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1. Executive summary 

The report encompasses the experience of AnimalChange consortium in the modelling of 
crop, grassland and rangeland systems. As the choice of a model type can have an effect on 
the accuracy of results, there is a need to both understand the properties of different models 
and reduce uncertainties in the estimates of one or another model over a variety of 
conditions. In such respect, calibration and evaluation are an essential element of model 
development and use at a range of scales. The authors present a spectrum of models (and 
the data that underpin them), for use to assess the impact of climate change at different 
regions and over different systems. The general objective has been to assemble 
approaches, applications and prospective developments as a review of the international 
effort towards the documentation, in a different and much larger scale than today, of impact 
models of interest for livestock systems. Each chapter is grounded on an extensive 
bibliography, mostly from international sources but also from national ones (such as thesis in 
French and Brazilian Portuguese) to broaden awareness of past research results relevant to 
the project. 
 
An emerging challenge is the upscaling of model estimates, e.g. determination of model 
parameters for large spatial units. The INRA’s experience with the grassland-specific model 
PaSim is documented, in which advanced techniques (sensitivity analysis and Bayesian 
statistics) have been applied to identify and calibrate a set of relevant parameters at the 
European scale. PaSim mechanistic view of grassland carbon and nitrogen fluxes was 
exploited by CEA to improve ORCHIDEE, a dynamic global vegetation model extensively 
used in impact studies, which was successfully evaluated in Europe against data of different 
nature. For both PaSim and ORCHIDEE, the first experiences run by EMBRAPA in Brazilian 
beef production areas have also been documented, which have opened to the introduction of 
conceptually important new approaches in view of further testing. 
 
Modelling solutions represent emerging approaches for analyzing climate change impacts in 
Africa as well. South Africa (UP) provided suitable datasets to assess, in a comparative 
fashion, a locally-developed model (SWB-SCI) and a flexible tool such as STICS (developed 
by INRA and mainly evaluated in Europe) for C4 crop and grassland simulations. In Africa, 
large portions of surface lands are covered by rangelands, complex adaptive systems in 
which the production of domestic livestock is based on natural or semi-natural plant 
communities (containing both grasses and woody plants), and where grazing effects are 
inherently variable and difficult to conceptualise and implement. A contribution to rangeland 
modelling is given by the experiences gained by ILRI with the model G-Range. 
 
The modelling experiences documented in this report contributed to the understanding of 
complex agro-ecological systems in different contexts of Europe, South America and Africa. 
Insights from such experiences will be used in the project to support WP5 activities. 
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2. Introduction 

Crop and grassland ecosystems are complex and dynamic. The many interactions between 
herbivores, vegetation, soil and the atmosphere, and the role of management practices make 
our ability to experiment on these systems extraordinarily limited. Thus, testing scenarios of 
climate change using ecosystem models which simulate physical, chemical, and biological 
processes in great detail is an imperative. The models that we consider in AnimalChange are 
deterministic, that is, running the model with the same inputs always produces the same 
outputs. Using models allows indeed a greater insight and understanding of these processes 
and interactions than it can be assumed by just considering experimental evidences. They 
are therefore widely used in climate change impact projections, especially for long-term 
analyses (Johnson et al., 2008). Such projections need to account for the uncertainty 
cascade resulting from multiple sources including climate scenarios, the impact model, local 
climate, vegetation and soil conditions (Olesen et al., 2007; Soussana et al., 2010) and to 
consider farming practices adaptation (Tubiello et al., 2007). 

A major problem with the use of complex ecological models is incomplete incorporation of 
basic processes in the model structure, as well as input variables and parameter values. This 
means that model estimates may be affected by a large amount of uncertainties due to 
uncertainties in parameter values, driving variables (climate, soil and management) and 
model structure (Gabrielle et al., 2006). There is thus a need of a better match between 
model outputs and observations (Wallach et al., 2011). At the same time, uncertainty 
associated with model outputs needs to be quantified and documented (van Oijen and 
Thomson, 2010). 

This report provides an insight on the improvements of the models represented in the 
AnimalChange consortium, as carried out to better represent plant, soil and atmospheric 
processes. In particular, it includes: 

- Overview of the Pasture Simulation model (PaSim) and applications in Europe (INRA) 
- Overview of the Organising Carbon and Hydrology In Dynamic Ecosystems model 

(ORCHIDEE) and applications in Europe (CEA) 
- Developments and applications outside Europe (UP, South Africa; EMBRAPA in 

collaboration with CEPAGRI UNICAMP, and UFRGS) with models PaSim, 
ORCHIDEE, STICS and SWB-SCI 
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3. Improvements in the Pasture Simulation model 
for applications in Europe 

The Pasture Simulation model (PaSim, 
https://www1.clermont.inra.fr/urep/modeles/pasim.htm) simulates C and N cycling in 
grassland ecosystems (mixed swards) at a sub-daily time step. The model has evolved over 
time, starting as a simulator of dry matter production and associated flows of C, N and water 
in productive pastures (Riedo et al., 1998). It was later improved by Schmid et al. (2001) with 
respect to the production and diffusion of N2O (Riedo et al., 2002) and the exchange of NH3 
with the atmosphere by Vuichard et al. (2007a, b) concerning animal herbage selection and 
intake, and the effects of diet quality on the emissions of CH4 from grazing animals. More 
recently, Graux et al. (2011) further improved functionalities to estimate the forage production 
and dry matter intake taking into account selective grazing between vegetation 
compartments and the effect of high temperatures, while also simulating ruminants’ 
performance and enteric CH4 emissions during grazing according to the energetic content of 
the intake. The livestock system simulates the level of milk and production with heifers, dairy 
and suckler cows. 

The model consists of five interacting modules: microclimate, soil, vegetation, herbivores and 
management. The soil module simulates soil temperature and moisture profiles based on soil 
physical properties, hourly weather inputs and simulated plant water use. In the soil module, 
based on CENTURY soil decomposition approach (Parton, 1988), litter in decomposition 
over the total soil depth (with no difference between layers) splits into its structural and 
substrate components, respectively supplying the structural and metabolic soil pools. Other 
three compartments with different decomposition rates include active, slow and passive 
pools of soil organic matter. Soil pools are interlinked to represent C and N first-order 
kinetics. The N cycle considers N inputs to the soil via atmospheric deposition, fertilizer 
addition, symbiotic fixation by legumes and animal faeces and urine. The inorganic soil N is 
available for root uptake and is lost through leaching, volatilization and 
nitrification/denitrification, the latter processes leading to N2O emissions to the atmosphere. 
The vegetation module calculates photosynthetic-assimilated C and allocates it dynamically 
to one-root and three-shoot compartments (each of which consists of four age classes). C 
losses are through animal milking, enteric CH4 emissions and returns, and ecosystem 
respiration. Accumulated aboveground biomass is either cut or grazed, or enters a litter pool. 
Herbivores are only considered at pasture (not during indoor periods). Management includes 
organic and mineral N fertilizations, mowing and grazing, setting by the user or optimized by 
the model. 

The improvements introduced to the model thanks to existing partnerships in the frame of 
AnimalChange are in the follow-up paragraphs, which elaborate on the following points: 

1) High-performance computing for climate change impact studies (Vital et al., 2013) 
2) Bayesian calibration for European grasslands (Ben Touhami, 2014) 

High-performance computing for climate change impac t studies 

High-performance computing technology permits to efficiently achieve high-performance 
throughputs for intensive CPU load applications. We developed a pixel-based version of 
PaSim suited to work with NetCDF format of input and output files. It includes the parallel job 
launcher, which dispatches individual jobs to execute simulations. 
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The high-performance computing system was built on the technology already adopted to 
engineer the dynamic global vegetation model ORCHIDEE (IPSL, 2014), developed with the 
support of French government-funded research units belonging to the National Institute for 
Agricultural Research (http://www.inra.fr) and the Alternative Energies and Atomic Energy 
Commission (http://www.cea.fr). It includes: PaSim grassland model, NetCDF format of data 
(Network Common Data Form, UNIDATA, 2014), and a job launcher to run executions using 
Message Passing Interface (MPI) technology to parallel the simulations (Bull, 2014) on a 
cluster machine (TITANE, CCRT, 2014). 
To facilitate coupling with the launcher, version 4.5 of PaSim required the following code 
modifications: creating the vectored code (i.e. able to simulate different pixels at the same 
time) using only ASCII format input/output files; reading/writing input and output data using 
NetCDF; restructuring the code into three modules (initialization, main loop and finalization); 
evoking PaSim modules by the launcher via mixed-programming language using C and 
Fortran. There is no exchange between the pixels, each pixel being a point and the model 
running independently for each of the pixels. 
In a case study covering metropolitan France (Figure 1), we demonstrate how this approach 
is configured and used to evaluate the impact of climate change on grassland productivity. 
Over ∼10,000 pixels of 8 × 8 km resolution, we report ∼25 h to complete the simulation on 
the cluster machine TITANE with 200 processors, which is a speedup of 200. 
 
 

 
Figure 1.   Grassland yield (kg DM m−2 yr-1) at 8-km pixel resolution (smoothed images) as estimated for three 
periods in metropolitan France by downscaled ARPEGE-forced runs of the Pasture Simulation model with the 
emission scenarios A2. 
 
In the example above, PaSim was inputted with weather and soil data to simulate moderately 
intensive managed grassland (Table 1) at each pixel. 
 

Table 1.  Grassland management used in the model simulations. 

Type of grassland Permanent 

Vegetation Grass mixture 

Grazing Absent 

Dates of mowing May 20, July 1a, October 5 

Nitrogen fertilization 

Date and dose 40 kg ha−1, five days after each cutting 

Type of fertilizer Ammonium nitrate 
a Optional (under condition of sufficient biomass available). 

 
Weather hourly series were provided for alternative scenarios from 1970 until the end of the 
21st century, using ARPEGE climate model downscaled via “weather types” regionalization 
technique (Boé et al., 2006). INRA InfoSol Unit (Orleans, France, 
http://www.orleans.inra.fr/orleans_eng/les_unites/us_infosol) supplied soil properties (depth, 
hydrological properties, pH and texture) split into three soil layers, covering the metropolitan 
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France with the exception of Paris region (8956 8 × 8 km pixels). For each pixel, soil data 
were integrated with mean elevation above the sea level and grassland management. 
Vegetation parameters were taken from published studies (cited by Graux, 2011), while soil 
carbon pools were set to equilibrium via spin-up runs in the early 1970s (after Lardy et al., 
2011). 
For each pixel, grassland yields per year were obtained for three 30-year time horizons 
(extracted from a simulation from 1971 to 2100), representative of near past (1971–2000), 
near future (2020–2049) and far future (2070–2099). The hourly weather data used to force 
the model are from the SRES-A2 storyline (IPCC, 2000), corresponding on average to 
concentrations of atmospheric CO2 for the three time slices of 346, 462, and 717 ppmv, 
respectively. Outputs, including gross and net primary productivities, carbon fluxes and yield 
were aggregated into annual averages and displayed for map viewing. The result of the 
pixel-based rendering is displayed in the dry matter (DM) yield maps of Figure 1, as 
generated by using Panoply Data Viewer (DataONE, 2014), set to read and process NetCDF 
output files. These illustrative results reflect potentially different patterns in relation to climate 
change (increased risks in the near future for grassland productivity near the Mediterranean 
coast, opportunity for greater productions in inland areas of France) as also suggested by the 
French National Observatory for the Effects of Global Warming (http://www.onerc.org) but 
viewed with major detail and graphical resolution. 
 
Bayesian calibration for European grasslands 

Using the principle of Bayesian calibration (Ben Touhami et al. (2013b), PaSim was used to 
update prior parameter distribution to achieve a posterior distribution (30000 iterations with 
acceptance rate of about 30%) by incorporating the information contained in the measured 
data of seven multi-year observational grassland sites in Europe (Amplero, Italy; Bugac-
Puszta, Hungary; Easter-Bush, United Kingdom; Früebüel and Oensingen, Switzerland; 
Laqueuille intensive and extensive plots, France) mainly derived from the FLUXNET network 
(http://fluxnet.ornl.gov). 

The nine most relevant PaSim vegetation parameters (chosen from Europe-wide sensitivity 
analysis, Ben Touhami et al., 2013a) were calibrated using a set of soil (temperature, water 
content), vegetation (leaf area index, harvested biomass) and atmospheric (NEE) measured 
variables. The calibrated model was used to assess CO2 (NEE, g C m-2 d-1) and CH4 (g CH4-
C m-2 d-1) fluxes based on the eddy covariance measurements (in place since 2002) of 
Laqueuille in France (45° 38’ N, 02° 44’ E, 1040 m a.s.l.). Two paddocks were continuously 
grazed by heifers from May to October with two management options (Klumpp et al., 2011): 
the intensive management paddock included significant amounts of N fertilization (three 
times per year for a total of ~200 kg N ha-1) and annual average stocking rate of 1.1 LSU ha-

1; the extensive management paddock had no fertilization and 0.6 LSU ha-1. 

The improvement of simulation after parameters calibration is reflected in the posterior 
estimates (thanks to maximum likelihood) of NEE and CH4 daily values, which are closer to 
observations than using the prior distribution. For NEE from multiple years (2004-2008), 
regression lines (Figure 2) show the improvement obtained with posterior parameter values 
(higher R2; slope and intercept closer to 1 and 0, respectively), with no difference between 
managements. Daily CH4 observed values were limited to May-October 2010 in the intensive 
system. 
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Figure 2.  Scatterplots of simulated (prior [-] and posterior [+]) and observed NEE values (g C m-2 d-1) at ther 
French site of Laqueuille (2004-2008), with regression lines for extensive and intensive management (posterior 
estimates were obtained under the hypothesis of uniform distribution of parameter values within a given range). 

Figure 3 shows the improvement obtained with the posterior parameterization but also that 
the model is not properly simulating the fluctuation in CH4 values. It is noteworthy that, with 
posterior simulation, the system emits enteric CH4 fluxes in summer because enough grass 
biomass is available and grazing may occur. This approximates what happens in reality, 
which is not the case with prior parameterization. 

 
Figure 3.  Simulated (prior and posterior) and observed CH4 values (g C m-2 d-1) at the French site of Laqueuille 

(intensive management) over May-October 2010 (posterior estimates were obtained under the hypothesis of 
uniform distribution of parameter values within a given range). 
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Table 2 summarizes, for four output variables, the performances of PaSim at four sites not 
included in the calibration exercise. Two performance indices were used: 

 

The root mean square error (RMSE), varying between 0 (best) and positive infinity, quantify 
the amount of departures of estimates (P) from observations (O). The coefficient of residual 
mass (CRM) may range from negative to positive infinity, where negative values indicate 
over-estimation and vice versa (0 being the optimum). 

Table 2.  Evaluation of priori and posterior estimation of four output variables (all validation sites confounded). 
Posterior estimates were obtained under two hypothesis of distribution of parameter values. RMSE: root mean 
square error; CEM: coefficient of residual mass. 

Distribution  Information 

Soil water 
content 

(%) 

NEE 
(g C m -2 d-1) 

GPP 
(g C m -2 d-1) 

Aboveground 
biomass 

(g DM m -2) 
RMSE CRM RMSE CRM RMSE CRM RMSE CRM 

Uniform
  

Prior  0.12 0.09 0.02 -1.21 0.35 0.04 15.76 0.39 
Posterior  0.12 0.08 0.02 0.76 0.34 0.02 15.13 0.33 

Gaussian Prior  0.13 0.10 0.02 -1.21 0.34 0.05 17.28 0.44 
Posterior  0.13 0.09 0.02 0.76 0.30 0.01 16.24 0.40 

Globally, these results (and others not shown, Ben Touhami and Bellocchi, 2014) indicate 
that the parameterization of PaSim obtained via Bayesian calibration at multiple European 
sites has improved simulation of a variety of output variables, though without compensating 
for limitations in the model structure. This means that the modelling of C exchanges and 
GHG fluxes from grasslands in Europe merits further investigation. This is a non-trivial task, 
not only because of unsolved theoretical questions but also because fluxes are affected by 
large observational uncertainties. 

Conclusions 

The pixel-based software for grassland simulations provides the power of the high-
performance computing with simplicity and flexibility for configurable applications dedicated 
to climate change impact studies. The pixel-based version of PaSim is sufficiently stable to 
perform projections of impact. However, the user needs to know the technical details 
(knowledge of the used cluster environment) about the job submission related to the system 
environment setup and the developed code is tightly coupled to its application. These are 
issues for future work, which translate into the need of supporting various platforms and 
applications, and automating a vast array of processes, as addressed through modern 
approaches to job scheduling and workload automation solutions. The new capabilities hold 
promise for modellers to widen the scope of climate change impacts on grasslands, yet at 
high resolution of local topography and weather features. Moreover, the tool for pixel-based, 
mechanistic simulation of grasslands (with biogeochemical capabilities) is a general way to 
facing climate change impact studies while capturing complex multi-scale issues. Given the 
dearth of methods that integrate the presentation of spatially refined gridded maps with 
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uncertainty together, it may support the communication flow of the impacts and the co-
construction of knowledge among scientists and stakeholders. The use of advanced 
statistical approaches (such as Bayesian calibration) opens to the opportunity of reducing 
uncertainties when using upscaled parameter values. 
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4. Development and validation of the ORCHIDEE 
Grassland Management module ORCHIDEE-GM 

Introduction 

ORCHIDEE is a process-driven dynamic global vegetation model (DGVM) designed to 
simulate C and water cycle from site-level to global scale (Ciais et al., 2005; Krinner et al., 
2005; Piao et al., 2007). It is composed of two main modules. The SECHIBA (soil–vegetation 
system and the atmosphere) parameterization computes the energy and hydrology budget 
on a half-hourly basis, together with photosynthesis based on enzyme kinetics (Viovy and de 
Noblet, 1997). These results are fed into a module of ORCHIDEE called STOMATE, which 
simulates C dynamics on a daily basis: gross primary production (GPP) is allocated to 
different organs, and then respired by the plant or by soil microorganisms when parts of the 
plant die. These processes determine several ecosystem state variables such as leaf area 
index (LAI) and canopy roughness, which are fed back into SECHIBA because they control 
the energy and water budgets. The equations of ORCHIDEE are described in Ducoudré et 
al. (1993) for SECHIBA and in Krinner et al. (2005) for STOMATE, and can be found at 
http://orchidee.ipsl.jussieu.fr. As in most DGVMs, the vegetation is discretized into a discrete 
number (13) of PFTs over the globe. For grassland, C3 and C4 grass are included and 
treated like unmanaged natural systems, where C–water fluxes are only subject to 
atmospheric CO2 and climate changes. Here we use version 1.9.6, which can be accessed at 
http://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE_1_9_6. The N cycle is not 
included in this version of ORCHIDEE. 

PaSim is a plot-scale process-based grassland model developed by Riedo et al. (1998), 
which simulates grassland processes at a sub-daily time step. It considers a soil–vegetation–
animal atmosphere system (with state variables expressed per m2) and runs over one to 
several years. PaSim allows simulating main grassland services such as forage and milk 
production, as well as the C, N, water and energy fluxes in sown and permanent grasslands. 
PaSim was applied on a grid to make simulations of grasslands GHG fluxes at the European 
scale by Vuichard et al. (2007b) and was used to run an ensemble of climate change impacts 
simulations on grassland services and GHG budgets at French sites (Graux et al., 2012, 
2013). PaSim comprises six modules, simulating plant growth, microclimate, soil biology, soil 
physics, animal processes, as well as management options. The two latter modules use a 
daily time step, just as STOMATE does in ORCHIDEE. See Graux et al. (2012, 2013) for 
further details about the modelling of grassland processes. 

 

Model developments 

Coupling strategy 

To incorporate into ORCHIDEE a description of management, our approach is to take the 
cutting, grazing and fertilization options, and the animal module of PaSim (version 5.0, see 
above) and integrate them into ORCHIDEE. Each day, ORCHIDEE provides AGB to the 
management module to be used for cutting or grazing (Figure 1). 
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Figure 1.  Schematic view of ORCHIDEE-GM. 

 

Taking into account the types of herbivores (different types of cattle or sheep), the 
management module simulates harvested biomass, herbage intake and animal trampling 
during grazing, and following C fluxes by animal respiration, milk production, CH4 emissions, 
and excreta returns. Then it feeds back two variables into ORCHIDEE, the residual AGB 
fraction, and the newly formed litter. The litter pool of ORCHIDEE is modified from the input 
of harvested grass residues, manure additions, and from animal trampling effect and excreta 
returns. We will hereafter refer to the   modified version of ORCHIDEE as ORCHIDEE-GM 
(grassland management). Nine parameters are required for the simulations: (i) the timing of 
cuts and the associated residual total shoot DM(and the residual LAI), (ii) the type of 
fertilizer, the timing of their application and the corresponding amounts, and (iii) the start and 
length of grazing periods and the grazing animals stocking rate. 

Specific modifications in the ORCHIDEE-GM 

As ORCHIDEE is designed to represent the C cycle of unmanaged grassland, we adapted 
the model to include (i) the possibility of reaching high LAI values such as observed in 
productive managed European grasslands; (ii) the leaf shed in highly dense tillers; (iii) a 
reduction of the leaf fraction in total AGB, and iv) a translocation of carbon from a reserve 
pool after cut in order to shape new leaves. In addition, we improved the representation of 
specific leaf area (SLA) for stimulating regrowth after cutting or grazing. 

 

Evaluation at European grassland sites 

Site selection and description 

To evaluate ORCHIDEE-GM, we ran ORCHIDEE and ORCHIDEE-GM at 11 European 
grassland sites with contrasted management intensity, where good quality flux data (NEE, 
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measurements by eddy-covariance (EC) technique) were collected, the data being gap-filled 
and partitioned to GPP and TER (total ecosystem respiration) using the CarboEurope-IP 
methodology (see CarboEurope-IP project, e.g., Dolman et al., 2006; Reichstein et al., 2005; 
Papale et al., 2006; Moffat et al., 2007; Béziat et al., 2009). The 11 sites have sufficiently 
detailed management records (management type, timing of cutting or grazing, and 
correspondingly harvest severity or stocking density). There are three cut sites, six grazed 
sites and two mix-managed sites. The geographic information, management type, fertilization 
practice, year with management or C fluxes records, and mean meteorological data. 

Site-level simulations were conducted with ORCHIDEE and with ORCHIDEE-GM separately. 
All simulations started from an equilibrium state of C pools with climate and management 
obtained with a model spin-up and additional 40-year simulations after spin-up were done to 
obtain the ecosystem C pools under the grassland management. Finally, starting from the 
end of spin-up 2, simulations were conducted for the target period of evaluation. 

 

Methods for evaluating model performance 

To assess model–data agreement for biometric variables such as LAI and AGB, we use the 
index of agreement (IOA, Willmott et al., 1985; Legates and McCabe, 1999). Ecosystem–
atmosphere fluxes are shaped by a variety of fluctuations on different scales of characteristic 
variability. Scalar error estimates and residual analysis used to summarizing model–data 
disagreement provide only limited insight into the quality of a model (Mahecha et al., 2010). 
A more sophisticated way could be localizing model–data mismatches in time (Gulden et al., 
2008). Thus, to evaluate time-frequency localized model performance on CO2 fluxes (GPP, 
TER and NEE), we used a time domain decomposition method called SSA (singular-
spectrum analysis; Broomhead and King, 1986; Elsner and Tsonis, 1996; Golyandina et al., 
2001; Ghil et al., 2002). 

 

Model performance for CO2 fluxes 

ORCHIDEE-GM reproduces intra-annual fluctuations of CO2 fluxes significantly affected by 
grassland management, either cut (Figure 2) or grazed. 
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Figure 2.  Simulations at Oensingen (Switzerland). 

 

A better model performance in ORCHIDEE-GM compared to ORCHIDEE on intermonthly and 
seasonal–annual scales is found for NEE and GPP. This further justifies the necessity to 
incorporate management processes in order to calculate the CO2 exchange on European 
grasslands, e.g., for being used as a better prior of atmospheric CO2 inversions. In addition, an 
increase in the ability to reproduce NEE at timescales of weeks to year can be attributed to a 
better simulation of GPP rather than TER that improves marginally. This might be due to the 
modelling issue of soil organic matter initial disequilibrium (Carvalhais et al., 2008). Improved 
GPP simulation by ORCHIDEE-GM comes from more accurate prediction of plant growth under 
management. However, the main component of TER is soil respiration. It is highly sensitive to soil 
organic matter amount, which is initialized by the same soil C module in ORCHIDEE rather than 
by field observations in this study. Although ORCHIDEE-GM performs better on both timescales, 
systematically better at cut sites than at grazed sites, the improvement at grazed sites are more 
noticeable on the seasonal–annual than on the intermonthly timescales. This illustrates the fact 
that cut and grazing practices have different influences in the temporal variation of NEE, and that 
grazing has more impact on seasonal–annual than on intermonthly timescales. The large 
amplitude on intermonthly timescale indicates that the intense sporadic disturbance, e.g., cut, 
could also significantly influence CO2 fluxes. Figure 3 summarize the improvement of RMSE with 
ORCHIDEE-GM for the 11 sites. 
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Figure 3.  RMSE for three CO2 fluxes (blue: ORCHIDEE; red: ORCHIDEE-GM). 

 

Validation at European scale 

The optimal animal stocking rate, Sopt (number of livestock units (LSU) per hectare) and the 
optimal proportion of grazed versus cut grasslands, Fopt (within [0, 1]) are calculated for each 
grid cell using the optimization algorithm of Vuichard et al. (2007a). The annual herbage 
production, Y, (kg of dry matter (DM) per hectare) of cut grasslands that occupy a fraction (1-
Fopt) of a grid cell should be equal to the herbage dry matter required by herbivores under 
cover, X (kg DM ha-1) during the non-growing season, when grazing is not possible. This rule 
is expressed as a system of two equations with two unknowns (X and Fopt): 

� � �´�1 � 	
��          (1) 

� � �� � ������ � �
�� � 	
��        (2) 

where IC is the daily intake capacity (with a default value of 13 kg DM LSU-1 day-1; IPCC, 
2006) of animals under cover, ∆Tfarm is the number of non-growing season days during which 
herbivores need to be fed with cut herbage. The potential animal density (Dopt) is given by: 

�
�� � �
��´	
��          (3) 

Dopt is calculated in the iterative algorithm by increasing the input animal stocking rate (Sopt) 
until convergence is reached and the stocking rate reaches its potential value and cannot 
increase further. Dopt must be interpreted as a potential herbage-only limited livestock density 
of a given model grid cell (similar to the term “livestock carrying capacity”, 
IUCN/UNEP/WWF, 1991). When Dopt is reached, the grassland herbage production is fully 
used by livestock and the herbage intake capacity of the livestock is reached. 
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Modelling adaptive management in response to climate variability and CO2 

We t defined new rules that were incorporated into ORCHIDEE-GM to account for how 
grassland management might change in response to a climate-driven change in productivity. 
We start from animal stocking rate (Sopt) and proportion of grazed grasslands (Fopt) optimized 
for a given productivity (in equilibrium with climate). If productivity then changes (because of 
climate change), we assume that farmers will take adaptive actions to restore the biological 
potential livestock density by changing livestock numbers. Specifically, at the end of a given 
year, i, the farm manager in each grid cell takes the decision to add (in case of forage 
surplus) or to remove (in case of forage deficit) animals to or from the grid cell for the next 
year, thus changing the previous optimal animal density (Dopt,i) by a step ∆Dopt,i as function of 
the forage surplus or deficit (Mi). The new optimal animal density for the next year i+1 
(Dopt,i+1) is given by: 

�
����� � �
��� � ��
���         (4) 

where Dopt,i+1 is adapted in the model by changing Fopt (in Eq. 3), and the step density change 
(∆Dopt,i) is given by: 

��
��� � ��
��´� � �� �� �� !��⁄ ´�       (5) 

where IC is the daily intake capacity, ∆Tyear = 365 days. ∆Dopt is the maximum animal density 
change resulting from the forage surplus (or deficit) of the previous year (Mi), and  is the 
fraction of ∆Dopt that is realized by the farmer. The value of  is adjustable, and we chose 
20% here, representative of a “moderate risk tolerance” decision by the farmer to changing 
animal density to adapt to the new productivity conditions. Hence, Mi is given by: 

�� � �′� � ��           (6) 

where, in each grid cell, X’i is the annual total grass production from cut grasslands for the 
year i, calculated from Eq. 1, and Xi is the herbage dry matter required by herbivores under 
cover during the non-growing season for the year i, calculated from Eq. 2. 

ORCHIDEE-GM is integrated on a grid over Europe using the harmonized climate forcing 
data from the ERA-WATCH reanalysis for the period 1901–2010 and at a spatial resolution 
of 25' by 25'. The climate variables were simulated by REMO regional climate model 
(http://www.remo-rcm.de ) and harmonized using WATCH forcing data methodology (Weedon 
et al., 2010, 2011). This resolution is sufficient to represent regional meteorological regimes 
accurately in low lying regions, but not in mountainous areas. Gridded nitrogen fertilizer 
application rate for European grasslands (at a spatial resolution of 25' by 25'; including 
mineral and organic fertilizer) was estimated and spatial dis-aggregated by CAPRI model 
(see Leip et al., 2008 for details of the method) based on regional and national statistics (e.g. 
AGRESTE statistics and Eurostat). Some countries were ignored due to the missing or too 
bad quality of statistical data (e.g. Switzerland and Norway). Three levels of nitrogen-addition 
intensity (low, medium and high intensity) were provided for the year 2010. A set of rules was 
used to rebuild the temporal evolution of gridded nitrogen fertilization: 1) only organic 
fertilizer was applied with low intensity during the period 1901–1950; 2) mineral fertilizer was 
applied since 1951; 3) from 1951 to 2010, the application rate of both mineral and organic 
fertilizer were linearly evolved from level of low intensity (for the year 1951) to level of 
medium intensity (for the year 2010). 

A series of simulations was carried out. ORCHIDEE-GM was first run for a spin-up 
(simulation E1) without management using the first 10 years of climatology data (1901–1910) 
recycled in a loop, and the atmospheric CO2 concentration for 1900 (296 ppm) until the 
carbon pools reached equilibrium (long term Net Ecosystem Exchange, NEE = 0 at each grid 

α
α
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point). This first spin-up usually takes 10,000 years. Starting from the end of this first spin-up, 
two separate transient simulations were performed. In the first one (simulation E2), optimal 
animal stocking rates (Sopt) and fractions of grazed grassland (Fopt) for the period 1901–1910 
were defined by running ORCHIDEE-GM with its optimization algorithm that maximizes 
stocking rates in each grid cell (see above and Vuichard et al. 2007a). In the simulation E3, 
ORCHIDEE-GM was run during the historical period (1910–1960) with increasing 
atmospheric CO2, variable climate, and with the new adaptive management change 
algorithm. This simulation started with the reference distributions of Sopt and Fopt over Europe 
(obtained in simulation E2), as well as with soil carbon pools for the year 1910 (end of the 
spin-up simulation). Starting from the end of simulation E3, formal simulation E4 was carried 
out for the period 1961–2010 with increasing atmospheric CO2, variable climate, and with the 
adaptive management change algorithm. Three further simulations (E5, E6 and E7) 
investigated the relative contribution of atmospheric CO2, climate change and nitrogen 
fertilization trends on the estimated trend in productivity. The simulations E5, E6 and E7 are 
the same as simulation E4, but with atmospheric CO2 concentration fixed at the level of 1961 
(E5), using the first five years of climatology data (1961–1965) recycled (E6), or with nitrogen 
fertilization fixed to the level of 1961 (E7), respectively. The difference in productivity trend 
between simulations E3 and E4 reflects the effects of increased CO2. The effects of climate 
variation and nitrogen fertilization were derived as the difference between simulations E3 and 
E5 and between simulations E3 and E6, respectively. 

 

Data for evaluating the simulated productivity of European grasslands 

Smit et al. (2008) constructed a map of Europe showing the spatial distribution of grassland 
productivity by integrating census statistics, literature, and expert judgment using the NUTS 
classification (Eurostat, 2007). The biological potential of grassland productivity from 
ORCHIDEE-GM (on a spatial resolution of 25') was aggregated to the NUTS-2 level 
weighted by the corresponding grassland area in each grid cell (from CORINE Land Cover 
map, CLC2000; Büttner et al., 2004). We then compared the spatial pattern of modelled 
potential productivity with the map by Smit et al. (2008) averaged over the period 1995–
2004. 

 

Livestock distribution and its ratio to productivity 

FAO (Wint and Robinson, 2007) provides a 5' by 5' global livestock distribution maps for 
major animal species (cows, pigs, poultry, sheep, goats, and buffalo), which are consistent 
with regional statistics. Cattle, sheep and goat densities are expressed in this study as the 
number of animals (head) per square kilometer of land suitable for livestock production (Wint 
and Robinson, 2007). A ruminant livestock density in LSU ha-1 was calculated from these 
data by using head-to-LSU conversion factors of 0.8, 0.1, and 0.1 for cattle, sheep and 
goats, respectively. This LSU density distribution was then aggregated to the 25' by 25' grid 
used by ORCHIDEE-GM. We also aggregated the livestock density distribution from FAO to 
the NUTS-2 level, for comparison with grassland productivity statistics from Eurostat 
summarized by Smit et al. (2008). Then, the average ratio of FAO livestock density to 
grassland productivity from the Eurostat data was calculated in each NUTS region. 

 

Grass-fed livestock numbers estimated from statistics and model simulations 

In Europe, ruminant livestock are not only fed on grass, but also receive arable crop-feed 
and crop by-products. Thus, the number (LSU) of grass-fed livestock (Nobs) in each region 
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can be calculated separately as: 

$
%& � $%!!�´	%!!� � $'��� ´	'��� � $&(!!�´	&(!!� � $)
��&´	)
��&       (7) 

where Nbeef, Ndairy, Nsheep and Ngoats are the numbers (LSU) of beef cattle, dairy cattle, sheep, 
and goats calculated from regional census statistics; Fbeef, Fdairy, Fsheep and Fgoats are the 
fractions of grass-feed in the diet of each type of animal available from the study by 
Wirsenius (2000) (Western and Eastern Europe). 

ORCHIDEE-GM simulates the biological potential livestock density Dopt on a 25 km grid over 
Europe. This model output was re-aggregated to the NUTS level (Dreg, for NUTS-0 to NUTS-
2) and weighted by the actual grassland area of each grid cell from CORINE Land Cover 
map (CLC2000). The simulated grass-fed livestock (Nsim) is given by: 

$&�� � *�!��´��!)´+�!�� � *�!��´��!)´+�!�� � *�
,)(´��!)´+�
,)(    (8) 

where Atemp, Aperm, and Arough are the area of temporary grassland, permanent grassland, and 
rough grazing respectively in each NUTS region (data from Eurostat; names in italics from 
Eurostat terminology, see above); ftemp, fperm, and frough are the fraction of Dreg that grassland 
of different types are assumed to support, and are set to 100%, 80%, and 10% for temporary 
grasslands, permanent grasslands, and rough grazing lands respectively according to their 
productivity. Newly sown temporary grassland has high productivity, and thus is assumed to 
support the simulated potential stocking rate, whereas less productive rough grazing 
grasslands are assumed to receive little management and to support only 10% of Dreg (these 
grasslands are usually located in mountainous areas with steep slopes and limited 
accessibility). Combining modelled livestock density with statistical grassland-area data, we 
produced a simulated number of animals for each region, Nsim that can be compared with 
Nobs available from the statistics. 

Unfortunately, long-term regional time series of grassland area and livestock numbers (Nobs) 
are not available for the Eurostat NUTS regions. Therefore, country averages Nobs (also 
called NUTS-0) from 30 countries from the FAO statistical database (FAOstat) were used to 
evaluate modelled trends of Nsim over the period from 1961 to 2009. 

 

Evaluation of grass-fed livestock numbers in Europe 

Regressing the simulated numbers of grass-fed animals (Nsim in Eq. 8) against the Eurostat 
data (Nobs in Eq. 7), gives a (spatial) coefficient of determination R2 = 0.88 (P < 0.01) for the 
NUTS-2 regions (slope = 0.98; NUTS-1 for Germany). Country scale (NUTS-0) comparison 
(Figure 4) shows the mean value and standard deviation of the observed and modelled 
grass-fed livestock numbers during the period 1990–2010. When the comparison is made for 
regions grouped into Köppen-Geiger climate zones Nsim is comparable to Nobs in regions with 
moist temperate climate (climate zones Df and Cf, with cold winters and mild winters 
respectively; slope close to 1, R2 > 0.7, P < 0.0). However, ORCHIDEE-GM tends to 
underestimate the number of grass-fed livestock in regions with high latitude climate (zone 
ET, e.g., Norway) and in Mediterranean countries (zone Cs, e.g., Greece, Italy, Spain and 
Portugal). 

 



19 

 

 

 
Figure 4.  Comparison of modelled and observed (Eurostat) grass-fed livestock numbers by NUTS-0 level 
(countries) for the period 1990-2010. 
 

Decadal trends and interannual variability of grassland productivity 

Figure 5 shows the decadal trend of simulated grassland productivity compared to statistics. 
For European grasslands, ORCHIDEE-GM estimates a small average annual increase of 
potential productivity over the last five decades (0.30% per year) which reflects the effects of 
elevated CO2, climate change and nitrogen fertilization. Changes in other drivers such as 
nitrogen deposition and other management drivers (except nitrogen fertilization) in this period 
are not included in the model because the data (e.g., nitrogen deposition) are not available 
over this period (1961–2010). Meta-analyses revealed that nitrogen fertilization itself could 
stimulate grass biomass by around 50% (Le Bauer and Treseder, 2008; Xia and Wan, 2008), 
and the positive biomass responses could be significantly enhanced when CO2 enrichment 
and/or the addition of other nutrients (such as phosphorus) were taken into account (Elser et 
al., 2007; Xia and Wan, 2008). Such a strong effect of fertilization, however, was neither 
observed in regional-scale productivity statistics, nor in modelled potential productivity. We 
believe there are two reasons for this lack of response: i) Intensive fertilization that would 
strongly improve productivity, has not been fully applied to all grasslands in Europe (a large 
part of the total grassland area was fertilized with only 0-40 kg N ha-1 yr-1). ii) Fertilization and 
the improvement of grass species by plant breeding were introduced only a few decades ago 
in sown (i.e. temporary) grasslands, and with apparently limited effects on productivity. On 
the other hand, it has been shown that water stress is a major limitation on grassland 
productivity (Le Houerou et al., 1988; Knapp et al., 2001; Nippert et al., 2006) and a few 
grasslands are irrigated in Europe (Wriedt et al., 2009). Thus, in contrast to arable agriculture 
(annual crops), grasslands, which are still largely semi-natural in Europe, display changes in 
productivity over recent decades that are primarily controlled by climatic and atmospheric 
factors and not by management. 

Land-use change could be another significant and non-modelled factor that impacts the long-
term trends of grassland productivity in some EU countries. Transition to arable crops and 
abandonment can both mark a land-use change affecting grasslands. For example, in the 
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Czech Republic, besides the impact of unfavorable climate factors captured by our model, 
grasslands were also abandoned during the transition to a market economy, causing a sharp 
drop in productivity. In Italy, the evolution of grassland productivity has also been impacted 
by major land-use changes. The number of grazing animals has decreased owing to the 
abandonment of low-productive dry rangelands (Peeters, 2009). At the same time, grassland 
areas with favorable conditions have been partly converted to fodder maize and to cash 
crops (Peeters, 2009). 

In certain regions, changes in the management of grasslands, such as fertilization, may have 
reduced the variability of productivity between years. However, significant interannual 
variability of grassland production was observed in some countries because of climatic 
variability and anomalies. In this study, we have shown that ORCHIDEE-GM is able of 
capturing the interannual variability of grassland productivity. 

 
Figure 5.  Temporal evolution of modelled grassland productivity, and of livestock density from model simulations 
and statistics respectively. All variables are means over European grasslands. 
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5. Grassland modelling in Brazil: first experiences  
with PaSim and ORCHIDEE-GM 

This chapter documents the first modelling applications on Brazilian grasslands with PaSim 
and ORCHIDEE-GM. The modelling work was mainly developed in the course of the post-
doctoral stage of Priscila Coltri, carried out at Laboratoire des Sciences du Climat et 
l'Environnement from 01/11/2012 to 11/07/2013. 

 

PaSim 

For PaSim, which has no specific equations for tropical plants, a first verification of model 
responses against tropical conditions was done to identify major weaknesses as a 
preparation for future calibration. The simulations run aimed at testing the model 
responsiveness under tropical conditions, under which this model had never been evaluated 
before. To achieve this, soil and plant data from Brachiaria (cv Marandu) swards were used 
as described in Lara (2011), for the site of Piracicaba (22° 25′ S, 47° 23′). Temperature, 
precipitation, solar radiation, wind speed and humidity inputs were supplied by ESALQ 
(Escola Superior de Agricultura "Luiz de Queiroz") - USP (Universidade de São Paulo) 
weather station (through http://www.esalq.usp.br) for the years 2007, 2008 and 2009. 

Overall, simulations indicated that the model, while not adapted for simulating tropical 
conditions, responds appropriately to tropical conditions characterized by higher temperature 
and rainfall values than those found on temperate sites, without computational problems. 
Figures 1 shows the simulation results for four output variables: leaf area index (m2 m-2, 
graph a), dry matter (kg ha-1, graph b), cumulative and daily evapotranspiration (mm, graphs 
c and d, respectively). The complete list of output variables is in appendix II. 

  a b 
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Figure 1.  The values of four variables obtained with PaSim. 

These results suggest, however, the need for improved plant physiology parameterization, 
especially with respect to carbon assimilation (photosynthesis and respiration) by the 
canopy. Moreover, the following equations were identified (as included in the model 
PlantMod, described by Johnson, (2012) for inclusion in the code of PaSim to extend its 
capabilities towards C4 species: 

Equation of the response to carbon (CO 2), fc(C):  

*-�� � 	
/

0∅
	23� �	*-,��5�3� �	*-,�

0 � 4∅3	*-,��7
�

89 (3) 

where: C is the atmospheric concentration of carbon, β is an initial slope, ∅ (0≤ ∅ ≤ 1) is a 
curvature parameter, and f_(c,m) is an asymptotic function. 

Equation of photosynthesis at light saturation, Pm: 

:�;	:�,�!�	*<	��*��,=>��, �	*��,��	�*?       (4) 

where fc(C) is the response function to CO2, fpm,TC(T,C) is the temperature-CO2 combined 
response, fpm,fp is the response to plant enzyme or protein concentration (fp) mol of protein C 
(mo. leaf C)-1 and Pm,ref is the reference value for Pm concerning the temperature, CO2 
concentration in the atmosphere. 

Equation of the temperature-CO2 combined response:  

*��,=> 	��, � � �	
=@=AB

=CDE@	=AB
F	�

�/GF	=HIJ@	=AB@F=
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                                                    (5) 

Where Tmn is the minimum temperature, q is a curvature parameter, Tref is the reference 
temperature, Topt is the optimum temperature (related to carbon) and described according to 
equation: 

�
��,K� �	�
��,K�,��% �	L��2*- 	�� � 19                                                                  (6) 

where fc is the functional of CO2. 
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Equation on leaf photosynthetic efficiency:  The general characteristics of photosynthetic 
efficiency in relation to temperature and CO2 are: 

- Efficiency increases with the increase in CO2 concentration, although this increase is 
relatively modest in C4 plants; 

- α decreases as the temperature rises above 15 °C (critical temperature above which α 
starts to decrease, with increasing CO2 concentration) due to a shift from carboxylation 
(carbon fixation) to oxygenation (photorespiration) in the reactions of photosynthesis; 

- The impact of temperature increase is reduced by the increase in CO2 concentration; 

- α increases in response to the concentration of protein;  

In order to capture these responses, photosynthetic efficiency is given by: 

�4:	� � 	���%,/N*<��*O,��	�*?                                                                                  (7) 

where αamb,15 mol CO2, α is the value of the atmospheric CO2 concentration at 15 °C and the 
protein concentration reference with the default value. 

These equations for C4 photosynthesis were identified and implemented in the PaSim code 
by INRA Grassland Ecosystem Research Unit of Clermont-Ferrand (France). Evaluations 
against EMBRAPA datasets are ongoing. 

 

ORCHIDEE-GM 

The model ORCHIDEE-GM implements equations for tropical C4 forage species, allowed the 
comparison of the simulated results with actual results. Climatic data from NCEP re-analyses 
were used to input the model.  

To assess the responses of ORCHIDEE-GM, four variables were selected: leaf area index 
(LAI, m2 m-2), dry material production (kg ha-1), leaf dry biomass (kg ha-1) and specific leaf 
area (SLA, m2 kg-1). The following action strategy was followed: 

1) First, the model was stabilized against tropical data. Soil and land use and occupancy 
inputs were extracted from the global soil sub-model of LPJ Dynamic Global Vegetation 
Model (http://www.pik-potsdam.de/research/projects/lpjweb) and positioned to the latitude 
and longitude of the study area, choosing to PFT (Plant Functional Type) option for tropical 
C4 plant species. 

The results from this first simulation (Figure 2), carried out with GM-ORCHIDEE (based on 
data from Araujo, 2011), show that herbage mass (dry matter) values are slightly higher and 
the values of leaf area index slightly lower than expected. As well as PaSim, the model 
reproduces seasonal climate variability of São Carlos (in São Paulo State). Figure 2 shows 
that herbage mass (dry matter), as well as leaf area index (LAI) and net primary production 
(NPP) are lower in the driest time of year, which runs from June to September. Moreover, 
these variables begin to increase in October, at the onset of the rainy season, remaining high 
until the next dry season. 
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Figure 2.  Results of the first round of ORCHIDEE-GM simulations for the city of São Carlos, São Paulo: a, Leaf 
Area Index (LAI); b, dry matter; c, dry matter intake for cattle, and d, net primary productivity (NPP). 

2) Second, management data and forage characteristics of the study area, located in the 
municipality of São Carlos, were introduced as described in Araujo (2011). In this simulation, 
the forage grass Panicum maximum cv. Mombaçan was chosen, with maximum leaf area 
index (LAI) of 8.27 and plant height of 0.90 m. The management of the forage sward is 
shown in Table 2, in Julian days, as needed by the ORCHIDEE-GM. In this simulation, we 
also parameterized the shadow effect, used in the model. In temperate locations, the forage 
plant starts responding to self-shading when LAI=2.5. However, the same does not occur in 
tropical locations, where this parameter was set to 4.2. 

To perform the simulation, we chose four PFTs: 

a) PFT1: exposed soil; 

b) PFT2: natural forest in the region; 

c) PFT3: cutting management of pasture (simulation results were compared against 
actual data from Araújo (2011); 

d) PFT4: management with grazing cattle, with 2.08 animal units per ha per year, which 
is the average of the west of São Paulo State, according to the IBGE - Instituto Brasileiro de 
Geografia e Estatística (http://www.ibge.gov.br). 

It was found a need to improve parameter estimates, particularly with regard to production. 
Moreover, it was observed that the Soil Tillage Intensity Rate (stir), taken from a global 
database do not represent the water retention and the characteristics of the study area. 

Simulation data were compared against actual field data (Araujo, 2011). Figure 3 shows the 
simulation for the leaf area index (LAI). In this figure it can be seen that the model 
reproduces the LAI quite reliably, with correlation and concordance index of 0.76 (p<0.001). 
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The reproduction of the actual LAI was better in summer, fall and spring seasons, which are 
not dry months. In these months, the correlation was higher than 0.8 (p<0.001), and the 
simulation was better in summer, with correlation of 0.9. Thus, it was concluded that 
ORCHIDEE-GM best simulates the summer, autumn and spring phases of LAI. In winter, 
that is the dry season in that region, the model tends to overestimate LAI values.. Table 4 
shows the values of the statistical analyses of the simulated data versus actual data. It is 
possible to note that the lowest correlation (0.44) between actual and simulated data 
occurred during the dry season in winter. 

Importantly, ORCHIDEE-GM also simulates adequately the magnitude of values, including 
plant regrowth after cutting. In Figure 3 the plant growing cycles with the trajectories of LAI 
are presented, in which discontinuities are related to the cut events. 

 
Figure 3.  Leaf area index (LAI) simulated by ORCHIDEE-GM (in red) compared to actual data (in black). 

 

Table 4 . Statistical indices of LAI simulated by ORCHIDEE-GM and actual LAI data (Araujo, 2011). 

Data Correlation  RMSE 
(m2 m2) 

Index of agreement 
(IOA) Observation (n) 

2010-2011 0.76 1.79 0.76 32 
Summer 0.90 1.07 0.97 8 
Autumn 0.83 1.38 0.83 10 
Winter 0.44 3.04 0.20 7 
Spring 0.87 1.23 0.84 7 

Figure 4 shows the amounts of biomass of leaves (kg ha-1) simulated by ORCHIDEE-GM 
and compared with the actual leaf biomass were collected in the field. As the LAI, the model 
was able to reproduce faithfully the actual data, with overall correlation of 0.77 and 
concordance index of 0.79 (Table 5). Also like the LAI, the lowest correlation occurred in 
winter (0.73). However, the correlation between simulated and actual values of biomass was 
better than LAI. The best correlation, together with the lowest estimation error (RMSE), 
occurred in spring (correlation = 0.9, p<0.001). The concordance index shows that, both in 
spring and autumn, the simulated results are close to the actual data, with IOA=0.87. 
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Figure 4 . Leaf biomass (kg ha-1) simulated by ORCHIDEE-GM (in red) compared to the actual data (in black). 

 

Table 5  - Statistical indices calculated with leaf biomass simulated by ORCHIDEE-GM and actual leaf biomass. 

Data Correlation  RMSE 
(kg leaf DM ha -1) 

Index of agreement 
(IOA) Observations (n) 

2010-2011 0.77 987.08 0.79 32 
Summer 0.85 829.72 0.94 8 
Autumn 0.87 714.02 0.87 10 
Winter 0.73 1599.09 0.23 7 
Spring 0.90 617.9 0.87 7 

Figure 5 presents data of dry matter (kg ha-1) simulated by ORCHIDEE-GM and compared 
with actual observations. Although statistical analyses show high correlations, at all times of 
the year, there is overestimation of pattern. The model can reproduce regrowth and a large 
amount of dry matter in the rainy season as it happens with actual data, which explains the 
high correlation. However, the simulated values are higher than observed values. The 
RMSE, which is the error of the model, exceeds 3.000 kg ha-1 at all stages of the year, 
reaching a value of 11082.3 kg ha-1 in winter. As for LAI and leaf biomass, the model gives 
worse results in winter. 

The fact that the model error is high, explains the low concordance rates that were less than 
0.6 in all seasons. Table 6 presents the statistical analyses performed. 

 
Figure 5 . Dry matter (kg ha-1) simulated by ORCHIDEE-GM (in red) compared to the actual data (in black). 
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Table 6.  Statistical indices calculated with simulated dry biomass by ORCHIDEE-GM and actual dry biomass. 

Data Correlation  RMSE 
(kg ha -1) 

Index of agreement 
(IOA) Observations (n) 

2010-2011 0.86 3910.4 0.5 32 
Summer 0.88 4921.35 0.38 8 
Autumn 0.93 3672.6 0.5 10 
Winter 0.79 11082.3 0.1 7 
Spring 0.89 3612.47 0.40 7 

Figure 6 shows the data of specific leaf area (SLA), in g cm-2, simulated by ORCHIDEE-GM 
and actual data. In this case, the model does not simulate the variations of specific surface 
area at any stage of the year. ORCHIDEE-GM model cannot simulate such a broad variation 
in SLA. Statistical analyses indicate low correlations and high errors, in as Table 7.  

 
Figure 6 . Specific leaf area (SLA, g cm-2) simulated by ORCHIDEE-GM (in red) compared to the actual data (in 
black). 

 

Table 7  - Statistical indices calculated with dry biomass simulated by ORCHIDEE-GM and actual dry biomass. 

Data Correlation  RMSE 
(kg ha -1) 

Index of agreement 
(IOA) Observations (n) 

2010-2011 0.28 41.83 0.32 32 
Summer 0.51 33.01 0.98 8 
Autumn 0.13 35.9 0.36 10 
Winter 0.06 67.12 0.45 7 
Spring -0.11 20.15 0.23 7 

3) Third, simulations were run with modified values of soil parameters, after the data analysis 
and soil description from Araujo (2011) while the other inputs were kept as in the analysis 
reported above. We referred to a Yellow dystrophic Oxisol soil, which is usually more than 
two meters deep, with 72.5% of sand, 23.5% of clay and 4.0% of silt. Other soil data were 
used as described in Table 3. As in the second simulation, Specific Leaf Area (SLA) values 
obtained with ORCHIDEE-GM were weakly correlated with the actual data, in this simulation 
SLA parameter values were also changed (maximum SLA=226.67g cm-1, minimum 
SLA=83.25 g cm-1). 

Statistical analyses of the second and third simulations were first performed for the entire 
dataset, and then separated into summer (from 21/12 to 21/03), autumn (22/03 to 20/06), 
winter (21/06 to 21/09) and spring (22/09 to 20/12). 
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Table 2 . Cycles of sprouting and cutting days (based on data described in Araujo, 2011). 
Growth 
cycles Beginning End – Cutting day Days of cycle 

1 23 Feb. 2010 (JD: 54) 13 Apr. 2010 (JD: 103) 49 
2 13 Apr. 2010 (JD: 103) 01 Jun. 2010 (JD: 152) 49 
3 02 Jun. 2010 (JD: 153) 28 Jul. 2010 (JD: 209) 56 
4 28 Jul. 2010 (JD: 209) 21 Sep. 2010 (JD: 264) 55 
5 22 Sep. 2010 (JD: 265) 9 Nov. 2010 (JD: 313) 48 
6 10 Nov. 2010 (JD: 314) 22 Dec. 2010 (JD: 356) 42 
7 07 Jan. 2011 (JD: 7) 21 Feb. 2011 (JD: 52) 45 
8 22 Fev. 2011 (JD: 53) 11 Abr. 2011 (JD: 101) 48 

*JD = Julian Day 

Table 3 . Physical properties of the soil used in the second simulation (based on data described in Araujo 2011). 

Property 
Depth (cm)  

0-10 10-20 20-30 30-40 40-50 50-60 
Total density of clay (g cm-3) 1.30 1.39 1.44 1.48 1.54 1.56 
 
Upper limit of saturation at 0.0 Mpa (g kg-1) 
 

500 470 450 440 410 410 

Field capacity 
at 0.0 Mpa (g kg-1) at 0.01 Mpa (g kg-1) 
 

265 227 223 235 252 255 

Permanent wilting point at 1.5 Mpa (g kg-1) 156 133 137 154 164 171 

Figure 7 shows the comparison of actual LAI with the third simulation. In this case, an 
improvement was observed during the winter season only (Figure 8), and the correlation 
increased considerably, from 0.44 to 0.79, which also resulted in a higher overall correlation, 
rising to 0.79. Although the improvement was important, LAI data are still overestimated in 
winter. There was also a small improvement in the months of March and April, which is the 
result of the amount of water that the "new soil" model, represented by actual data, retained 
water. It is worth stressing that although both overall and winter correlations have increased, 
the RMSE also increased from 1.7 to 1.9. 

Table 9 shows the seasonal statistical analysis of the data. 

 
Figure 7 . Data from simulated leaf area index with the observed soil data (in green), simulated with the file global 
soil (in red) and real data (black). 

Table 8 . Statistical indices calculated simulated LAI by ORCHIDEE-GM and actual data. 
Variables Correlation and p -

value 
Correlation of Spearman 

and p-value 
Index of agreement 

(IOA) RMSE N 

LAI x 2ª simulation 
0.7571 

(p>0.0001)* 
0.7687 

(p>0.0001)* 0.7647 1.796 32 

LAI x LAI –3a 
simulation 

0.7924 
(p>0.0001)* 

0.7988 
(p>0.0001)* 0.7671 1.931 32 

* Significant at 0.05. 
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Table 9 . Seasonal statistical indices calculated with simulated LAI by ORCHIDEE-GM and actual data.. 
Data Correlation  RMSE m2/m2 Index of agreement (IOA)  N 

LAI 2a 
simulation 

3a 
simulation 2a simulation 3a simulation 2a simulation 3a simulation  

Summer  0.90 0.83 1.07 1.40 0.97 0.94 8 
Autumn  0.83 0.76 1.38 1.91 0.83 0.74 10 
Winter  0.44 0.79 3.04 2.52 0.20 0.30 7 
Spring  0.87 0.83 1.23 1.78 0.84 0.77 7 

 

 
Figure 8.  Comparison between the correlations of the simulations with ORCHIDEE-GM in four seasons. Blue and 
red bars correspond to the second and third simulations, respectively. 

Figure 9 shows the third simulation of dry matter (kg ha-1) performed with soil data of the 
study area compared to the second simulation, obtained with actual data. The overall 
correlation (Table 10) shows a higher correlation of the new simulation data, compared to the 
results of previous simulation. Although the seasonal correlations have not shown any 
improvement (Table 11), the average relative error (RMSE) decreased in winter (Figure 10), 
which made the overall correlation increased. Although this simulation error of winter was 
lower, yet the model still overestimates the total dry matter (Figure 9), especially in winter. 

 
Figure 9.  ORCHIDEE-GM simulated dry matter (kg ha-1) with both observed soil inputs (in green) and global soil 
inputs (in red), and actual data (black). 
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Table 10 . Statistical indices calculated with simulated dry matter by ORCHIDEE-GM and actual data. 

Variables Correlation and p -
value 

Correlation of  Spearman 
and p-value 

Index of agreement 
(IOA) 

RMSE 
(kg ha -1) n 

Actual DM x 2a 
simulation 

0.8713  
(p>0.0001) 

0.8541  
(p>0.0001) 0.49 4121.7 32 

Actual DM x 3a 
simulation 

0.8920  
(p>0.0001) 

0.8852  
(p>0.0001) 0.47 4443.5 32 

 

Table 11 – Seasonal indices calculated with simulated dry matter by ORCHIDEE-GM and actual data. 

Dry matter 
data 

Correlation  RMSE 
(m2 m-2) 

index of agreement indicator 
(IOA) N 

2a 
simulation 

3a 
simulation 

2a 
simulation 

3a 
simulation 

2a 
simulation 

3a 
simulation  

Summer  0.89 0.87 4886.3 5279.06 0.34 0.29 8 
Autumn  0.93 0.93 3805.14 4636.7 0.49 0.43 10 
Winter  0.79 0.66 4075.77 3192.8 0.10 0.13 7 
Spring  0.9 0.85 3616.37 4183.8 0.40 0.36 7 

 

 

Figure 10.  Comparison of mean relative error (RMSE) obtained with ORCHIDEE-GM simulations in four seasons. 
Blue and red bars correspond to the second and third simulations, respectively. 

Figure 11 shows the third simulation of dry matter (kg ha-1) performed with soil data of the 
study area compared to the second simulation. As occurred with the total dry matter, the 
model showed better results in winter and there was an increased correlation in the season. 
This improvement was also observed in the overall correlation (Table 12). Table 13 presents 
the seasonal statistical analyses. Figure 12 shows the seasonal correlations. 
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Figure 11.  ORCHIDEE-GM simulated leaf dry matter (kg ha-1) with both observed soil inputs (in green) and global 
soil inputs (in red), and actual data (black). 

 

Table 12. Statistical indices calculated with simulated leaf dry matter by ORCHIDEE-GM and actual data. 

Variables Correlation and p-
value 

Correlation of 
Spearman e 
and p-value 

Index of agreement 
(IOA) 

RMSE 
(kg ha -1) n 

Leaf dry matter x 2a 
simulation 

0.7758  
(p>0.0001)* 

0.8438  
(p>0.0001)* 0.79 987.08 32 

Leaf dry matter x 3a 
simulation 

0.7918  
(p>0.0001)* 

0.8621 
(p>0.0001)* 0.80 929.7 32 

 

Table 13. Seasonal statistical indices calculated with simulated leaf dry matter by ORCHIDEE-GM and actual 
data. 

Leaf dry matter 
data 

Correlation  RMSE 
(kg DM ha -1) Index of agreement (IOA) n 

2a 
simulation 

3a 
simulation 

2a 
simulation 

3a 
simulation 

2a 
simulation 

3a 
simulation  

Summer  0.85 0.78 829.72 942.8 0.94 0.93 8 
Autumn  0.87 0.83 714.02 817.10 0.87 0.83 10 
Winter  0.73 0.76 1599.09 1236.4 0.23 0.32 7 
Spring  0.90 0.89 617.9 673.3 0.87 0.86 7 
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Figure 12 . Comparison between the correlations of the simulations with ORCHIDEE-GM in four seasons. Blue 
and red bars correspond to the second and third simulations, respectively. 

Figure 13 shows simulation results of specific leaf area (2nd and 3rd simulations) compared to 
the simulation results obtained with actual data. Although this third simulation has shown 
better results, the simulation is still far from the actual data. Between the 2nd and 3rd 
simulation, that there was progress and the third simulation data are more compatible with 
actual data variations. Also, in winter, the simulation shows a decrease as well as in the 
actual data. However, simulation data still fail to reproduce the high variation that actual 
specific leaf area shows. 

 
Figure 13.  ORCHIDEE-GM simulated specific leaf areas (SLA, m2 kg-1) with both observed soil inputs (3rd 
simulation, in green) and global soil inputs (2nd simulation, in red), and actual data (black). 

 

Table 14. Statistical indices calculated with simulated specific leaf area by ORCHIDEE-GM and actual data. 

Variables Correlation and p-
value 

Correlation of Spearman 
and p-value 

Index of 
agreement (IOA) 

RMSE 
(g cm -

2) 
n 

SLA x before results 0.2838  
(p>0.1154) 

0.2721  
(p>0.1320) 0.32 41.83 32 

SLA -from the 
observation data 

0.4099  
(p>0.0198) 

0.2782  
(p>0.1231) 

0.49 48.54 32 
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Table 15.  Seasonal statistical indices calculated with simulated specific leaf area by ORCHIDEE-GM and actual 
data. 

SLA data 
Correlation  RMSE (g cm -2) Index of agreement (IOA)  

n 
2a simulation 3a simulation 2a simulation 3a simulation 2a simulation 3a simulation 

Summer  0.51 0.59 33.01 26.35 0.98 0.99 8 
Autumn  0.13 0.13 35.9 47.43 0.36 0.45 10 
Winter  0.06 0.26 67.12 74.4 0.45 0.46 7 
Spring  -0.11 -0.32 20.15 35.02 0.23 0.41 7 

 

Conclusions 

Advancements in tropical grassland modelling with two models - PaSim and ORCHIDEE-GM 
- have been presented. For PaSim, this activity opened to the introduction in its code of 
equations governing the photosynthesis of C4 plants. ORCHIDEE-GM was tested in Brazil 
for the first time, which consisted in a complete diagnostic analysis. The model showed good 
performances against actual data. The best results were obtained with leaf outputs (leaf area 
index and leaf dry matter). The simulation of total dry matter showed an overestimation of 
this variable, especially in winter. The results also showed that the model cannot simulate 
sudden variations in specific leaf area. 

The partnership between Brazilian and French institutions has favoured the generation of a 
flow of ideas, allowing for advancements with the use of PaSim and ORCHIDEE-GM for 
areas of Brazilian beef production, complying with AnimalChange objectives.  
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6. Calibration and validation of crop models SWB-
SCI and STICS in South Africa 

The crop models SWB-SCI (Annandale et al., 1999) and STICS (Brisson et al., 2003) were 
calibrated and validated for maize (Zea mays L.) (PAN6977) and weeping lovegrass 
(Eragrostis curvula (Schrad.) Nees) using data collected from controlled experimental plots. 
The experimental plots are located at the East Rand Water Care Works (ERWAT), 
Johannesburg, Gauteng, South Africa. The study site is situated at an elevation of 1577 m 
above sea level, latitude 26° 01’ 01” S and longitude of 28° 16’ 55” E. The total annual rainfall 
of the area ranged between 405 mm in 2006-2007 and 710 mm in 2007-2008, mainly during 
the months of October to March. The soil of the experimental site is a clay loam, Hutton soil 
form (Soil Classification Working Group, 1991) having an average clay content of 38%, and 
pH (H2O) of 5.73. 

The accuracy of model simulations was assessed based on a set of performance measures 
(Table 1), using the reliability criteria proposed by De Jager (1994). 

Table 1.  Model performance measures and criteria for reliability (after De Jager, 1994). 

Performance measure Unit Value range and purpose Reliability 
criteria 

Coefficient of determination (r2) of the 

linear regression estimates versus 
measurements 

 

 

dimensionless 
0 (absence of fit) to 1 (perfect fit): the 
closer values are to 1, the better the 
model 

> 0.8 

Willmott (1982) index of agreement (d) dimensionless 

0 (absence of agreement) to 1 (perfect 
agreement): the closer values are to 1, 
the better the model 

 

 

> 0.8 

Root mean square error (RMSE) unit of the 
variable 

0 (optimum) to positive infinity: the 
smaller RMSE, the better the model 
performance 

 

 

- 

Mean absolute error over the mean of 
the measured values (MAE(%) % 

0 (optimum) to positive infinity: the 
smaller MAE(%), the better the model 
performance 

< 20 

SWB-SCI crop model 

Model calibration 

Model parameters such as specific leaf area, leaf stem partitioning factor, thermal time 
requirements, maximum root depth, maximum crop height, dry matter water ratio, radiation 
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use efficiency, extinction coefficient, stem to grain translocation, top dry matter at 
emergence, harvestable dry matter, and maximum grain N concentration for maize (Zea 
mays L.) (Table 1) and a planted perennial pasture, the weeping lovegrass (Eragrostis 
curvula (Schrad.) Nees) (Table 2), were determined from field data. All remaining parameters 
were set according to literature values. 

Table 1.  Model parameters for medium season maize cultivar (PAN6966). 
Parameter  Unit  Value Source  

Canopy radiation 
extinction coefficient dimensionless 0.57 Field measurement 

Vapour pressure deficit 
corrected dry matter 

water ratio 
Pa 9.4 Field measurement 

Radiation conversion 
efficiency Kg MJ-1 0.00220 Field measurement 

Specific leaf area (SLA) m2 kg-1 15 Field measurement 
Base temperature (oC) 10 Bunting (1976) 

Temperature for optimum 
growth (oC) 25 

Keeling and Greaves 
(1990), Shaw (1983), 

McMaster and Wilhelm, 
(1997), Kenny and 

Harrison (1992) 
Cut off Temp. (oC) 30 Hensley et al. (1994) 

Thermal time requirement 
for emergence degree days 50 Field measurement 

Thermal time at end of 
vegetative stage  degree days 1000 Field measurement 

Thermal time requirement 
for maturity 

degree days 1700 Field measurement 

Thermal time for 
transition period  degree days 10 Field measurement 

Leaf senescence degree days 1300 Field measurement 
Maximum crop height m 3.20 Field measurement 
Maximum root depth m 1.60 Field measurement 
Fraction of total dry 

matter translocated to 
heads 

dimensionless 0.05 Hensley et al. (1994) 

Leaf water potential at 
maximum transpiration  kPa -2000 Hensley et al. (1994) 

Maximum transpiration mm d-1 9 Hensley et al. (1994) 
Leaf stem partitioning m2 kg-1 0.8 Hensley et al. (1994) 

Total dry matter at 
emergence kg m-2 0.0019 Field measurement 

Fraction of total dry 
matter partitioned to roots dimensionless 0.2 Hensley et al. (1994) 

Root growth rate m2 kg-1 8 Hensley et al. (1994) 
Stress index dimensionless 0.95 Hensley et al. (1994) 

 

 
 
 
 
 
 
Table 2.  Crop parameters for weeping lovegrass (Eragrostis curvula (Schrad.) Nees). 

Parameter  Unit  Value Source  
Canopy radiation extinction coefficient dimensionless 0.90 Field measurement 

Vapour pressure deficit corrected dry matter 
water ratio Pa 4.0 Field measurement 

Radiation conversion efficiency Kg MJ-1 0.00150 Field measurement 
Specific leaf area (SLA) m2 kg-1 8.00 Field measurement 

Base temperature (oC) 10 Cox et al. (1988), 
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Dalrymple (1976) 
Temperature for optimum growth (oC) 20 Barnard et al.(1998) 

Cut off Temp. (oC) 30 Barnard et al.(1998) 
Thermal time requirement for emergence degree days 0 Established  
Thermal time at end of vegetative stage  degree days 700  Field measurement 
Thermal time requirement for maturity degree days 1500 Field measurement 

Thermal time for transition period  degree days 10 Field measurement 
Barnard et al. (1998) 

eaf senescence degree days 700 Field measurement 
Maximum crop height m 0.3 Field measurement 

Maximum root depth m 1.4 Field measurement 
Barnard et al. (1998) 

Fraction of total dry matter translocated to 
heads dimensionless 0.01 Barnard et al. (1998) 

Leaf water potential at maximum 
transpiration  kPa -1500 Barnard et al. (1998) 

Maximum transpiration mm d-1 9 Barnard et al. (1998) 
Leaf stem partitioning m2 kg-1 0.1 Field measurement 

Total dry matter at emergence kg m-2 0.05 Field measurement 
Fraction of total dry matter partitioned to 

roots dimensionless 0.05 Barnard et al.(1998) 

Root growth rate m2 kg-1 4 Barnard et al. (1998) 
Stress index dimensionless 0.95 Barnard et al. (1998) 

NB. The grass was cut just at flowering stage and the model was programmed to start initialise thermal time at zero after each 
cut because the crop is perennial. 

A dataset containing field measurements of total aboveground biomass (t ha-1) and leaf area 
index (m2 m-2) dynamics as well as grain yield (t ha-1) were used to test the success of model 
calibration. The accuracy of model simulations was assessed based on a set of performance 
measures (Table 3), using the reliability criteria proposed by De Jager (1994). 

Table 3.  Model performance measures and criteria for reliability (after De Jager, 1994). 

Performance measure Unit Value range and purpose Reliability 
criteria 

Coefficient of determination (r2) of the 
linear regression estimates versus 
measurements 

dimensionless 0 (absence of fit) to 1 (perfect fit): the 
closer values are to 1, the better the model > 0.8 

Willmott (1982) index of agreement (d) dimensionless 

 
0 (absence of agreement) to 1 (perfect 
agreement): the closer values are to 1, the 
better the model 
 

> 0.8 

Root mean square error (RMSE) unit of the 
variable 

0 (optimum) to positive infinity: the smaller 
RMSE, the better the model performance - 

 
Mean absolute error over the mean of the 
measured values (MAE(%) 

% 

 
0 (optimum) to positive infinity: the smaller 
MAE(%), the better the model 
performance 

< 20 

Generally, the model was calibrated successfully for both maize and weeping lovegrass 
(Figure 1), because the performance measures were all within the ranges prescribed by De 
Jager et al. (1994) (Table 4). 
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Figure 1.  Simulated (solid lines) and measured values (symbols with standard deviation) for maize aboveground 
biomass (TDM) and grain yield (HDM) (a), maize leaf area index (b), weeping lovegrass hay yield (c), and 
weeping lovegrass leaf area index (d). 

Table 4.  Performance measures of the SWB-SCI model calibration simulations for maize and weeping lovegrass 
during the 2004/05 growing season. 

Variable n d RMSE MAE (%) r 2 

Maize 

LAI 10 0.94 0.82 7.79 0.98 

Aboveground biomass 10 0.98 2.18 7.40 0.99 

Grain 6 0.88 1.72 9.72 0.95 

 

Weeping lovegrass 

LAI 13 0.98 0.34 14.24 0.99 

Aboveground biomass 13 0.92 0.89 15.81 0.97 

 

Model corroboration 

Model corroboration was conducted using variables from independent data sets collected 
during the 2004-2005 to 2007-2008 growing seasons for maize and weeping lovegrass. The 
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variables used to evaluate the accuracy of the model were LAI, aboveground biomass and 
grain (agronomic crops) yield. 

Maize 

Generally, the evaluation of the model against three-year combined independent data was 
more accurate for irrigated than dryland maize (Table 5). Under dryland maize cropping 
system, both aboveground biomass production and leaf area index were slightly 
overestimated for the first and last years (Figure 2). Grain yield was, however, estimated with 
acceptable accuracy. Nonetheless, the performance metrics for both aboveground biomass 
and grain yield were within acceptable accuracy ranges, with the exception of MAE for leaf 
area index, which was higher by 9% above the acceptable limit (Table 5). The model 
predicted irrigated maize aboveground biomass and grain yield with greater accuracy (Figs. 
3; Table 5). 

Table 5.  Performance measures from simulations with SWB-SCI after calibration for maize and weeping 
lovegrass using combined data collected during the 2004-2005 to 2007-2008 growing seasons. 

Variables n d RMSE MAE (%) r 2 

Dryland maize well fertilized treatment  

LAI 11 0.80  0.38 29 0.98 

Aboveground biomass 16 0.87  2.37 20 0.99 

Grain 10 0.87 1.10 20 0.91 
 

Irrigated maize well fertilized treatment  

LAI 23 0.94    0.71 18 0.96 

Aboveground biomass 29 0.94   2.69 15 0.97 

Grain 18 0.92   1.59 16 0.97 
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Figure 2.  Simulated (solid lines) and measure values (symbols) of leaf area index (a) and aboveground biomass 
(blue line), grain yield (green line) (b) for maize planted under dryland with optimal fertilization during the 2004-
2005 to 2007-2008 growing seasons. 
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Figure 3.  Simulated (solid lines) and measured values (symbols) of leaf area index (a) and aboveground biomass 
(blue line), grain yield (green line) (b) for irrigated maize planted under optimal fertilization during the 2004/05 to 
2007/08 growing seasons. 

Weeping lovegrass 

There was poor agreement between model prediction and measured values for weeping 
lovegrass high yield and LAI and all performance measures were far outside the acceptable 
ranges (Table 6, Figure 4). However, updating the soil water content in the model, using field 
measurements after each hay cut, improved model performance (Table 6, Figure 5). 

Table 6.  Performance measures from simulations with SWB-SCI after calibration for weeping lovegrass without 
and with updating soil water content after each hay cut using combined data collected during the 2004-2005 to 
2007-2008 growing seasons. 

Variables n d RMSE MAE (%) r 2 

Weeping lovegrass  

Without updating soil water content  

LAI 102 0.74 0.83 38 0.85 

Aboveground biomass 102 0.51 1.97 37 0.74 

 

Soil water content updated after every hay cut  

LAI 102 0.92 0.43 22 0.95 

Aboveground biomass 102 0.84 1.13 22 0.91 
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Figure 4.  Simulated (solid lines) and measured values (symbols with standard deviation) of weeping lovegrass 
leaf area index (a) and aboveground biomass (b) during the 2004-2005 to 2007-2008 growing seasons (without 
updating soil water). 
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Figure 5.  Simulated (solid lines) and measured values (symbols with standard deviation) of weeping lovegrass 
leaf area index (a) and aboveground biomass (b) during the 2004/05 to 2007/08 growing seasons (soil water 
content updated after every hay cut). 

 

STICS crop model 

Model calibration 

STICS was run with a similar set of crop parameters as used to parameterize SWB-SCI. 
These parameters include: optimum temperature, minimum and maximum temperatures 
below which growth and development stop, thermal time requirements at various growth 
stages, and maximum crop height. Measured parameters required by STICS but not used by 
SWB-SCI or used as a seasonal average by SWB-SCI are presented in Table 7. Other 
parameters which were not measured were taken from the default values in STICS for the 
maize (cultivar DK250) and weeping lovegrass (cultivar Grass). 

Table 7.  Measured crop parameters used in STICS for medium season maize cultivar (PAN6966) and weeping 
love grass. 

Parameter Unit 
Value Source  

Maize Weeping 
lovegrass  

Cumulative thermal time 

between the stages LEV 

(emergence) and AMF 

(maximum acceleration 

of leaf growth, end of 

juvenile phase) 

degree days 200 116 Measured 

Cumulative thermal time 

between the stages AMF 

(maximum acceleration 

of leaf growth, end of 

juvenile phase) and LAX 

(maximum leaf area 
index, end of leaf growth) 

Degree days 700 
6000 

(default) Measured (maize) 

Cumulative thermal time 

between the stages LEV 

(emergence) and DRP 

(onset of filling of 
harvested organs) 

degree days 1150 1000 
(default) Measured 
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Cumulative thermal time 

between FLO (flowering) 
and DRP (onset of filling 
of harvested organs) 

degree days 150 100 Measured 

Maximum grain weight 

(at 0% of water 

content) 
g 0.313 0.01 Measured 

Maximum SLA (specific 

leaf area) of green 

leaves 

cm2 g-1 250 70 Measured 

Minimum SLA (specific 

leaf area) of green 

leaves 

cm2 g-1 80 50 Measured  

STICS was calibrated using data collected from an irrigated inorganic fertilizer treatment for 
maize and dryland for weeping love grass. The main reason why we did not use the organic 
fertilizer treatments, which were used to calibrate and validate SWB-SCI, was to avoid any 
confounding errors that could occur due to improper parameterization of the organic material 
in STICS that could affect the availability of N for crop uptake. 

A dataset containing field measurements of total aboveground biomass (t ha-1) and leaf area 
index (m2 m-2) dynamics as well as grain yield (t ha-1) were used to test the success of model 
calibration. 

Generally, the model was calibrated successfully for weeping love grass aboveground 
biomass and LAI (Figure 6a, b), because the performance measures were all within the 
ranges prescribed by De Jager et al. (1994) (Table 8). 
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Figure 6. Simulated (solid lines) and measured values (symbols with standard deviation) for weeping lovegrass 
hay yield (a), and weeping lovegrass leaf area index (b).  

 

Table 8.  Performance measures from simulations obtained after STICS calibration for weeping lovegrass during 
the 2004-2005 growing season. 

Variable n d RMSE MAE (%) r 2 

LAI 8 0.96 0.69 10.23 0.986 

Aboveground biomass 8 0.82 1.51 35.06 0.928 

Unlike weeping lovegrass, model calibration for maize was not satisfactory especially for LAI 
and grain yield (Figure 7a, b) because all the statistical parameters were outside the ranges 
prescribed by De Jager et al. (1994) (Table 9). The coefficient of correlation for aboveground 
biomass was, however, surprisingly high (93%). The main cause for the low coefficient of 
determination and relatively higher mean absolute error of the aboveground biomass 
production was mainly due to model underestimation during the vegetative till the beginning of 
the flowering stages. Similarly, the poor coefficient of correlation and determination as well as 
high mean absolute errors of the LAI were mainly due to model underestimation during the 
vegetative until beginning of flowering as well as model overestimation of LAI during the late 
flowering and grain filling stages. There is, however, a potential to improve the accuracy 
through parameter optimization. 
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Figure 7.  Simulated (solid lines) and measured values (symbols with standard deviation) for maize aboveground 
biomass (TDM) and grain yield (a) and maize leaf area index (b). 
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Table 9 . Performance measures obtained from simulations with STICS after calibration for maize during the 
2004-2005 growing season. 

Variable  n d RMSE MAE (%) r2 

LAI 10 0.15 3.61 32.51 0.734 

Aboveground biomass 10 0.68 6.81 24.96 0.943 

Grain 6 0.12 3.15 0.21 0.65 

 

Model corroboration 

Model corroboration was conducted using variables from independent data sets collected 
during the 2005-2006 for weeping lovegrass and 2006-2007 growing season for maize. The 
variables used to evaluate the accuracy of the model were LAI, aboveground biomass and 
grain (agronomic crops) yield. Due to few measurement points, both aboveground biomass 
and grain yield for maize were combined for statistical evaluation of model accuracy. 

Maize 

The model predicted both aboveground biomass and grain yield with acceptable accuracy 
(Figure 8) for all the statistical parameters were within the prescribed ranges of accuracy 
(Table 10). This is despite the model’s poor performance during calibration. Although it was 
not possible to conduct statistical evaluation of LAI because of very few measurement points 
(2), those two measurements were quite close to the model predicted values (Figure 8b). 
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Figure 8.  Simulated (solid lines) and measured values (symbols) of aboveground biomass (blue line) and grain 
yield (red line) (a) and leaf area index (b) for maize. 
 

Table 10.  Performance measures of STICS corroboration for dryland well fertilized maize (aboveground biomass 
and grain yield were combined together). 

Variables n d RMSE MAE (%) r 2 

Aboveground biomass and grain 7 0.82  4.53 16.35 0.963 

Weeping lovegrass 

The model predicted weeping lovegrass aboveground biomass with high accuracy (Figure 9) 
having all the statistical parameters within the prescribed accuracy ranges (Table 11). There 
was, however, poor agreement between model prediction and measured values for weeping 
lovegrass leaf area index and all performance measures were far outside the acceptable 
ranges (Table 11, Figure 9b).  The model overestimated LAI during most of the growing 
season. 
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Figure 11.  Simulated (solid lines) and measured values (symbols with standard deviation) of weeping lovegrass 
aboveground biomass (a) and leaf area index (b). 

 

Table 9.  Performance measures of STICS corroboration for weeping lovegrass. 
Variables n d RMSE MAE (%) r 2 

Aboveground biomass 7 0.85 1.05 20.10 0.99 

LAI 7 -0.12 1.21 392.06 0.78 
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Conclusions 

Both SWB-SCI and STICS were calibrated and validated for maize and weeping lovegrass 
under South African climatic conditions. The calibration was successful for both models, 
except for STICS whose simulation for maize was not entirely satisfactory. Both models were 
tested against independent datasets and predicted the selected variables of interest for 
maize with acceptable accuracy. The predictive capability of both models for weeping 
lovegrass production was, however, relatively unsatisfactory, but not a complete failure. 
Therefore, both models can be used as reasoning support tools with caution especially when 
simulating perennial pastures in the tropics. It is also important to be cautious when using 
these models to simulate row crops such as maize whose biomass production of a specific 
cultivar per unit area could change due to a change in planting density or raw spacing, which 
is not accommodated in both models. 
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7. G-Range model: summary of activities 

G-Range is a global model that simulates generalized changes in rangelands through time, 
created with support from the International Livestock Research Institute.  Spatial data and a 
set of parameters that control plant growth and other ecological attributes in landscape units 
combine with computer code to represent ecological process such as soil nutrient and water 
dynamics, vegetation growth, fire, and wild and domestic animal offtake. The model is 
spatial, with areas of the world divided into square cells.  Those cells that are rangelands 
have ecosystem dynamics simulated. A graphical user interface allows users to explore 
model output. 
 
The G-Range application captures main primary production and its dynamics. It is of 
moderate complexity, and of a nature that a user may learn its use in a week or less.  A 
monthly time step is used to simulate herbaceous plants, shrubs, and trees, and those plant 
types can change in their covers within each landscape cell through simulated time.  The 
model represents all rangelands within a single computer process, which simplifies the 
logistics involved in analyses.  Simulations may span a few to thousands of years.  
 
Our efforts this year have been to establish a robust parameter set based on information 
from the literature, published spatial surfaces, and our experience. As part of this, we 
conducted a full sensitivity analysis. 
 
To guide creation of a baseline simulation we required some data that would be deemed 
‘truth’. These data were used to compare to output from G-Range.  The intent of these 
comparisons was not to yield a final parameter set that would represent well all areas within 
15 biomes forever after.  Instead, it was to allow adjustment of parameters to change G-
Range output from essentially uncontrolled to something more in agreement with reality.  In-
so-far as that was the goal, only cursory effort was put into determining the validity of what is 
here deemed ‘truth’; we proceeded knowing that comparing results to published or vetted 
data would be helpful. That includes simulated output from the Century model. That model 
has been vetted many times and gridded summaries of simulations are suitable for 
comparison with G-Range output. 
 
We adopted a spatially explicit means of comparing global responses from G-Range to 
various responses. Simulations started in 1957 and continued for 50 years, to 2006.  Where 
year-specific data were available, data from 2006 were used.  For some spatial data, specific 
years were not available, and so recent general responses were used. In this baseline 
simulation, fire was not incorporated and fertilization has not been included. More than 120 
simulations were conducted while parameters were adjusted and the fit of the model output 
was improved.  During that effort we began to learn about the ways in which parameters of 
G-Range influence model output. Most often responses were in the direction expected based 
on the processes the parameter informs, but sometimes the results were surprising. A subset 
of those surprises led to modify the G-Range code. Ultimately, modifications seemed to be 
no longer improving the fit of the model, and the parameter set was judged suitable for the 
subsequent sensitivity analyses. 

 

Approach 

Annual net primary production (NPP) is a key ecosystem process to be validated in 
ecosystem models, as it comprises annual inputs of energy to ecosystems via 
photosynthesis. Aboveground production (ANPP) is, moreover, an estimate of forage 
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production in rangelands, while belowground production (BNPP) significantly regulates soil C 
levels. Field production data on ANPP and BNPP (in g m-2) were compiled from Oak Ridge 
National Laboratory database (Scurlock and Olson 2002) and the Long-Term Ecosystem 
Research network (Abrams et al., 1986; Briggs et al., 1989, Knapp et al., 1998; Huenneke et 
al., 2002, Heisler and Knapp, 2008; Muldavin et al., 2008). A total of 28 independent studies 
in 25 sites represented global variation in biomes that include rangelands, varying widely in 
mean annual precipitation (200 to 1300 mm) and temperature (-4 to 29 °C). 

ANPP was calculated as peak standing crop, a measure with low uncertainty (Lauenroth et 
al., 2006). BNPP was calculated as the mean of high (likely overestimates) and low (likely 
underestimates) of measures of root biomass production in each site. Minirhizotron, stable 
isotope, and root in growth estimates were utilized where available (Milchunas, 2009); 
otherwise maximum and maximum-minimum root biomass were used, respectively, as high 
and low estimates of root production with known directional biases and low uncertainty 
(Lauenroth et al., 2006). G-Range parameters divided among biomes as defined in the 
SAGE map (Ramankutty and Foley, 1999) were tuned to improve mean biome-level absolute 
difference and root mean squared error (RMSE) between modelled and observed ANPP and 
BNPP. 

 

Results 

Beginning from the baseline parameter set for the beta version of G-Range, sensitivity 
analyses and parameter adjustment realized substantial improvement in model fit. Two 
parameter sets representing this improvement (Figure 1) are presented here: ‘Set 1’ was 
developed using site-scale analyses, by tuning several parameters related to biomass 
production and allocation above- and belowground; and ‘Set 2’ was developed from global 
analyses, applied here at site scales. 
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Figure 1.  G-Range model fit assessed on the basis of field aboveground (ANPP) and belowground (BNPP) 
production estimates, among sites and biomes for 3 parameterizations (upper panels), and among sites within 
biomes for parameter ‘Set 1’ (lower panels). 

Mean values among sites in all biomes for absolute difference and root mean squared error 
(RMSE) between modelled and observed ANPP improved, respectively, from -156.2 to -18.8, 
and from 352.0 to 282.6 using parameter Set 2. Absolute difference and RMSE for BNPP 
improved from -390.4 to -203.9, and from 756.6 to 710.7 using Set 1. Linear regression R2 
values among sites in all biomes increased from 0.026 for the baseline parameterization to 
0.274 (Set 1) and 0.204 (Set 2) for ANPP (Figure 1). Typical rangeland biomes exhibited 
better model fit, including ‘Grassland/Steppe’ (minimum absolute difference for Set 1 or Set 2 
= -80.4 for ANPP, -123.1 for BNPP), ‘Savanna’ (-219.5, 130.1), and ‘Open Shrubland’ (10.1, 
11.2), i.e., semi-desert, as did ‘Tropical Evergreen Forest’ (-130.1, 17.4), than the somewhat 
less extensive rangeland biomes ‘Temperate Evergreen Forest’ (-156.6, -1441.6) and ‘Mixed 
Evergreen/Deciduous Forest’ (-687.0, -718.6). 
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