeochemical cycling in ecosystems. First, we show that the

effects of climate on plant communities are better described using com-

posite descriptors involving temperature and soil availability than coarse

variables, such as mean annual temperature and/or precipitation. Second,

showing that plant community is a relevant level of organization to cap-

ture trait–climate relationships should prompt Earth system modellers to

pay more attention to ecological processes underlying plant community

assembly and dynamics. Third, continuous trait–climate relationships

allow one to account for trait variation within vegetation types (here

grasslands), and it now becomes feasible to investigate the sensitivity of

Earth system model outputs to improved parametrization of vegetation.

Finally, the interplay of local nitrogen input and global climate drivers

should be given increasing attention in future trait-based models of the

biogeochemical cycles in the grassland biome that has been shaped by

millennia of agro-pastoral activities (Suttie, Reynolds, & Battello, 2005).

ACKNOWLEDGMENTS

This research is supported by the French Foundation for Research

on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context

of the CESAB (CEntre de Synthèse et d'Analyse sur la Biodiversit�e)

project ‘Assembling, analysing and sharing data on plant functional

diversity to understand the effects of biodiversity on ecosystem

functioning: a case study with French Permanent Grasslands’ (DIV-

GRASS) and by the TRY initiative on plant traits (http://www.try-db.

org). The TRY initiative and database are hosted at the Max Planck

Institute for Biogeochemistry, Jena, Germany, and currently sup-

ported by DIVERSITAS/Future Earth and the German Centre for

Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. C.V. and

P.D. were supported by the European Research Council (ERC) Start-

ing Grant Project ‘Ecophysiological and biophysical constraints on

domestication in crop plants’ (Grant ERC-StG-2014–639706-

CONSTRAINTS).

DATA ACCESSIBILITY

Archives of data for climatic variables, nitrogen inputs and trait aver-

ages calculated using the four metrics at the 5 km 3 5 km pixel

level will be made available in the Dryad Digital Repository (https://

datadryad.org/).

ORCID

Pierre Denelle http://orcid.org/0000-0001-5037-2281

Eric Garnier http://orcid.org/0000-0002-9392-5154

REFERENCES

Al Majou, H., Bruand, A., Duval, O., Le Bas, C., & Vautier, A. (2008). Pre-

diction of soil water retention properties after stratification by com-

bining texture, bulk density and the type of horizon. Soil Use and

Management, 24, 383–391.

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone,

P., & Lavorel, S. (2010). Intraspecific functional variability: Extent, struc-

ture and sources of variation. Journal of Ecology, 98, 604–613.

Benichou, P., & Le Breton, O. (1987). Prise en compte de la topographie

pour la cartographie des champs pluviom�etriques statistiques. La

M�et�eorologie, 19, 23–34.

Borgy, B., Violle, C., Choler, P., Garnier, E., Kattge, J., Loranger, J., . . .

Viovy, N. (2017). Sensitivity of community-level trait–environment

relationships to data representativeness: A test for functional bio-

geography. Global Ecology and Biogeography, 26, 729–739.

Braun-Blanquet, J. (1932). Plant sociology. New York, NY: McGraw-Hill.

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M.,

Reynolds, H. L., . . . Dìaz, S. (2000). Consequences of changing biodi-

versity. Nature, 405, 234–242.

Chollet, S., Rambal, S., Fayolle, A., Hubert, D., Foulqui�e, D., & Garnier, E.

(2014). Combined effects of climate, resource availability, and plant

traits on biomass produced in a Mediterranean rangeland. Ecology,

95, 737–748.

Cingolani, A. M., Cabido, M., Gurvich, D. E., Renison, D., & Díaz, S.

(2007). Filtering processes in the assembly of plant communities: Are

species presence and abundance driven by the same traits? Journal of

Vegetation Science, 18, 911–920.

Cunningham, S. A., Summerhayes, B., & Westoby, M. (1999). Evolution-

ary divergences in leaf structure and chemistry, comparing rainfall

and soil nutrient gradients. Ecological Monographs, 69, 569–588.

Dziewulska, A. (1990). The spatial differentiation of grasslands in Europe. In

A. I. Breymeyer (ed.), Managed grasslands – Regional studies (pp. 1–13).
Amsterdam, The Netherlands: Elsevier.

Fortunel, C., Garnier, E., Joffre, R., Kazakou, E., Quested, H., Grigulis, K.,

. . . Zarovali, M. (2009). Leaf traits capture the effects of land use

changes and climate on litter decomposability of grasslands across

Europe. Ecology, 90, 598–611.

Gardarin, A., Garnier, �E., Carrère, P., Cruz, P., Andueza, D., Bonis, A., . . .

Kazakou, E. (2014). Plant trait–digestibility relationships across man-

agement and climate gradients in permanent grasslands. Journal of

Applied Ecology, 51, 1207–1217.

Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M.,

. . . Toussaint, J.-P. (2004). Plant functional markers capture ecosystem

properties during secondary succession. Ecology, 85, 2630–2637.

Garnier, E., Navas, M.-L., & Grigulis, K. (2016). Plant Functional diversity –
Organism traits, community structure, and ecosystem properties.

Oxford, U.K.: Oxford University Press.

1148 | BORGY ET AL.

http://www.fondationbiodiversite.fr
http://www.try-db.org
http://www.try-db.org
https://datadryad.org/
https://datadryad.org/
http://orcid.org/0000-0001-5037-2281
http://orcid.org/0000-0002-9392-5154


Gebauer, G., Rehder, H., & Wollenweber, B. (1988). Nitrate, nitrate

reduction and organic nitrogen in plants from different ecological and

taxonomic groups of Central Europe. Oecologia, 75, 371–385.

Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate,

filter and founder effects. Journal of Ecology, 86, 902–910.

Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., &

Sutra, J. P. (2010). Ecophysiological and bioclimatic foundations for

a global plant functional classification. Journal of Vegetation Science,

21, 300–317.

Hodgson, J. G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P.,

Shipley, B., . . . Royo Pla, F. (2011). Is leaf dry matter content a better

predictor of soil fertility than specific leaf area? Annals of Botany,

108, 1337–1345.

Hosmer, D. W. Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied

logistic regression (3rd ed.). New York, NY: Wiley.

Huyghe, C. (2009). Evolution des prairies et cultures fourragères et de

leurs modalit�es culturales et d’utilisation en France au cours des cin-

quante dernières ann�ees. Fourrages, 200, 407–428.

Jolly, W. M., Nemani, R., & Running, S. W. (2005). A generalized, biocli-

matic index to predict foliar phenology in response to climate. Global

Change Biology, 11, 619–632.

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., B€onisch, G., . . .

Wirth, C. (2011). TRY – A global database of plant traits. Global

Change Biology, 17, 2905–2935.

Kazakou, E., Violle, C., Roumet, C., Navas, M.-L., Vile, D., Kattge, J., &

Garnier, E. (2014). Are trait-based species rankings consistent across

data sets and spatial scales? Journal of Vegetation Science, 25, 235–247.

Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W., & Freschet, G.

T. (2013). Contrasting effects of plant inter- and intraspecific varia-

tion on community-level trait measures along an environmental gradi-

ent. Functional Ecology, 27, 1254–1261.

Kikuzawa, K., Onoda, Y., Wright, I. J., & Reich, P. B. (2013). Mechanisms

underlying global temperature-related patterns in leaf longevity.

Global Ecology and Biogeography, 22, 982–993.

Lavorel, S., & Garnier, E. (2002). Predicting changes in community com-

position and ecosystem functioning from plant traits: Revisiting the

Holy Grail. Functional Ecology, 16, 545–556.

Lavorel, S., Grigulis, K., Lamarque, P., Colace, M. P., Garden, D., Girel, J.,

. . . Douzet, R. (2011). Using plant functional traits to understand the

landscape distribution of multiple ecosystem services. Journal of Ecol-

ogy, 99, 135–147.

Le Bas, C., King, D., & Daroussin, J. (1997). A tool for estimating soil

water available for plants using the 1:1,000,000 scale Soil Geographi-

cal Data Base of Europe. In K. J. Beek, K. A. de Bie, P. M. Driessen

(Eds.), Geo-information for sustainable land management. International

journal of aerospace survey and earth sciences (p. 10). Enschede, The

Netherlands.

Lep�s, J., de Bello, F., �Smilauer, P., & Dole�zal, J. (2011). Community trait

response to environment: Disentangling species turnover vs intraspe-

cific trait variability effects. Ecography, 34, 856–863.

McIntyre, S., Lavorel, S., Landsberg, J., & Forbes, T. D. A. (1999). Disturb-

ance response in vegetation – Towards a global perspective on func-

tional traits. Journal of Vegetation Science, 10, 621–630.

Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy,

M., Tindall, M. L., . . . Bonser, S. P. (2014). Which is a better predictor

of plant traits: Temperature or precipitation? Journal of Vegetation

Science, 25, 1167–1180.

Muscarella, R., & Uriarte, M. (2016). Do community-weighted mean func-

tional traits reflect optimal strategies? Proceedings of the Royal Society

B: Biological Sciences, 283, 20152434.

Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M., Clissold, F. J.,

Cornelissen, J. H., . . . Yamashita, N. (2011). Global patterns of leaf

mechanical properties. Ecology Letters, 14, 301–312.

Ordo~nez, J. C., van Bodegom, P. M., Witte, J.-P. M., Wright, I. J., Reich,

P. B., & Aerts, R. (2009). A global study of relationships between leaf

traits, climate and soil measures of nutrient fertility. Global Ecology

and Biogeography, 18, 137–149.

Pakeman, R. J., Eastwood, A., & Scobie, A. (2011). Leaf dry matter con-

tent as a predictor of grassland litter decomposition: A test of the

‘mass ratio hypothesis’. Plant and Soil, 342, 49–57.

Pakeman, R. J., Lep�s, J., Kleyer, M., Lavorel, S., & Garnier, E., & the

VISTA Consortium. (2009). Relative climatic, edaphic and manage-

ment controls of plant functional trait signatures. Journal of Vegeta-

tion Science, 20, 148–159.

Pakeman, R. J., & Quested, H. M. (2007). Sampling plant functional traits:

What proportion of the species need to be measured? Applied Vege-

tation Science, 10, 91–96.

Palacio-Rabaud, V. (2000). La conduite des prairies en France: Pratiques

intensives et rendements �elev�es dans le Nord-Ouest. Agreste Cahiers,

4, 15–26.

Piedallu, C., & G�egout, J.-C. (2008). Efficient assessment of topographic

solar radiation to improve plant distribution models. Agricultural and

Forest Meteorology, 148, 1696–1706.

Pontes, L. D. S., Soussana, J. F., Louault, F., Andueza, D., & Carrère, P.

(2007). Leaf traits affect the above-ground productivity and quality

of pasture grasses. Functional Ecology, 21, 844–853.

Poorter, H., & de Jong, R. (1999). A comparison of specific leaf area,

chemical composition and leaf construction costs of field plants from

15 habitats differing in productivity. New Phytologist, 143, 163–176.

Poorter, H., Niinemets, €U., Poorter, L., Wright, I. J., & Villar, R. (2009).

Causes and consequences of variation in leaf mass per area (LMA): A

meta-analysis. New Phytologist, 182, 565–588.

R Development Core Team. (2016). R: A language and environment for statis-

tical computing. Vienna, Austria: R Foundation for Statistical Computing.

Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N.

J. (2014). Convergent effects of elevation on functional leaf traits

within and among species. Functional Ecology, 28, 37–45.

Reich, P. B. (2014). The world-wide ‘fast–slow’ plant economics spec-

trum: A traits manifesto. Journal of Ecology, 102, 275–301.

Sala, O. E., Austin, A. T., & Vivanco, L. (2001). Temperate grassland and

shrubland ecosystems. In S. A. Levin (Ed.), Encyclopedia of biodiversity

(pp. 627–635). San Diego, CA: Academic Press.

Sandel, B., Goldstein, L. J., Kraft, N. J., Okie, J. G., Shuldman, M. I.,

Ackerly, D. D., . . . Suding, K. N. (2010). Contrasting trait responses in

plant communities to experimental and geographic variation in pre-

cipitation. New Phytologist, 188, 565–575.

Shipley, B., De Bello, F., Cornelissen, J. H. C., Lalibert�e, E., Laughlin, D.

C., & Reich, P. B. (2016). Reinforcing loose foundation stones in trait-

based plant ecology. Oecologia, 180, 923–931.

Shipley, B., Lechowicz, M. J., Wright, I. J., & Reich, P. B. (2006). Funda-

mental trade-offs generating the worldwide leaf economics spectrum.

Ecology, 87, 535–541.

Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo

A., . . . Wardle, D. A. (2015). A global meta-analysis of the relative

extent of intraspecific trait variation in plant communities. Ecology

Letters, 18, 1406–1419.

�Símov�a, I., Violle, C., Kraft, N. J. B., Storch, D., Svenning, J.-C., Boyle, B.,

. . . Enquist, B. J. (2015). Shifts in trait means and variances in North

American tree assemblages: Species richness patterns are loosely

related to the functional space. Ecography, 38, 649–658.

BORGY ET AL. | 1149



Simpson, A. H., Richardson, S. J., & Laughlin, D. C. (2016). Soil–climate

interactions explain variation in foliar, stem, root and reproductive

traits across temperate forests. Global Ecology and Biogeography, 25,

964–978.

Stephenson, N. L. (1990). Climatic control of vegetation distribution: The

role of the water balance. The American Naturalist, 135, 649–670.

Suding, K. N., Lavorel, S., Chapin, F. S. III, Cornelissen, J. H. C., Díaz, S.,

Garnier, E., . . . Navas, M.-L. (2008). Scaling environmental change

through the community-level: A trait-based response-and-effect

framework for plants. Global Change Biology, 14, 1125–1140.

Suttie, J. M., Reynolds, S. G., & Battello, C. (2005). Grasslands of the

world. Roma: FAO.

Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B.,

Weiser, M. D., . . . Nolting, K. M. (2012). The biogeography and filter-

ing of woody plant functional diversity in North and South America.

Global Ecology and Biogeography, 21, 798–808.

Turc, L. (1961). Evaluation de besoins en eau d’irrigation,
�evapotranspiration potentielle. Annales Agronomiques, 12, 13–49.

van Ommen Kloeke, A. E. E., Douma, J. C., Ordo~nez, J. C., Reich, P. B., &

van Bodegom, P. M. (2012). Global quantification of contrasting leaf life

span strategies for deciduous and evergreen species in response to envi-

ronmental conditions. Global Ecology and Biogeography, 21, 224–235.

Verheijen, L. M., Brovkin, V., Aerts, R., B€onisch, G., Cornelissen, J. H. C.,

Kattge, J., . . . van Bodegom, P. M. (2013). Impacts of trait variation

through observed trait–climate relationships on performance of an Earth

system model: A conceptual analysis. Biogeosciences, 10, 5497–5515.

Violle, C., Choler, P., Borgy, B., Garnier, E., Amiaud, B., Debarros, G., . . .

Viovy, N. (2015). Vegetation ecology meets ecosystem science: Per-

manent grasslands as a functional biogeography case study. Science

of the Total Environment, 534, 43–51.

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C.,

. . . Messier, J. (2012). The return of the variance: Intraspecific vari-

ability in community ecology. Trends in Ecology and Evolution, 27,

244–252.

Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014).

The emergence and promise of functional biogeography. Proceedings

of the National Academy of Sciences USA, 111, 13690–13696.

Wang, R., Yu, G., He, N., Wang, Q., Zhao, N., & Xu, Z. (2016). Latitudinal

variation of leaf morphological traits from species to communities

along a forest transect in eastern China. Journal of Geographical Scien-

ces, 26, 15–26.

Wang, Y. P., Lu, X. J., Wright, I. J., Dai, Y. J., Rayner, P. J., & Reich, P. B.

(2012). Correlations among leaf traits provide a significant constraint

on the estimate of global gross primary production. Geophysical

Research Letters, 39, L19405.

Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P.

K., Hikosaka, K., . . . Westoby, M. (2005). Modulation of leaf eco-

nomic traits and trait relationships by climate. Global Ecology and Bio-

geography, 14, 411–421.

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,

Bongers, F., . . . Villar, R. (2004). The worldwide leaf economics spec-

trum. Nature, 428, 821–827.

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M.

(2009). Mixed effects models and extensions in ecology with R. New

York, NY: Springer.

BIOSKETCH

The DIVGRASS consortium is a CESAB working group involving

experts in grassland ecology, soil science, ecosystem modelling and

conservation management. The objective of the consortium is to com-

bine existing data on the plant diversity of French permanent grass-

lands to gain a better understanding of the links between biodiversity

and ecosystem functioning.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Borgy B, Violle C, Choler P, et al. Plant

community structure and nitrogen inputs modulate the climate

signal on leaf traits. Global Ecol Biogeogr. 2017;26:1138–1152.

https://doi.org/10.1111/geb.12623

1150 | BORGY ET AL.

https://doi.org/10.1111/geb.12623


APPENDIX : SOURCES FOR VEGETATION RELEV�ES AND TRAIT DATA

TABLE A1 List of sources for vegetation relev�es

Dataset
Number of relev�es in
the dataset Sources

Conservatoires Botaniques Nationaux (CBN) et F�ed�eration des CBNs 7,765

e-FLORA-sys 1,270 Plantureux & Amiaud, 2010

UCBN (a dataset of permanent grasslands in the north of France) 389

DivHerbe 60 Gardarin et al., 2014

SOPHY (‘Banque de donn�ees botaniques et �ecologiques’) http://sophy.tela-botanica.org/sophy.htm 10,884 Brisse et al., 1995a, 1995b

Total 20,368

Note. References for vegetation relev�es.

Brisse et al. (1995a) Brisse, H., de Ruffray, P., Grandjouan, G., & Hoff, M. (1995). The phytosociological database SOPHY – Part II:
Socio-ecological classification of the relev�es. In 4th International Workshop ‘European Vegetation Survey’ (IAVS)
(Vol. 53, pp. 191–223). Rome, Italy.

Brisse et al. (1995b) Brisse, H., de Ruffray, P., Grandjouan, G., & Hoff, M. (1995). The Phytosociological database SOPHY – Part I:
Calibration of indicator plants. In 4th International Workshop ‘European Vegetation Survey’ (IAVS) (Vol. 53,
pp. 177–190). Rome, Italy.

Gardarin et al. (2014) Gardarin, A., Garnier, E., Carrère, P., Cruz, P., Andueza, D., Bonis, A., . . . Kazakou, E. (2014). Plant trait–
digestibility relationships across management and climate gradients in permanent grasslands. Journal of Applied
Ecology, 51, 1207–1217.

Plantureux and Amiaud (2010) Plantureux, S., & Amiaud, B. (2010). e-FLORA-sys, a website tool to evaluate agronomical and environmental
value of grasslands. In 23rd EGF General Meeting, Kiel, Germany.

TABLE A2 List of sources for trait data

Trait Database(s) Source(s)

SLA TRY, ANDROSACE, DivHerbe, VISTA Bahn et al., 1999; Bernard-Verdier et al., 2012; Cornelissen, 1996; Cornelissen et al.,
2003a, 2004; Cornwell et al., 2008; Díaz et al., 2004; Fonseca et al., 2000; Garnier et al.,
2004, 2007; Han et al., 2005; Kattge et al., 2009; Kleyer et al., 2008; Laughlin et al.,
2010; Ordo~nez et al., 2010; Pyankov et al., 1999; Quested et al., 2003; Shipley, 1995;
Shipley & Vu, 2002; Vile et al., 2006; Wright et al., 2004, 2006

LDMC TRY, ANDROSACE, DivHerbe, VISTA Bernard-Verdier et al., 2012; Cornelissen, 1996; Cornelissen et al., 2003a; Díaz et al.,
2004; Garnier et al., 2007; Kazakou et al., 2006; Kleyer et al., 2008; Shipley, 1995;
Shipley & Vu, 2002

LNC TRY, ANDROSACE, DivHerbe, VISTA Bahn et al., 1999; Cornelissen, 1996; Cornelissen et al., 2003, 2004; Cornwell et al.,
2008; Craine et al., 2005, 2009; Garnier et al., 2007; Han et al., 2005; Kattge et al., 2009;
Kazakou et al., 2006; Laughlin et al., 2010; Ordo~nez et al., 2010; Quested et al., 2003;
Wright et al., 2004, 2006

LPC TRY, ANDROSACE, DivHerbe, VISTA Cornelissen, 1996; Cornelissen et al., 2003a, 2003b; Craine et al., 2009; Garnier et al.,
2007; Han et al., 2005; Kazakou et al., 2006; Laughlin et al., 2010; Ordo~nez et al., 2010;
Wright et al., 2004, 2006

Note. References for trait data. DivHerbe, database from the “Structure, diversit�e et fonctionnement: des cl�es multi-�echelles pour la gestion des prairies
permanentes” project; VISTA, data base from the “Vulnerability of ecosystem services to land use change in traditional agricultural landscapes” project.

Bahn et al. (1999) Bahn, M., Wohlfahrt, G., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., . . . Cernusca, A. (1999). Leaf photosynthesis,
nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the
Eastern Alps. In A. Cernusca, U. Tappeiner, & N. Bayfield (Eds.), Land-use changes in European mountain ecosystems.
ECOMONT – Concept and results (pp. 247–255). Berlin, Germany: Blackwell Wissenschaft.

Bernard-Verdier et al. (2012) Bernard-Verdier, M., Navas, M. L., Vellend, M., Violle, C., Fayolle, A., & Garnier, E. (2012). Community assembly along a soil
depth gradient: Contrasting patterns of plant trait convergence and divergence in Mediterranean rangelands. Journal of
Ecology, 100, 1422–1433.

Cornelissen (1996) Cornelissen, J. H. C. (1996). An experimental comparison of leaf decomposition rates in a wide range of temperate plant
species and types. Journal of Ecology, 84, 573–582.

(Continues)
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TABLE A2 (Continued)

Cornelissen et al. (2003) Cornelissen, J. H. C., Cerabolini, B., Castro-Diez, P., Villar-Salvador, P., Montserrat-Marti, G., Puyravaud, J. P., . . . Aerts, R.
(2003). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown
seedlings? Journal of Vegetation Science, 14, 311–322.

Cornelissen et al. (2004) Cornelissen, J. H. C., Quested, H. M., Gwynn-Jones, D., Van Logtestijn, R. S. P., De Beus, M. A. H., Kondratchuk, A., . . .
Aerts, R. (2004). Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and
laboratory-grown seedlings? Journal of Vegetation Science, 18, 779–786.

Cornwell et al. (2008) Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., . . . Westoby, M. (2008). Plant
species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11,
1065–1071.

Craine et al. (2005) Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J., & Johnson, L. C. (2005). Environmental constraints on a global
relationship among leaf and root traits of grasses. Ecology, 86, 12–19.

Craine et al. (2009) Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., . . . Wright, I. J. (2009). Global
patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations,
and nitrogen availability. New Phytologist, 183, 980–992.

Díaz et al. (2004) Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., . . . Zak, M. R. (2004). The plant traits that
drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295–304.

Fonseca et al. (2000) Fonseca, C. R., Overton, J. M., Collins, B., & Westoby, M. (2000). Shifts in trait-combinations along rainfall and phosphorus
gradients. Journal of Ecology, 88, 964–977.

Garnier et al. (2004) Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, . . . Toussaint, J.-P. (2004). Plant functional markers
capture ecosystem properties during secondary succession. Ecology, 85, 2630–2637.

Garnier et al. (2007) Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., . . . Zarovali, M. P. (2007). Assessing the effects of land-
use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons
from an application to 11 European sites. Annals of Botany, 99, 967–985.

Han et al. (2005) Han, W. X., Fang, J. Y., Guo, D. L., & Zhang, Y. (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial
plant species in China. New Phytologist, 168, 377–385.

Kattge et al. (2009) Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf
nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15, 976–991.

Kazakou et al. (2006) Kazakou, E., Vile, D., Shipley, B., Gallet, C., & Garnier, E. (2006). Co-variations in litter decomposition, leaf traits and plant
growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21–30.

Kleyer et al. (2008) Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., . . . Peco, B. (2008). The LEDA
Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96, 1266–1274.

Laughlin et al. (2010) Laughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. (2010). A multi-trait test of the leaf-height-seed plant strategy
scheme with 133 species from a pine forest flora. Functional Ecology, 24, 493–501.

Ordo~nez et al. (2010) Ordo~nez, J. C., van Bodegom, P. M., Witte, J. P. M., Bartholomeus, R. P., van Hal, J. R., & Aerts, R. (2010). Plant strategies in
relation to resource supply in mesic to wet environments: Does theory mirror nature? The American Naturalist, 175, 225–239.

Pyankov et al. (1999) Pyankov, V. I., Kondratchuk, A. V., & Shipley, B. (1999). Leaf structure and specific leaf mass: The alpine desert plants of
the Eastern Pamirs, Tadjikistan. New Phytologist, 143, 131–142.

Quested et al. (2003) Quested, H. M., Cornelissen, J. H. C., Press, M. C., Callaghan, T. V., Aerts, R., Trosien, F., . . . Jonasson, S. E. (2003).
Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology, 84,
3209–3221.

Shipley (1995) Shipley, B. (1995). Structured interspecific determinants of specific leaf-area in 34 species of herbaceous angiosperms.
Functional Ecology, 9, 312–319.

Shipley and Vu (2002) Shipley, B., & Vu, T. T. (2002). Dry matter content as a measure of dry matter concentration in plants and their parts. New
Phytologist, 153, 359–364.

Vile et al. (2006) Vile, D., Shipley, B., & Garnier, E. (2006). A structural equation model to integrate changes in functional strategies during
old-field succession. Ecology, 87, 504–517.

Wright et al. (2006) Wright, I. J., Reich, P. B., Atkin, O. K., Lusk, C. H., Tjoelker, M. G., & Westoby, M. (2006). Irradiance, temperature and rainfall
influence leaf dark respiration in woody plants: Evidence from comparisons across 20 sites. New Phytologist, 169, 309–319.

Wright et al. (2004) Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., . . . Villar, R. (2004). The worldwide leaf
economics spectrum. Nature, 428, 821–827.

For traits and relev�es, plant taxonomy followed the TaxRef4 referential (Museum National d’Histoire Naturelle, 2013; http://inpn.mnhn.fr/telechargement/
referentielEspece/referentielTaxo).
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