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Abstract

The current article is devoted to the study of a mean-field system of
particles. The question that we are interested in is the behaviour of the
exit-time of the first particle (and the one of any particle) from a domain
D on R

d as the diffusion coefficient goes to 0. We establish a Kramers’type
law. In other words, we show that the exit-time is exponentially equivalent
to exp

{

2

σ2H
N
}

, HN being the exit-cost. We also show that this exit-cost
converges to some quantity H. To obtain this result, we proceed by two
different approaches.
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1 Introduction

The paper is devoted to the resolution of the exit-time of some mean-field in-
teracting particles system. Let us briefly present the model. For any i ∈ N

∗,
{Bi

t : t ∈ R+} is a Brownian motion on R
d. The Brownian motions are as-

sumed to be independent. Each particle evolves in a non-convex landscape V ,
that we denote as the confining potential. Moreover, each particle interacts
with any other one. We assume that the interaction does only depend on the
distance between the two particles. This interacting force is odd.

In fine, the system of equations that we are interested in is the following:

Xi,N
t = x0 + σBi

t −

∫ t

0

∇V
(

Xi,N
s

)

ds−

∫ t

0

1

N

N
∑

j=1

∇F
(

Xi,N
s −Xj,N

s

)

ds , (I)

N being arbitrarily large and σ being an arbitrarily small positive constant.
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We can see the N particles in R
d as one diffusion in R

dN . Indeed, let us

write XN
t :=

(

X1,N
t , · · · , XN,N

t

)

and BN
t :=

(

B1
t , · · · , B

N
t

)

. The process BN

thus is a dN -dimensional Wiener process. Equation (I) can be rewritten like so:

XN
t = XN

0 + σBN
t −N

∫ t

0

∇ΥN
(

XN
s

)

ds . (II)

Here, the potential on R
dN is defined by ΥN (X1, · · · , XN ) := 1

N

∑N
i=1 V (Xi)+

1
2N2

∑N
i=1

∑N
j=1 F (Xi −Xj) for any (X1, · · · , XN ) ∈

(

R
d
)N

.

Consequently, the whole system of particles, {XN
t : t ∈ R+}, is just an

homogeneous and reversible diffusion in R
dN since it evolves only trough the

gradient of the potential NΥN .
It is well-known (see [Mél96, Szn91, BRTV98, CGM08, HT16]) that the

understanding of the behaviour of the diffusion X1,N when N is large is linked
to its hydrodynamical limit diffusion that is to say
{

X1,∞
t = x0 + σB1

t −
∫ t

0
∇V

(

X1,∞
s

)

ds−
∫ t

0
∇F ∗ µ∞

t

(

X1,∞
s

)

ds

µ∞
t = L

(

X1,∞
t

) . (III)

We consider a domain D ⊂ R
d and the associated exit-times:

τ iD(σ,N) := inf
{

t ≥ 0 : Xi,N
t /∈ D

}

which corresponds to the first exit-time of the particle number i and

τD(σ,N) := inf
{

τ iD(σ,N) : i ∈ [[1;N ]]
}

.

Let us point out that we can not directly tract the Kramers’law for τD(σ,N)
from the Kramers’law satisfied by the τ iD(σ,N). Indeed, there is no indepen-
dence since there is some interaction between the particles.

We study these exit-times in the small-noise limit with N large (but we do
not take the limit as N goes to infinity).

Freidlin and Wentzell theory solves this question for time-homogeneous dif-
fusion in finite dimension. See [DZ98, FW98] for a complete review. The main
result is the following:

Theorem 1.1. We consider a domain G ⊂ R
k, a potential U on R

k and a
diffusion

xσt = x0 + σBt −

∫ t

0

∇U (xσs ) ds .

We assume that G satisfies the following properties.

1. The unique critical point of the potential U in the domain G is a0. Fur-
thermore, for any y0 ∈ G, for any t ∈ R+, we have yt ∈ G and moreover
lim

t→+∞
yt = a0 with

yt = y0 −

∫ t

0

∇U(ys)ds .
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2. For any y0 ∈ ∂G, yt converges toward a0.

3. The quantity H := inf
z∈∂G

(U(z)− U(a0)) is finite.

By τG(σ), we denote the first exit-time of the diffusion xσ from the domain G.
Then, for any δ > 0, we have

lim
σ→0

P

{

e
2

σ2 (H−δ) < τG(σ) < e
2

σ2 (H+δ)
}

= 1 .

Furthermore, if N ⊂ ∂G is such that inf
z∈N

U(z) > inf
z∈∂G

U(z), we know that the

diffusion xσ does not exit G by N with high probability:

lim
σ→0

P

{

xστG(σ) ∈ N
}

= 0 .

We do not provide the proof which can be found in [DZ98].
In [Tug12b], we have obtained a similar result (already obtained in [HIP08])

for the self-stabilizing diffusion (III). To do so, we establish a Kramers’type
law for the first particle of the mean-field system of particles. In this previous
work, both the confining potential and the interacting potential are assumed to
be convex.

In the current paper, we remove the hypothesis of global convexity for the
confining potential.

We proceed similarly than in [Tug12b].
We now give a definition which is of crucial interest in large deviations for

stochastic processes.

Definition 1.2. Let D be an open domain of Rk and U be a potential of Rk.
In the following, we say that D is stable by the potential U if for any ξ0 ∈ D,
for any t ≥ 0, we have ξt ∈ D with

ξt = ξ0 −

∫ t

0

∇U (ξs) ds .

We now give the assumptions of the paper. First, we give the hypotheses on
the confining potential V .

Assumption (A-1): V is a C2-continuous function.

Assumption (A-2): For all λ > 0, there exists Rλ > 0 such that ∇2V (x) > λ,
for any ||x|| ≥ Rλ.

Assumption (A-3) The gradient ∇V is slowly increasing: there exist m ∈ N
∗

and C > 0 such that ||∇V (x)|| ≤ C
(

1 + ||x||2m−1
)

, for all x ∈ R.

Let us present now the assumptions on the interaction potential F :

Assumption (A-4): There exists a function G from R+ to R such that F (x) =
G (||x||).

Assumption (A-5): G is an even polynomial and convex function such that
deg(G) =: 2n ≥ 2 and G(0) = 0.
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We finish by giving the assumptions on the open domain D:

Assumption (A-6): The domain D contains only one critical point of V : a.

Assumption (A-7): The domain D is stable by the potential V + F ∗ δa.

Indeed, heuristically, the potential V +F ∗
(

∑N
j=1 δXj,N

t

)

is close to the potential

V + F ∗ δa in the small-noise limit. So, we can link the study of the first
particle (and of any particle) with the study of a classical diffusion with potential
V + F ∗ δa. In order to apply Freidlin-Wentzell theory, we thus assume this
hypothesis.

Assumption (A-8): There exists ρ > 0 such that: 〈∇V (x);x− a〉 ≥ ρ||x−a||2

for any x ∈ D.

This assumption allows us to prove that the domains that we will consider on
R

dN are stable by the potential ΥN .

Assumption (A-9): There exists δ > 0 such that for any x ∈ D: V (x) −
V (a) ≥ δ

2 ||x− a||2

This simple hypothesis yields that the exit-cost of a ball of center (a, · · · , a)
with any radius κ > 0 goes to infinity as N goes to infinity.

Assumption (A-10): By putting ϕt := x0−
∫ t

0
∇V (ϕs) ds, then for any t ≥ 0,

ϕt ∈ D.

If Assumption (A-10) was not satisfied, we could easily prove that the exit-time
is sub-exponential.

Assumption (A-11): There exists an open domain D′ which contains D and
which satisfies assumptions (A-6)–(A-10).

This last assumption allows us to isolate the first particle.

Example 1.3. We now give an example of potentials and domain satisfying

Assumptions (A-1)–(A-11) in the one-dimensional case. We take V (x) := x4

4 −
x2

2 and F (x) := α
2 x

2. Then, any domain of the form ]ξ; +∞[ with ξ ∈]0; 1[

satisfies the assumptions with ρ := ξ2 + ξ > 0 and δ :=
(

1+ξ
2

)2

.

The paper is organized as follows. We finish the introduction by introducing
the norms that we will use. In a second section, we provide the first approach
to the problem. First, we give the material then in Subsection 2.1 we obtain the
stability of the studied domains (on R

dN ) by ΥN . In Subsection 2.2, we compute
the exit-costs of the domains. Finally, main results are stated in Subsection 2.3.
Then, we provide the second approach in Section 3.

We precise the norms that we use in this work. On R
d, we use the Euclidean

norm.

Definition 1.4. Let N be a positive integer. On R
dN , we use the norm || . ||N

defined by

||X ||2nN :=
1

N

N
∑

i=1

||Xi| |
2n ,

with X := (X1, · · · , XN ) ∈ R
dN . We remind the reader that 2n = deg(G).
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Let us observe that this norm has sense as N is large. Indeed, let (Xi)i≥1

(resp. (Yi)i≥1) be a sequence of independent and identically distributed ran-
dom variables with common law µ0 (resp. ν0). By Yτ , we denote the vector
(

Yτ(1), · · · , Yτ(n)
)

for any permutation τ . Thus, the quantity

inf
τ∈SN

||X − Yτ ||N

converges almost surely toward W2n (µ0; ν0) := inf

{

E

[

||X − Y ||2n
]

1
2n

}

, the

infimum being taken over X which follows µ0 and Y which follows ν0.

2 First approach

We now add a last technical assumption on the domain and we will discuss how
we can remove it.

Definition 2.1. 1. B
∞
κ (a) denotes the set of all the probability measures µ on

R
d satisfying

∫

Rd ||x− a||2n µ(dx) ≤ κ2n.
2. For all the measures µ, Wµ is equal to V + F ∗ µ.

3. For all ν ∈ (B∞
κ (a))

R+ and for all x ∈ R
d, we also introduce the dynamical

system:

ψν
t (x) = x−

∫ t

0

∇Wνs
(ψν

s (x)) ds .

Assumption 2.2. If κ is sufficiently small, for any ν ∈ (B∞
κ )

R+ , for any x ∈ D,
ψν
t (x) ∈ D.

Thanks to [Tug12b], we know that if D satisfies Assumption (A-7) then,

there exist two families of open domains
(

De
ξ

)

ξ>0
and

(

Di
ξ

)

ξ>0
satisfying As-

sumption 2.2 and such that Di
ξ ⊂ D ⊂ De

ξ and

lim
ξ→0

sup
z∈∂Di

ξ

d (z ; Dc) = lim
κ→0

sup
z∈∂De

ξ

d (z ; D) = 0 .

Consequently, proving the Kramers’type law for a domain satisfying As-
sumptions (A-6)–(A-11) and Assumption 2.2 is sufficient to obtain it for a do-
main satisfying Assumptions (A-6)–(A-11).

Now, we give the two domains that we will study on R
dN .

G1
N :=

(

D × (D′)
N−1

)

⋂

B
N
κ (a) (1)

and
GN := DN

⋂

B
N
κ (a) , (2)

where

B
N
κ (a) :=

{

X ∈
(

R
d
)N

:
1

N

N
∑

k=1

||Xk − a||2n ≤ κ2n

}

.

Here, a = (a, · · · , a).
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2.1 Stability of the domains by NΥ
N

In the current work, we deal with the time-homogeneous diffusion XN ,

XN
t = x0 + σBN

t −N

∫ t

0

∇ΥN
(

XN
s

)

ds .

with x0 := (x0, · · · , x0) and ΥN is a potential of RN .
In [Tug12b], we have used the fact that B

N
κ (a) is stable by NΥN . Here, we

are not able to prove this but we can circumvent the difficulty.

Proposition 2.3. We assume Hypotheses (A-1)–(A-11) and Assumption 2.2.
Then, the domains G1

N and GN are stable by the potential NΥN providing that
κ is sufficiently small.

Proof. We will prove the proposition only for GN := DN
⋂

B
N
κ (a). Set X0 ∈ GN .

We consider the dynamical system

Xt = X0 −N

∫ t

0

∇ΥN (Xs) ds .

Let us assume that there exists t > 0 such that Xt /∈ GN . We consider t0 the
first time that Xt0 /∈ GN . Then, we have

Xt0 = X0 −N

∫ t0

0

∇ΥN (Xs) ds .

For any t ≤ t0, Xt ∈ B
N
κ (a): we deduce that the empirical measure 1

N

∑N
i=1 δXi

t

is in B
∞
κ (a). According to Assumption 2.2, we deduce that Xt0 ∈ DN .

For any t ≤ t0, Xt ∈ DN . We deduce that

d

dt

1

N

N
∑

i=1

∣

∣Xi
t − a

∣

∣

2n
= −

2

N

N
∑

i=1

〈

Xi
t − a;∇V (Xi

t)
〉 ∣

∣Xi
t − a

∣

∣

2n−2

−
2

N

N
∑

i=1

N
∑

j=1

〈

Xi
t − a;∇F (Xi

t −Xj
t )
〉

∣

∣Xi
t − a

∣

∣

2n−2

≤ −
2ρ

N

N
∑

i=1

∣

∣Xi
t − a

∣

∣

2n
.

Consequently, Xt0 ∈ B
N
κ (a). This is absurd. We deduce that GN is stable by

the potential NΥN .

2.2 Exit-cost of the domains

We now compute the exit-costs of the two domains:

H1
N (κ) := inf

Z∈∂G1
n

(

NΥN (Z)−NΥN (a)
)
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and

HN (κ) := inf
Z∈∂Gn

(

NΥN (Z)−NΥN (a)
)

.

Proposition 2.4. We assume Hypotheses (A-1)–(A-11) and Assumption 2.2.
Then, the following limits hold:

lim
N→∞

H1
N (κ) = H1(κ) and lim

κ→0
H1(κ) = H ,

with H := infz∈D V (z) + F (z − a)− V (a). We also have:

lim
N→∞

HN (κ) = H(κ) and lim
κ→0

H(κ) = H .

Proof. We will prove the result for H1
N (κ). It has already been proved, see

[Tug12b], that

lim
N→∞

inf
Z∈∂(D×(D′)N−1)

⋂
BN
κ (a)

(

NΥN (Z)−NΥN (a)
)

= H1(κ) .

So, it is sufficient to prove

lim
N→∞

inf
Z∈(D×(D′)N−1)

⋂
∂BN

κ (a)

(

NΥN (Z)−NΥN (a)
)

= ∞ .

It is immediate once we have remarked that for any X = (X1, · · · , XN ) ∈
(

D × (D′)
N−1

)

⋂

∂BN
κ (a):

NΥN (X1, · · · , XN ) =
N
∑

i=1

V (Xi) +
1

2N

N
∑

i=1

N
∑

j=1

F (Xi −Xj)

≥
N
∑

i=1

V (Xi)

≥
N
∑

i=1

(

V (a) +
δ

2
||Xi − a||2

)

≥ NV (a) +
δ

2

N
∑

i=1

||Xi − a||2

≥ NV (a) +
N

1
n δ

2

(

N
∑

i=1

||Xi − a||2n
)

1
n

≥ NV (a) +
N

1
n δ

2
κ2 .

This achieves the proof since ΥN (a) = V (a).
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2.3 Main results

We now are able to obtain the Kramers’type law for the first particle or for any
particle.

Theorem 2.5. We assume Hypotheses (A-1)–(A-11) and Assumption 2.2. By

τ1,ND (σ), we denote the first exit-time of the diffusion X1,N from the domain D.
If N is large enough, for any δ > 0, we have the following limit as σ goes to 0 :

P

{

e
2

σ2 (H1
N−δ) ≤ τ1,ND (σ) ≤ e

2

σ2 (H1
N+δ)

}

−→ 1 ,

where
lim

N→∞
H1

N = H ,

with H := infz∈D V (z) + F (z − a)− V (a).

This method relies on the second part of the result of Freidlin-Wentzell
theory (the one on the exit-location).

Proof. We do not give the detailed proof since it is similar to the ones in
[Tug12b]. Indeed, Proposition 2.3 and Proposition 2.4 imply that we have a
Kramers’type law for the first exit-time from the domain G1

n. Now, we have
proved that the exit-cost from the ball of center a and radius κ was larger than
the one from G1

n by taking N sufficiently large. In the same way, we can prove
that the exit cost of the particles 2 to N from the domain D′ is larger than the
one from G1

n. Consequently, with a probability close to 1 as σ goes to 0, we have

that X1,N
τ(N,σ) ∈ ∂D, τ(N,σ) being the first exit-time of XN from G1

n.

Finally, the exit-cost H1
N (κ) does not depend on κ if N is large enough. And,

the previous paragraph applies for any κ > 0.

We have a similar result for the exit of any particle:

Theorem 2.6. We assume Hypotheses (A-1)–(A-11) and Assumption 2.2. By
τND (σ), we denote the first exit-time of the diffusion X from the domain DN . If
N is large enough, for any δ > 0, we have the following limit as σ goes to 0 :

P

{

e
2

σ2 (HN−δ) ≤ τND (σ) ≤ e
2

σ2 (HN+δ)
}

−→ 1 ,

where
lim

N→∞
HN = H .

Remark 2.7. Finally, we can remark that the convexity of F is not a necessary
condition. Indeed, if F (x) = F0(x) −

α
2 |x|

2 with F0 convex and α > 0, it is
sufficient to assume that min{ρ; δ} > α.
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3 Second approach

To have this second approach, we add some assumptions (different from the
additional assumptions in previous section).

Assumption 3.1. We assume that x0 = a and that degG = 2, that is to say
the equation that we are looking at is

Xi,N
t = a+ σBi

t −

∫ t

0

∇V
(

Xi,N
s

)

ds− α

∫ t

0



Xi,N
s −

1

N

N
∑

j=1

Xj,N
s



 ds ,

with α > 0.

We also need the following technical hypothesis.

Assumption 3.2. By θ, we denote sup
R
−V ′′ > 0. Then, V ′′(a) > 1

3θ.

Let us remark that an example of confining potential which satisfies this

assumption is V (x) := x4

4 − x2

2 . Indeed, here, a = 1 and V ′′(a) = 2 and θ = 1.
This approach is based on the work [Tug17].
Let us remark that by taking x0 = a, we immediately have x0 ∈ B

N
κ (a).

We will show that the exit from the domain B
N
κ (a) does not occur (with high

probability) before the time exp
(

2H
σ2

)

if N is large then σ is small, providing
that α is large enough.

Lemma 3.3. The exit cost of the domain B
N
κ goes to infinity when N goes to

infinity if α is large enough:

lim
N→+∞

inf
Z∈∂BN

κ

NΥN (Z)−NΥN (a) = +∞ .

Proof. We have

NΥN (Z) =
N
∑

i=1

V (Xi) +
α

4N

N
∑

i=1

N
∑

j=1

(Xi −Xj)
2

=
N
∑

i=1

(

V (Xi) +
α

2
(Xi − a)

2 −
α

2
(Xi − a)mN

)

,

where mN := 1
N

∑N
j=1 (Xj − a). We here assume (X1, · · · , XN ) ∈ ∂BN

κ so

that mN = δκ with δ ∈ [−1; 1]. By taking α large enough (typically, we take
α > θ := sup

R
−V ′′), the function x 7→Wκ(x) := V (x)+ α

2 (x−a)
2− α

2 (x−a)m
N

is convex so it has a unique global minimum which is located in a point aκ which
satisfies

aκ = a+
α

2(V ′′(a) + α)
δκ+ o(κ) .

We have

Wκ(x)−Wκ (aκ) ≥
α− θ

2
(x− aκ)

2
.
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However, we can compute Wκ (aκ) like so:

Wκ (aκ) = V (a)−
α2

8(V ′′(a) + α)
δ2κ2 + o(κ2) .

Let Z := (X1, · · · , XN ) be in ∂BN
κ . We have

ΥN (Z)

≥Wκ (aκ) +
α− θ

2

[

κ2 − 2
1

N

N
∑

i=1

(Xi − a)(aκ − a) + (aκ − a)2

]

≥ V (a)−
α2

8(V ′′(a) + α)
δ2κ2 +

α− θ

2
κ2
[

1− α
δ2(4V ′′(a) + 3α)

4(V ′′(a) + α)2

]

+ o(κ2)

≥ V (a)−
α2

8(V ′′(a) + α)
κ2 +

α− θ

2
κ2
[

1− α
4V ′′(a) + 3α

4(V ′′(a) + α)2

]

+ o(κ2)

≥ V (a) +
(3V ′′(a)− θ)α2 + 4V ′′(a)(V ′′(a)− θ)α− 4V ′′(a)2θ

8(V ′′(a) + α)2
κ2 + o(κ2) .

As a consequence, thanks to Assumption 3.2, if α is sufficiently large then κ small
enough, we have ΥN (Z) − V (a) > 0. Consequently, the quantity NΥN (Z) −
NΥN (a) goes to infinity as N tends to infinity.

From this lemma, we readily obtain the following corollary.

Corollary 3.4. Let H be an arbitrarily large positive constant. Then, for N
sufficiently large, we have the limit

lim
σ→0

P

{

τN (σ) ≤ exp

[

2H

σ2

]}

= 0 ,

with τN (σ) := inf
{

t ≥ 0 :
(

X1
t , · · · , X

N
t

)

/∈ B
N
κ

}

.

From Corollary 3.4, we can apply the method (based on coupling result)
used in [Tug17] for the McKean-Vlasov diffusion.

Definition 3.5. We consider the diffusion Y defined by

Yt = a+ σW 1
t −

∫ t

0

∇V (Ys) ds− α

∫ t

0

(Ys − a) ds .

Lemma 3.6. For any ξ > 0, under Assumptions 3.1–3.2 plus if α is large
enough, we have:

P

{

sup
t∈[0;τN (σ)]

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣ ≥ ξ

}

= 0

if κ and σ are small enough.
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Proof. Differential calculus provides

d
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣

2
= −2

〈

X1
t − Yt; ∇WµN

t
(X1

t )−∇Wδa(Yt)
〉

dt ,

where Wµ(x) := V (x) + F ∗ µ(x) and µN
t := 1

N

∑N
j=1 δXj

t
.

For any 0 ≤ t ≤ τN (σ), we have:

d
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣

2
=− 2

〈

X1
t − Yt; ∇Wδa(X

1
t )−∇Wδa(Yt)

〉

dt

− 2
〈

X1
t − Yt; ∇WµN

t
(X1

t )−∇Wδa(X
1
t )
〉

dt

The first term can be bounded like so:

−2
〈

X1
t − Yt; ∇Wδa(X

1
t )−∇Wδa(Yt)

〉

≤ −2 (α− θ)
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣

2
,

if α > θ. We now bound the second term in the following way.

− 2
〈

X1
t − Yt; ∇WµN

t
(X1

t )−∇Wδa(X
1
t )
〉

≤ 2
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣×
∣

∣

∣

∣

∣

∣∇WµN
t
(X1

t )−∇Wδa(X
1
t )
∣

∣

∣

∣

∣

∣

≤ 2
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



∇V (X1
t ) + α



X1
t −

1

N

N
∑

j=1

Xj
t







−
(

∇V (X1
t ) + α(X1

t − a)
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2α
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

Xj
t − a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2α
∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣×

√

√

√

√

1

N

N
∑

j=1

∣

∣

∣

∣

∣

∣X
j
t − a

∣

∣

∣

∣

∣

∣

2

.

However, for any t ≤ τN (σ), 1
N

∑N
j=1

∣

∣

∣

∣

∣

∣
Xj

t − a
∣

∣

∣

∣

∣

∣

2

≤ κ2. Thus, we deduce the

inequality

d

dt

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣

2
≤ −2(α− θ)

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣

2
+ 2ακ

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣ .

However, X1
0 = Y0. Thus, for any t ∈

[

0; τN (σ)
]

, we have:

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣ ≤
α

α− θ
κ .

Taking κ < α−θ
α
ξ yields the result.

By τ ′(σ), we denote the first exit-time of diffusion Y from a domain D′ such
that: D′ is stable by the vector field x 7→ −∇V (x) − ∇F (x − a), D′ ⊂ D,
dist (D′;Dc) =: ξ > 0 and the exit cost of diffusion Y from D′ is larger than
H − δ

2 .
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The existence of such a domain is a straightforward exercice so it is left to
the reader. We have:

P

(

τD(σ) ≤ exp

[

2(H − δ)

σ2

])

≤P

(

τ ′(σ) ≤ exp

[

2(H − δ)

σ2

])

+ P

(

τN (σ) ≤ exp

[

2(H − δ)

σ2

])

+ P

(

sup
[0;τN (σ)]

∣

∣

∣

∣X1
t − Yt

∣

∣

∣

∣ ≥ ξ

)

.

By taking κ and σ small enough, the third term is equal to 0. Then, we observe
that the first term goes to 0 since the exit cost of Y from domain D′ is larger
than H − δ

2 . Finally, by taking N large enough, the second term goes to 0 as σ
goes to 0.

We deduce

lim
σ→0

P

(

τD(σ) ≤ exp

[

2(H − δ)

σ2

])

= 0 .

The upper-bound is obtained similarly so it is left to the reader.
We thus have the following theorem.

Theorem 3.7. Under the assumptions, if α is sufficiently large then if N is
large enough, we have the limit

lim
σ→0

P

(

exp

[

2(H − δ)

σ2

]

≤ τD(σ) ≤ exp

[

2(H + δ)

σ2

])

= 1 .
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