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1. Introduction 

Grassland ecosystems are highly complex and dynamic. The many interactions between 
herbivores, vegetation, soil and the atmosphere, and the role of management practices make 
our ability to experiment on these systems extraordinarily limited. Thus, testing scenarios of 
climate change using ecosystem models which simulate physical, chemical, and biological 
processes in great detail is an imperative. The models that we consider in AnimalChange are 
deterministic, that is, running the model with the same inputs always produces the same 
outputs. Using models allows indeed a greater insight and understanding of these processes 
and interactions than it can be assumed by just considering experimental evidences. They 
are therefore widely used in climate change impact projections, especially for long-term 
analyses (Johnson et al., 2008). Such projections need to account for the uncertainty 
cascade resulting from multiple sources including climate scenarios, the impact model, local 
climate, vegetation and soil conditions (Olesen et al., 2007; Soussana et al., 2010) and to 
consider farming practices adaptation (Tubiello et al., 2007). 

A major problem with the use of complex ecological models is incomplete knowledge of input 
variables as well as model parameters. This means that model estimates are highly 
dependent on parameter settings, leading to a large uncertainty due to uncertainties in 
parameter values, driving variables (climate, soil and management) and model structure 
(Gabrielle et al., 2006). There is thus a need to set (calibrate) parameter values to obtain 
good agreement between model outputs and observations (Wallach et al., 2011). At the 
same time, uncertainty associated with model outputs needs to be quantified and 
documented (van Oijen and Thomson, 2010). A two-step methodology has become 
increasingly used to (try to) figure out the uncertainties associated with model parameters 
(for instance, the Good Practice Guidance, Methodological Tier 2, of the Intergovernmental 
Panel on Climate Change, through http://www.ipcc-nggip.iges.or.jp). First, uncertainties are 
quantified by expressing them as probability distribution functions (PDFs). Then, 
representative samples are taken from the PDFs to propagate parameter uncertainty forward 
through the model calculations. This is an exercise that applies the Bayes theorem (Bayes, 
1763) to incorporate as much information as possible into PDFs. The principles of Bayesian 
predictive inference were set out in Aitchison and Dunsmore (1975). The reader may refer to 
Kennedy and O’Hagan (2001), van Oijen et al. (2005), and Patenaude et al. (2008) for more 
details about Bayesian calibration. 

This choice of Bayesian calibration comes from the fact that it applies to models of any type 
or size and combines model parameterization and uncertainty analysis. The main 
characteristic of the Bayesian approach is that it quantifies model inputs and outputs in the 
form of probability distributions, and applies the rules of probability theory to update the 
distributions when new data are obtained (Sivia, 1996). This approach prevents the 
generation of uncertainty estimates that are unrealistically high, or even unusable in practice, 
by reducing uncertainties where possible (e.g. limiting calibration to a set of most influential 
parameters for which prior information about their variability is available), but also by 
combining direct and indirect information when estimating uncertainties. PDFs are initially the 
expression of current imprecise knowledge about model parameter values, and this prior 
probability is then updated with the measured observations into posterior probability 
distribution using the Bayes’ theorem (Makowski et al., 2006; Gallagher and Doherty, 2007). 
In this way, Bayes’ theorem is valuable because it tells us how our uncertainty about the 
parameters decreases because of that information. Useful information could be 
measurements of any key output variables of interest. The method therefore not only 
propagates uncertainty in input variables and parameters to model outputs, but also uses 
data on output variables to reduce the uncertainty in inputs and parameters. Bayesian 
calibration yields a posterior (calibrated) distribution for the parameters, which can be 
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summarized in the form of a maximum likelihood vector and covariance matrix. The 
uncertainty of the parameters can be quantified by running the model with different 
parameter settings, sampled from the posterior distribution. The posterior parameter 
distribution is approximated in the form of a representative sample of parameter values. This 
is generally achieved by means of Markov Chain Monte Carlo simulation, which is suitable 
for process-based models because of its simplicity and because it does not require advanced 
knowledge of the shape of the posterior distribution (van Oijen et al., 2005). 

 

2. Uncertainties in models 

The widespread application of impact models is accompanied by a widespread concern 
about quantifying the uncertainties prevailing in their use. The following is one way of 
classifying the various sources of uncertainty. 
 

1. PARAMETER UNCERTAINTY  The parameters of a model are the constants of its 
equations. They are generally partly unknown inputs. Generally, they specify features 
of a particular application context, but they may also be more global parameters, 
assumed to have a common value over a range of contexts or even in all contexts. In 
general, model estimates are highly affected by the uncertainty in parameter values 
and additional uncertainty is added by the simultaneous occurrence of climate 
changes and extreme events. 

2. MODEL INADEQUACY  Even if there is no parameter uncertainty, so that we know 
the true values of all the inputs required to make a particular prediction of the process 
being modelled, the predicted value will not equal the true value of the process. This 
discrepancy is model inadequacy that is the difference between the true mean value 
of the real world process and the model output at the true values of the inputs. This 
means that there are deficiencies in the model structure in terms physiological and 
biochemical mechanisms. 

3. OBSERVATION ERROR  In tackling the calibration problem, actual observations are 
used. The possibility of observation errors adds further uncertainty, although in 
practice it may not be feasible to separate it. 

4. CODE UNCERTAINTY The output of a computer code, given any particular 
configuration of inputs, is in practice not known until we actually run it with those 
inputs. The output is not really unknown because it is a known function of the inputs. 
So it is because there is a mathematical model which defines that function. 
Nevertheless, the relationship is so complex that it needs to be implemented in a 
computer code, and it is not realistic to say that the output is known for given inputs 
before the code is actually run and the output is seen. It may not be practical to run 
the model to observe the output for every input configuration of interest. Therefore, 
uncertainty about model output needs to be acknowledged. 

5. RESIDUAL VARIABILITY  The model is supposed to predict the value of some real 
processes under conditions specified by the inputs. In practice, the modelled process 
may not always take the same value if those conditions are repeated. This may 
happen when the process is inherently unpredictable and stochastic or where the 
model lacks detail to discriminate between conditions which actually lead to different 
process values. 

6. PARAMETRIC VARIABILITY  It is often desired to use the model to predict the 
process when some of the conditions specified in the inputs are uncontrolled and 
unspecified. Here, the inputs require more detail than we desire or are able to use. By 
leaving some of the input parameters unspecified (i.e. set to a default value), the 
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predicted process value acquires an extra uncertainty, which is called parametric 
uncertainty. 

The goal of this report is focus attention on solutions designed to reduce the first type of 
uncertainty. 

3. Model calibration and uncertainty analysis 

The objective of uncertainty analysis is to study the distribution of the model output that is 
induced by probability distributions on inputs. The input parameter distributions may be 
formulations of parameter uncertainty, that is, for parameters whose values are unknown or 
left unspecified. The simplest approach to uncertainty analysis is a Monte Carlo solution in 
which configurations of inputs are drawn at random from their distribution. The model is then 
run for each sample input configuration and the resulting set of outputs is a random sample 
from the output distribution to be studied (Helton, 1993 for a review). 

To improve the model results, a method is needed to i) quantify how uncertainty about inputs 
and model structure causes output uncertainty; ii) efficiently use input and output data to 
reduce uncertainties. The final topic of our survey is calibration. The conventional way of 
estimating unknown parameters is by an ad hoc search for the best-fitting values. Some 
account is thereby taken of observation errors, residual variation and model inadequacy, but 
only implicitly through the measure of the discrepancy in fits. This measure is not generally 
developed by modelling these error terms in any explicit way and is usually entirely heuristic. 
Also, since the estimated values are then treated as if they were known, the subsequent 
predictions do not take into account the remaining parameter uncertainty. In contrast, 
effectively Bayesian estimation methods do allow fully for parameter uncertainty (e.g. 
Romanowicz et al., 1994). Bayesian calibration applies to models of any type and combines 
model parameterization and uncertainty analysis. Basically, an initial Monte Carlo sample is 
drawn from what amounts to the prior distribution of the unknown parameters and is then 
weighed by a likelihood term. Then, model predictions can be made using all the sample 
parameter configurations, and the result is a weighed sample from the posterior distribution. 

A Bayesian approach calibrates a model by using observations from the real process. 
Bayesian analyses of the data used to parameterize the model produce precisely the 
description of input uncertainty that is needed for an uncertainty analysis. Thus, Bayesian 
calibration is naturally followed by prediction and uncertainty analysis of the process. The 
posterior summaries take into account for all remaining sources of uncertainty. The source 
code of the model is basically treated as a black box, and the methods described in this 
paper are applicable to source codes of arbitrary complexity. The problem of selection of 
calibration parameters might be dealt with by calibrating all parameters rather than a few 
selected ones. Non-influential parameters can be handled because the posterior distribution 
of a totally irrelevant parameter will be the same as the prior distribution. However, with most 
Monte Carlo methods for Bayesian analysis, the computational burden hardly grows by the 
addition of irrelevant parameters. 

In particular, complex models with a large number of parameters may make technically 
unfeasible to simultaneously calibrate all of them. It can also be shown that this is logically 
inconsistent because of the lack of resolution of certain parameters. For instance, cell 
processes may be tied to model behavior through highly nonlinear functions, the respective 
parameters may be unobservable and the valid values of them may fall within a very narrow 
range that is hard to capture. Most of these parameters can then be assumed to be fixed and 
identical for all model realizations. In addition, there are other parameters that are more 
suitable to be fitted to the experimental data across a range of conditions. Hence, at least as 
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a first step, a set of parameters can be selected with respect to the availability of prior 
information to support calibration and their relevance for the output variables. In this case, 
the application of a sensitivity analysis method is recommended to screen out insignificant 
parameters and to identify the most relevant parameters for a given model output. This 
becomes imperative with complex ecological models with large parameter sets and high 
temporal resolution, which need a parsimonious screening method to identify the most 
important parameters in a specific context. The Morris method (Morris, 1991) of sensitivity 
analysis, changing parameters “one-at-a-time”, is considered the best way to reduce 
computational costs when the number of input parameters is high (several tens or higher) 
and/or the model runs are computationally expensive. We do not deal explicitly with 
sensitivity analysis in this report: appropriate techniques are outlined, for instance in Saltelli 
et al. (2004) and Confalonieri et al. (2010). 

 

4. Bayesian calibration 

Bayesian calibration operates on a single model, whose structure is assumed to be correct, 
but whose parameter values are not exactly known. The first step in Bayesian calibration is 
expressing initial “prior” uncertainty about the parameter values in the form of a joint 
probability density function (PDF), symbolized P(θ). In the absence of specific information, 
bounded normal or uniform distribution are common choices for P(θ). Bayesian calibration 
uses data on model outputs to update the PDF for the parameters. This is done by applying 
Bayes’ theorem: P(θ|D)=P(θ)·P(D|θ)/P(D), where P(θ|D) is the posterior distribution for ϑ 
given the data D, P(D|θ) is the likelihood of the data given model output using parameters ϑ, 
and P(D) is a normalization constant. The data are only used in the calculation of the 
likelihood, with measurement error determining how likely any given model-data mismatch is. 
If the data are informative, i.e. are plenty and have low measurement error, then the posterior 
PDF P(ϑ|D) will be narrower, more sharply peaked than the prior P(θ), indicating that 
parameter uncertainty is reduced. 

There is no closed-form solution for Bayes’ theorem applied to process-based models, 
because it is always possible to generate a representative sample from the posterior by 
Markov Chain Monte Carlo (MCMC) methods. MCMC methods are a class of algorithms for 
sampling from probability distributions based on constructing a Markov chain (mathematical 
system that undergoes transitions from one state to another) that has the desired distribution 
as its equilibrium distribution. The state of the chain after a large number of steps is then 
used as a sample of the desired distribution. The quality of the sample improves as a 
function of the number of steps. Many MCMC methods move around the equilibrium 
distribution in relatively small steps, with no tendency for the steps to proceed in the same 
direction. These methods are easy to implement and analyze, but unfortunately it can take a 
long time for the walker to explore all of the space. Among the random walk MCMC methods, 
the Metropolis-Hasting method (Metropolis et al., 1953) obtains a sequence of random 
samples from a probability distribution in which each new point in the chain is found by 
randomly generating a candidate parameter vector, which can be accepted or rejected. The 
candidate parameter vector is usually generated by taking a multivariate normal step away 
from the current vector. This means that a covariance matrix is needed to define this 
multivariate normal “proposal distribution”. Whether a proposed candidate vector is accepted 
or not depends on the Metropolis ratio, which is the ratio of two products: likelihood times 
prior for the candidate and likelihood times prior for the current point. The Metropolis ratio is 
always accepted if it is larger than 1 (i.e. the candidate point has a higher posterior 
probability then the current point). If the Metropolis ratio is less than 1 (i.e. the candidate is 
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less probable than the current vector), then the candidate can still be accepted but only with 
probability equal to the Metropolis ratio. The chain stops when it has converged, i.e. it has 
explored the posterior parameter space adequately. Some iteration at the beginning of the 
chain can be rejected as unrepresentative of the chains (burn-in stage, according to van 
Oijen et al., 2005). 

For each dataset Di, the logarithm of the data likelihood, P(D|θ), which is the probability of the 
data given the parameters, is set up as follows: 

���	���|ϑ	
 ���0.5��
	��; θ	 � ���� ���	0.5 ����2�	 � ���	���	�
�

���
 

where Dj is the data value measured on sampling date j in the dataset Di, σj is the standard 
deviation of the data on that date, ω is the vector of model input data at the same date, fi(ω;θ) 
is the model simulation of Dj with the parameter vector (generated by the Metropolis-Hastings 
MCMC algorithm based on Haario et al., 2001), and K is the total number of observational 
dates in the dataset. 

The following details are from the methodology described by Ben-Touhami et al. (2012a): 

- Markov chains of length 50,000–100,000 sound reasonable using a multivariate 
normal PDF to generate candidate parameter vectors 

- Running one to three parallel Markov chains may ensure convergence of parameter 
estimates 

- The maximum of a posteriori estimation (as approximated by the maximum likelihood 
estimate) can be used to obtain a single estimate of each parameter for use in the 
simulations 

 

5. Example 1: Stubai (Austria) grassland site 

Data and model 

It is presented here an analysis of Bayesian calibration results from the simulation of a 
European grassland site located at Stubai, in Austria (47° 05′ North, 11° 11′ East, 1850 m 
a.s.l.), which is a typical mountain meadow for the Central Eastern Alps. A detailed 
description of this study is given in Ben-Touhami et al. (2012a). The data used were 
collected over the period 2008-2009, over which the grassland plot is cut once a year, lightly 
grazed in late summer, and fertilized with manure / slurry roughly every three years. The 
experimental layout included a control plot in which none of the factors was manipulated and 
a treated plot received reduced precipitation using an appropriately sized rain shelter. 
Table 1 shows the set of five variables (D1, …, D5) measured and used in this study for the 
purpose of calibration, with soil moisture and soil temperature taken at three depths (0.05 m, 
0.10 m and 0.20 m) and averaged at five-day time step. 
The grassland site was simulated with the Pasture Simulation model (PaSim, 
https://www1.clermont.inra.fr/urep/modeles/pasim.htm, APP ID: 44 
IDDN.FR.001.220024.000.R.P.2012.000.10000), a plot-scale, multi-year, complex (~130 
parameters for vegetation) biogeochemical model operating on a time step of a 1/50th of a 
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day and consisting of sub-models for plant, animals, microclimate, soil biology, and soil 
physics. It simulates water, carbon (C), nitrogen (N) and energy cycles. Photosynthetic-
assimilated C is either respired or allocated dynamically to one root and to three shoot 
compartments (each of which consisting of four age classes). Accumulated aboveground 
biomass is lost by either cutting or grazing, or enters a litter pool. The N cycle considers 
three types of inputs to the soil via atmospheric N deposition, fertilizer N addition, and 
symbiotic N fixation by legumes. The inorganic soil N is available for root uptake and may be 
lost through leaching, ammonia volatilization and nitrification/denitrification, the latter 
processes leading to nitrous oxide (N2O) gas emissions to the atmosphere. Management 
includes N fertilization, mowing and grazing and can either be set by the user or optimized by 
the model). The model has been tested at European sites for the ability to simulate forage 
yields, soil C stocks, soil NHx and NO3

-
 concentrations, CO2, CH4, N2O and NH3 emissions, 

energy fluxes and animal performances. 
The set of 17 most influential parameters of the model (Table 2) was subjected to Bayesian 
calibration, using the Metropolis-Hastings MCMC-algorithm to estimate the posterior 
probability distribution for each parameter. Table 2 gives, for each parameter, the description 
and the prior information collected from literature review, expert knowledge and previous 
experimental data. The set of parameters used consists of five vegetation parameters (θ1, …, 
θ5), 10 soil parameters (θ6, …, θ15) considered as site-specific, and two parameters related to 
management practices (θ16, θ17). In the absence of information on the form of the PDFs, a 
uniform distribution with bounds set to the minimum (min) and the maximum (max) of the a 
priori known range of values was taken as a prior distribution of the parameters (Table 2). 
 
Table 1.  Output variables (Di, i=1, …, 5) used for Bayesian calibration. 

Variable ( Di) Unit 
Measurement dates 
Control Precipitation reduction 

D1 Leaf area index m2 m-2 15.08.2008, 29.07.2009 29.07.2009 
D2 Yield g m-2 15.08.2008, 29.07.2009 29.07.2009 
D3 Specific leaf area m2 kg-1 15.08.2008, 29.07.2009 29.07.2009 
D4 Soil moisture m3 m-3 2008-2009 (daily measurements) 2008-2009 (daily measurements) 
D5 Soil temperature K 2008-2009 (daily measurements) 2008-2009 (daily measurements) 

 
Table 2.  PaSim parameters (θi, i=1, …, 17) used for Bayesian calibration. 

Parameter Default 
value 

Prior  
probability  
distribution 

      ! Symbol Description Unit  !	min  !	max 

 "� TypeA* 
Fraction of grassland functional type with high 
specific leaf area, high digestibility, short leaf 
lifespan and early reproductive growth 

- 0.1 0.01 1 

 "� TypeB* 
Fraction of grassland functional type with medium 
specific leaf area and high digestibility, long leaf 
lifespan and medium-to-late reproductive growth 

- 0.1 0.01 1 

 "# TypeC* 
Fraction of grassland functional type with low 
specific leaf area, medium digestibility, long leaf 
lifespan and medium-to-late reproductive growth  

- 0.1 0.01 1 

 "$ TypeD* 
Fraction of grassland functional type with low 
specific leaf area, low digestibility, very long leaf 
lifespan and very late reproductive growth 

- 0.95 0.01 1 

 "% slaMax Maximum specific leaf area m2 kg-1 28 21 35 

 "& zsb Soil depth mm 700 500 900 

 "' thetassatb Saturated volumetric soil water content m3 m-3 0.6 0.4 0.7 

 "( thetasfc Field capacity fraction of the saturated soil water 
content - 0.56 0.5 0.9 

 ") thetasfpwp 
Permanent wilting point fraction of the saturated 
soil water content point - 0.4 0.2 0.49 

 "�* psieb Air-entry water potential mm -228 -20 -400 
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 "�� bb Campbell’s b parameter - 7.9 2 14 

 "�� ksatb Saturated hydraulic conductivity mm d-1 165 20 400 

 "�# b_root_profile Parameter of the relative root dry matter 
distribution in different soil layers - 10 4 20 

 "�$ thetasbspring Water content of the soil boundary layer in spring m3 m-3 0.35 0.15 0.3 

 "�% thetasbautomn Water content of the soil boundary layer in 
autumn m3 m-3 0.35 0.2 0.39 

 "�& wshtotcutinit Shoot dry matter after cutting kg  m-2 0.15 0.09 0.25 

 "�' lcutinit Leaf area index after cutting m² m-² 0.4 0.3 1.7 

*FA= TypeA/(TypeA + TypeB + TypeC + TypeD) 

The preparation of data files, the generation and analysis of the Markov chains and the 
uncertainty analysis (including graphical provisions) were carried out with the R language 
and environment for statistical computing (http://www.r-project.org). During the calibration, 
PaSim was invoked and launched by the R-code for calibration. The chains of calibration 
were running on high computing cluster with 22 nodes dual processor AMD Opteron 
Quadcore, with 12 GB of RAM per machine under CentOS 5.5. The server used to compute 
64-bit parallel or sequential jobs is at the Laboratory of Computer Modeling and Optimization 
Systems (LIMOS, http://limos.isima.fr) in Clermont-Ferrand (France). 

The models' predictive ability resulting from prior and posterior parameters was evaluated 
using the root mean square error (RMSE) and the coefficient of residual mass (CRM), both 
based on the differences between the measured (Oi) and the simulated (Pi) values (n = 
number of samples). RMSE measures the size of the differences between simulated and 
measured values, and varies between zero (agreement between estimates and data) and 
positive infinity. CRM shows the tendency of the model to under- (positive values) or over-
estimate (negative values) observations, zero being the optimal value. 

Results  

Table 3 contrasts the prior and posterior means and coefficients of variation (CV) of the most 
influential parameters of PaSim for C treatment. Except for psieb (Air-entry water potential), 
smaller CV values of posterior parameter distributions show that incorporation of more 
precise likelihood information reduced uncertainty. For instance, the CV value of posterior 
probability for the soil depth (zsb) was nearly fully reduced, and the results were similar for 
the saturated volumetric soil water content (thetassatb), the maximum specific leaf area 
(slaMax), and the parameter of shoot dry matter after cutting (wshtotcutinit). 

Table 3.  Prior and posterior distributions for a sample of 13 parameters and the changes in CV values. 
Model parameter  Prior  Posterior     % in CV change  

Mean CV* Mean CV 

TypeA  0,18 0,62 0,92 0,07 -88,68 

TypeB 0,10 1,60 0,40 0,07 -95,31 

TypeC 0,10 1,58 0,01 0,30 -81,11 

zsb  697 0,10 897 ~0,00 -96,65 

thetassatb  0,60 0,08 0,51 ~0,00 -95,68 

thetasfc  0,56 0,12 0,73 0,01 -93,54 

thetasfpwp 0,40 0,12 0,23 0,10 -12,77 

psieb -231 0,27 -251 0,34 29,16 

ksatb  165 0,38 245 0,34 -12,82 
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b_root_profile 9,88 0,27 13 0,24 -11,48 

wshtotcutinit 0,15 0,19 0,09 ~0,00 -98,49 

lcutinit 0,40 0,58 1,55 0,02 -97,36 

slaMax  28 0,09 35 ~0,00 -99,56 

*The coefficient of variation (CV) is the ratio of the standard deviation to the arithmetic mean. The sample size is 
1000. 

Examples of output variables are provided as resulting from Bayesian calibration. Figure 1 
compares the uncertainties of prior and posterior estimates of soil moisture, with precipitation 
reduction, at 0.05 m depth. Despite the lack of data in some periods, the posterior curve fits 
well the observations and the uncertainty obtained in the Bayesian process was much 
reduced compared to the prior uncertainty. Similar results were obtained when soil moisture 
at 0.10 m depth was simulated (Figure 2). In that case, some inaccuracies are due to soil 
moisture initialization, indeed a certain time is needed before the model reach the average 
value the time needed by the model to stabilize its states at the beginning of the simulation. 

 
Figure 1.  Uncertainty analysis for prior (left graph) and posterior (right graph) estimates of soil moisture at 0.05 m 
depth with precipitation reduction. 
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Figure 2.  Uncertainty analysis for prior (left graph) and posterior (right graph) estimates of soil moisture at 0.10 m 
depth with precipitation reduction. 

For leaf area index (Figure 3), both control and treatment showed a global improvement in 
the posterior probability estimates, though uncertainty (bars of standard deviation) was not 
reduced with the latter. 

 
Figure 3.  Uncertainty analysis for prior and posterior estimates of leaf area index without (left graph) and with 
(right graph) precipitation reduction. 

For the yield in control (Figure 4), Bayesian calibration reduced uncertainty in 2008 with 
lower accuracy, while it improved the accuracy in 2009 without reducing uncertainty. 
However, the only few data of LAI and yield available do not allow deriving fair conclusions. 
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Figure 4.  Uncertainty analysis for prior and posterior estimates of simulated yield without precipitation reduction. 

Table 4 summarizes the RMSE and CRM values of four output variables. For posterior 
probability estimates, the two indices were closer to zero than the prior probability for LAI and 
soil moisture in both treatments. For specific leaf area, improvements were only observed 
with precipitation reduction. No improvement was observed on yield estimates, for which the 
data were not enough to make a conclusion. Performance indices for the prior and posterior 
estimates of soil temperature, not shown here, were very similar. 

Table 4.  Evaluation of prior and posterior probability estimates of four output variables obtained with and without 
(Control) precipitation reduction. RMSE, root mean square error; CRM, coefficient of residual mass. 

Treatment Information 

Leaf  area index  
(m² m -²) 

Yield 
(g m -²) 

Specific leaf area  
(m2 kg -1) 

Average soil 
moisture 
(0.05 m - 0.10 m) 
(m3 m-3) 

RMSE 
(m² m -²) CRM RMSE 

(g m -²) CRM RMSE 
(m2 kg -1) CRM RMSE 

(m3 m-3) CRM 

Control 
Prior 1.20 -0.30 15.77 -0.03 1.68 -0.07 0.08 -0.23 

Posterior 0.59 0.15 22.93 0.18 4.34 -0.24 0.03 -0.01 

Precipitation 
reduction 

Prior 1.97 -0.76 5.57 -0.02 11.13 -0.71 0.07 -0.17 

Posterior 0.89 0.35 16.10 0.68 7.73 -0.49 0.03 0.06 

Conclusions 

The above results show how a complex grassland model (PaSim) can work within a 
Bayesian framework to (try to) answer the emerging issues of climate change research. The 
reduced uncertainty in posterior model outputs indicates the potential of Bayesian calibration 
to reduce uncertainty under conditions of altered climate (represented here by precipitation 
reduction). Similar results (Ben-Touhami et al., 2012b) were also obtained at two grassland 
sites in Switzerland (Frübüel, 47° 06′ North, 08° 32′ East, 982 m a.s.l.; Chamau, 47° 12′ 
North, 08° 24′ East, 393 m a.s.l.), on which the same experimental protocol was applied for 
precipitation reduction. 

The above scheme (Bayesian calibration applied at single sites) is helpful to reduce 
uncertainty under specific conditions. However, it is unsuitable to update model parameter 
values for use over large areas (e.g. region to continent). For this, model calibration over 
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multiple sites representative of weather and management conditions of the study-area is of 
interest. An important question is about the choice of design points because physical 
observation sites are often limited. The example below shows the Bayesian calibration of 
Pasim, as run over multiple sites to provide a new parameterization for Europe. 

 

6. Example 2: long-term observational grassland 
sites in Europe 

Data and model 

Based on Ben Touhami et al. (2012a), the Pasture Simulation model (PaSim) described in 
Section 5 was used (Ben Touhami et al., 2013) to update prior parameter distribution to 
achieve a posterior distribution (30,000 iterations with acceptance rate of about 30%) by 
incorporating the information contained in the measured data of seven multi-year 
observational grassland sites in Europe (Amplero, Italy; Bugac, Hungary; Easter-Bush, 
United Kingdom; Früebüel and Oensingen, Switzerland; Laqueuille intensive and extensive 
plots, France) mainly derived from the FLUXNET network (http://fluxnet.ornl.gov). 

The nine most relevant PaSim vegetation parameters (chosen from Europe-wide sensitivity 
analysis, data not shown) were calibrated using a set of soil (temperature, water content), 
vegetation (leaf area index, harvested biomass) and atmospheric (NEE) measured variables. 
The calibrated model was used to assess CO2 (NEE, g C m-2 d-1) and CH4 (g CH4-C m-2 d-1) 
fluxes based on the eddy covariance measurements (in place since 2002) of Laqueuille in 
France (45° 38’ N, 02° 44’ E, 1040 m a.s.l.). Two paddocks were continuously grazed by 
heifers from May to October with two management options (Klumpp et al., 2011): the 
intensive management paddock included significant amounts of N fertilization (three times 
per year for a total of ~200 kg N ha-1) and annual average stocking rate of 1.1 LSU ha-1; the 
extensive management paddock had no fertilization and 0.6 LSU ha-1. 

Results 

The improvement of simulation after parameters calibration is reflected in the posterior 
estimates (thanks to maximum likelihood) of NEE and CH4 daily values, which are closer to 
observations than using the prior distribution. For NEE from multiple years (2004-2008), 
regression lines (Figure 5) show the improvement obtained with posterior parameter values 
(higher R2; slope and intercept closer to 1 and 0, respectively), with no difference between 
managements. Daily CH4 observed values were limited to May-October 2010 in the intensive 
system. 
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Figure 5.  Scatterplots of simulated (prior [-] and posterior [+]) and observed NEE values (g C m-2 d-1) at 
Laqueuille (2004-2008), with regression lines for extensive and intensive management. 

Figure 6 shows the improvement obtained with the posterior parameterization but also that 
the model is not properly simulating the fluctuation in CH4 values. It is noteworthy that, with 
posterior simulation, the system emits enteric CH4 fluxes in summer because enough grass 
biomass is available and grazing may occur. This approximates what happens in reality, 
which is not the case with prior parameterization. 

 

Figure 6.  Simulated (prior and posterior) and observed CH4 values (g C m-2 d-1) at Laqueuille (intensive 
management) over May-October 2010. 
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Conclusions 

These results show that the parameterization of PaSim obtained via Bayesian calibration at 
multiple European sites has improved simulation of both CO2 (NEE) and enteric CH4 fluxes at 
Laqueuille (France), though without compensating for limitations in the model structure. This 
means that the modelling of GHG fluxes from grasslands in Europe merits further 
investigation. This is a non-trivial task, not only because of unsolved theoretical questions but 
also because fluxes are affected by large observational uncertainties. 

Work is ongoing to evaluate posterior estimates of an array of model outputs at different 
European sites. 

 

7. Implementation 

Parameterization and evaluation of model uncertainty in AnimalChange will be grounded to 
the general methodology for Bayesian calibration illustrated in this deliverable. 
An exemplary code excerpt for implementing the Bayesian calibration is given below 
(Annex I) as employed to calibrate the grassland model PaSim by using the R language and 
environment for statistical computing (http://www.r-project.org). This is merely illustrative of 
the steps the user must take to generate posterior samples of the parameters. More details 
are provided with the proceedings of MS62 (“A training session on Bayesian methods”). 

 

8. Annex I – Bayesian calibration algorithm 

Required: (1) A model: M 

(2) Data: D 

(3) A prior probability distribution for the parameters: P(θ) 

(4) A likelihood function: P(D|θ) which is a function of the difference  
M(θ)-D 

 

Implementation: 

 

(1) Select any starting point in parameter space, θ
(0) 

(2) Calculate the product of prior and likelihood: π
(0)=P(θ(0)).P(D|θ(0)) 

(3) Set i=0 (number of accepted candidates) 

(4) Run the following loop until we have enough sample points: 

 (i) Generate a random new point, θ
(candidate) 
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 (ii) Calculate π(candidate) = P(θ(candidate)).P(D|θ(candidate)) 

 (iii) Calculate the Metropolis ratio: π(candidate)
 / π

(i) 

 (iv) Accept the candidate with probability equal to 
min(Metropolis ratio,1) 

 (v) If the candidate is accepted: θ
(i+1) = θ(candidate), else: θ(i+1) = θ(i) 

 (vi) Set i=i+1 
 

Result: 

 

(1) A representative sample {θ(0) …θ(n)} from the posterior pdf, P(θ|D) 

 

Implementation code in R 

 

source("Preliminaries_rev2.R") # contain necessary data (lai, biomass..) and path for other data (tsoil, 
SWC, NEE..) 

load("init.Rdata") # initial conditions 

#****************************************************************************************** 

# Define 

# - the length of the MCMC chain (nChain) and burn-in (nBI : number of iterations to stabilize the 
model); 

# - various matrices for storing the candidates (pChain);  

# - the accepted states (pChAcc) with their index in the chain (jChAcc); 

# - the mean vector (avePar) and covariance matrix (covPar). 

#--npar : number of parameters 

 nChain <- as.integer(100000) 

 nBI    <- as.integer(2000) 

 pChain <- matrix(0, nrow=nChain, ncol=npar) 

 pChAcc <- matrix(0, nrow=nChain, ncol=npar) 

 jChAcc <- matrix(0, nrow=nChain, ncol=npar) 

covPar <- matrix(0, nrow=npar, ncol=npar) 
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#****************************************************************************************** 

# Start the chain using uniform random values in [parmin, parmax]. 

pValues <- runif(npar, min=parmin, max=parmax) 

 

 Param(1)      = pValues[1] 

 Param(2)      = pValues[2] 

… 

     #modification of files before launching pasim 

       det_param_vegetation() 

# First call to pasim (to get outputs). 

 pasim <- lance_pasim() 

 

#----- 

# Calculate corresponding prior probability and likelihood 

 logPrior0  <- sum( dunif(pValues, min=parmin, max=parmax, log=TRUE) ) 

    logL0     <- calcul_logL(pasim) 

#calcul_logL a function giving Likelihood:   <- sum( -0.5*((simulated - observed)/standard deviation 
(obs))^2 - 0.5*log(2.*pi) - log(standard deviation (obs))) 

 

 psetMAP    <- pValues 

 logMAP     <- logPrior0 + logL0 

 pChain[1,] <- pValues 

 

#****************************************************************************************** 

# Define Variance-covariance matrix (vcovProp) for proposal generation an 

# a scale factor (scalProp) according to Brooks and Gelman (1997). 

# 
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# Note that by definition of vcovProp parameters are assumed to be at first independent. 

#----- 

 vcovProp <- diag( (0.01*(parmax - parmin)/parmod)^2 ) #construct a diagonal matrix 

 scalProp <- 2.4^2/npar   #   This is the scaling factor proposed by 

                          #   Brooks and Gelman (1997), it will be multiplied by the matrix 

 

#****************************************************************************************** 

# Build up the chain. Candidates for the parameter values (candidatepValues) 

# are assumed to stem from a multivariate normal distribution (mvrnorm) with mean 

# at the current state and covariance given by scalProp*covPar. If the candidates 

# are outside [parmin, parmax], then candidates within this range are sampled using reflection at 
parmin or parmax.  

 covPar <- vcovProp 

 kc     <- 0   # number of accepted parameters candidate 

 

 for (j in 2:nChain) 

    { 

     candidatepValues  <- mvrnorm(n=1, pValues, scalProp*covPar, tol=1e-6, empirical=FALSE) 

     reflectionFromMin <- pmin(0.,candidatepValues-parmin) 

     reflectionFromMax <- pmax(0.,candidatepValues-parmax) 

     candidatepValues  <- candidatepValues - 2.*reflectionFromMin - 2.*reflectionFromMax 

 

#----- 

#-- Call the model with the candidate values, and check acceptance criterion. 

 

Param(1)        = candidatepValues [1] 

Param(2)        = candidatepValues [2] 

… 



19 

 

 

 

     # Modification of files before launching pasim 

       det_param_vegetation() 

 

     pasim <- lance_pasim() 

 

#----- 

#--  Update prior probabilities and likelihood 

 

     logPrior1 <- sum( dunif(candidatepValues, min=parmin/parmod, max=parmax/parmod, log=T) ) 

 

#----- 

#-- Check whether the candidates are accepted. If yes and if burn-in (2000 first iterations to stabilize 
the model) has been completed, then store corresponding values and positions within the chain in 
pChAcc and jChAcc. 

 

     logalpha <- logPrior1 + logL1 - (logPrior0 + logL0) 

 

     if (log(runif(1,0,1)) < logalpha) 

       { 

        pValues   <- candidatepValues 

        logPrior0 <- logPrior1 

        logL0     <- logL1 

 

        if (j > nBI) 

          { 

           if ((logPrior0 + logL0) > logMAP) 

             { 
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              logMAP  <- logPrior0 + logL0 

              psetMAP <- pValues 

             } 

           kc <- kc + 1 

           jChAcc[kc,] <- j 

           pChAcc[kc,] <- pValues 

          } 

       } 

     pChain[j,] <- pValues 
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