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Abstract. In this paper we address the anomaly detection problem in
a supervised setting where positive examples might be very sparse. We
tackle this task with a learning to rank strategy by optimizing a dif-
ferentiable smoothed surrogate of the so-called Average Precision (AP).
Despite its non-convexity, we show how to use it efficiently in a stochas-
tic gradient boosting framework. We show that using AP is much better
to optimize the top rank alerts than the state of the art measures. We
demonstrate on anomaly detection tasks that the interest of our method
is even reinforced in highly unbalanced scenarios.

1 Introduction

Anomaly detection in DNA sequences, credit card transactions or cyber security
are some illustrations of supervised learning settings where data is often highly
unbalanced (i.e. a few anomalies versus a huge amount of genuine/normal data).
A naive approach to tackle this binary problem would consist in applying a
standard classification, such as SVM, boosting or logistic regression, using clas-
sic margin-based surrogate loss functions, like the hinge loss, the exponential loss
or the logistic loss. However, since abnormal instances are often very sparse in
the feature space using such algorithms cannot be directly appropriate [1]. There
exist several methods to get rid of the issues due to unbalanced datasets. The
most famous are sampling-based strategies, either by undersampling or oversam-
pling the data [2,3]. The former aims at removing instance from the majority
class while the latter creates synthetic data from the minority class. Other hy-
brid methods such as SMOTEBoost [4], RUSBoost [5] and Adacost [6] combine
a learning algorithm with a sampling or cost sensitive method. However, it turns
out that these approaches have been shown to be hard to use when facing highly
unbalanced situations [7] leading to either insufficient generated diversity (by
oversampling) or too drastic reduction of the dataset size (by undersampling).
In addition, sampling methods induce a bias in the posterior probabilities [8,9].

On the other hand, it is worth noticing that a peculiarity of the use cases
mentioned above is the need to resort to a (often limited) number of human



experts to assess the potential anomalies found by the learned model. Actually,
our contribution stands in a context where the number of false positives (FP)
may be significantly larger than the false negative (FN) due to the high class
imbalance and where the impact of FP is very penalizing. For example, in fraud
detection for credit card transactions, it is out of the question to automatically
block a credit card without the expert approval (which may risk the confidence
of customers having their credit card falsely blocked). In this context, the goal
of the automatic system is more to give the shortest list of alerts preventing
the expert from going through thousands of transactions. In other words, one
aims at maximizing the number of true positives in the top rank alerts (i.e. the
so-called precision) rather than discriminating between abnormal and normal
cases.

This is the reason why we tackle in this paper the supervised anomaly de-
tection task with a learning to rank approach. This strategy has gained a lot of
interest in the information retrieval community [10]. Given a query, the goal is
to give the most relevant links to the user in a small set of top ranked items. It
turns out that apart the notion of query, the anomaly detection task can relate
to this setting aiming at finding the anomalies with the highest precision without
giving too many genuine examples to the experts.

In such settings, different machine learning algorithms have been efficiently
used such as SVMs (e.g. SVM-Rank [11], SVM-AP [12]) or ensemble methods
(e.g. random forest [13], boosting [14]). It turns out that gradient boosting has
shown to be a powerful method on real life datasets to address learning to rank
problems [15]. Its popularity comes from two main features: (i) it performs the
optimization in function space [16] (rather than in parameter space) which makes
the use of custom loss functions much easier; (ii) boosting focuses step by step on
difficult examples that gives a nice strategy to deal with unbalanced datasets by
strengthening the impact of the positive class. In order to be efficient in learning
to rank problems, gradient boosting needs to be fed with a loss function leading
to a good precision in the top ranked examples.

In the literature, many approaches resort to pairwise loss functions [17,18,19],
typically checking that every positive example is ranked before any negative
instance. Note that all those methods implicitly optimize the area under the
ROC curve. Therefore they aim at minimizing the number of incorrectly ranked
pairs but do not directly optimize the precision of top ranked items as shown
in [20]. To overcome this issue, recent works in learning to rank suggested to
optimize other criteria like the Average Precision (AP ) or the Normalized Dis-
counted Cumulative Gain (NDCG) such as in Adarank [21], LambdaMART [22]
or LambdaRank [23]. It has been shown that both AP and NDCG are much
more suited for enhancing ranking methods. However, due to the non convex-
ity and non differentiability of those criteria, the previous methods rather work
on standard surrogate convex objective functions (such as the pairwise cross-
entropy or the exponential loss) and take into account the AP and NDCG in
the form of weighting coefficients only. In other words, the gradients are not
computed as derivatives of AP and NDCG. Therefore, used in this way, these



criteria only tend to guide the optimization process in the right direction. We
claim here that there is room for doing much better and directly considering the
analytical expressions of those criteria in a gradient boosting method.

In this paper, our contribution is three-fold: (i) focusing on AP , we show
how to optimize a loss function based on a surrogate of this criterion; (ii) unlike
the state of the art learning to rank methods requiring a quadratic complexity
to minimize the ranking measures, we show that AP can be handled linearly in
gradient boosting without penalizing the quality of the solution; (iii) compared
to the state of the art, we show that our method allows us to highly improve
the quality of the top-ranked items. We even show that this advantage is much
larger when the imbalance of the datasets is very important. This is a particu-
larly interesting feature when addressing anomaly detection problems where the
positive examples are very sparse.

The rest of this paper is organized as follows : In Section 2 we first introduce
our notations, then describe our performance measures and present an approxi-
mation to AP . We then describe our method in a boosting framework and define
a more suitable smoothed AP as the loss function in Section 3. We demonstrate
the effectiveness of our work in the experiments section where we compare several
state of the art machine learning models in Section 4.

2 Evaluation criteria and related work

We consider a binary supervised learning setting with a training set S = {zi =
(xi, yi)}Mi=1 composed of M labeled data, where xi ∈ X is a feature vector
and yi ∈ {−1, 1} is the label. In unbalanced scenarios, y = 1 often describes
the minority (positive) class while y = −1 represents the majority (negative)
class. Let P (resp. N) be the number of positive (resp. negative) examples such
that P + N = M . We also define S+ = {z+i = (x+i , y

+
i )|yi = +1}Pi=1 and

S− = {z−i = (x−i , y
−
i )|yi = −1}Ni=1 where S+ ∪ S− = S. We assume that the

training data zi = (xi, yi) is independently and identically distributed according
to an unknown joint distribution DZ over Z = X × {−1, 1}.

In this work, we aim at learning from S a function (or hypothesis) f : X → R
that gives a real value to any new x ∈ X . Assessing the quality of f requires the
use of an evaluation criterion. It is worth noticing that most of the criteria are
based on the true positive TP , true negative TN , false positive FP and false
negative FN quantities. For example, the accuracy is defined as TP+TN

M . It is
known that optimizing the accuracy is NP-hard due to the non convexity and
non differentiability of TP and TN . Therefore, classification algorithms resort
to surrogates like the hinge loss, the logistic loss or the exponential loss which
are convex functions used in Support Vector Machines, logistic regression and
boosting, respectively. However, when S is highly unbalanced, optimizing such
losses may lead to a classifier which always predict the negative class. A solution
to overcome this issue may consist in addressing unbalanced scenario from a
learning to rank point of view. Rather that discriminating examples belonging



to the positive and negative classes, we rather aim at ranking the data with a
maximal number of TP in the top ranked examples.

In this context, two measures are well used in the literature: the pairwise
AUCROC measure and the listwise average precision AP . From a statistical
point of view, the AUCROC represents the probability that a classifier ranks a
randomly drawn positive instance higher than a randomly chosen negative one.
The expression of this measure is equivalent to the Wilcoxon-Mann-Whitney
statistic [24]:

AUCROC =
1

PN

P∑
i=1

N∑
j=1

I0.5(f(x+i )− f(x−j )), (1)

where I0.5, is a special indicator function that yields 1 if f(x+i )− f(x−j ) > 0, 0.5

if f(x+i ) − f(x−j ) = 0 and 0 otherwise. In the following we will use the classic
indicator function I(∗) that yields 1 if ∗ is true, 0 otherwise.

1−AUCROC has been exploited in Rankboost algorithm [17] as an objective
function where the authors use the exponential as a surrogate to the indicator

function. Let `roc(zi, f) = 1
N

∑N
j=1 e

(f(z−j )−f(z+i )) be the loss suffered by f at zi.
We get the following upper bound on 1−AUCROC:

1−AUCROC ≤ 1

P

P∑
i=1

1

N

N∑
j=1

e(f(z
−
j )−f(z+i )) =

1

P

P∑
i=1

`roc(zi, f) = Ezi∈S+`roc(zi, f)

(2)

We can notice that this objective is a pairwise function inducing an algorith-
mic complexity O(PN). Moreover, as illustrated later in this section and shown
in [20], `roc is not well suited to maximize the precision in the top ranked items.

A better strategy consists in using an alternative criterion based on the av-
erage precision AP , defined as follows:

AP =
1

P

P∑
i=1

p(ki), (3)

where p(ki) is the precision with respect to the rank ki of the ith positive
example. Since the rank depends on the outputs of the model f , we get:

p(ki) =
1

ki

P∑
j=1

I(f(x+i ) ≤ f(x+j )) (4)

with

ki =

M∑
j=1

I(f(x+i ) ≤ f(xj)). (5)

Plugging Eq.(4) and Eq.(5) in Eq.(3) we get:



Fig. 1: Two rankings (with two positives and eight negatives examples) ordered
from the highest score (at the top) to the lowest. On the left, we get AUCROC =
0.63 and AP = 0.33. On the right, AUCROC = 0.56 and AP = 0.38. Therefore,
the two criteria disagree on the best ranked list.

AP =
1

P

P∑
i=1

1∑M
j=1 I(f(x+i ) ≤ f(xj))

M∑
j=1

I(yj = 1)I(f(x+i ) ≤ f(x+j )). (6)

AP has been used in recent papers to enhance learning to rank algorithms.

In [20,23], the authors introduce a new objective function, called Lamb-
daRank, which can be used with different criteria, including AP . This function
depends on the criterion of interest without requiring to compute the derivatives
of that measure. This specificity allows them to bypass the issues due to the non
differentiability of the criterion. The objective function takes the following form:

1

N

P∑
i=1

`λRank(z+i , f) (7)

with `λRank(z+i , f) = 1
N

∑N
j=1 log(1+e−(f(x

+
i )−f(x−

j )))|APij | the loss suffered
by f at zi. Here, |APij | is the absolute difference in AP when one swaps, in the
ranking, example xi with xj . LambdaMART [22] made use of LambdaRank in
a gradient boosting method and got good results as reported in [15]. However,
it is worth noticing that in this algorithm, the analytical expression of AP as
defined in Eq.(6) is not involved in the calculation of the gradient. |APij | can be
viewed as a weighting coefficient which hopefully tends to guide the optimization
process towards a good solution. One objective of this paper is to directly use
AP in the algorithm and therefore to use the same criterion at both training
and test time.

Let us before focus on the effect of AUCROC and AP in terms of quality
of top ranked items. Figure 1 compares these criteria in two different situations
according to the location of two positive (in dark color) and eight negative (in
light color) examples that are ordered according to their predicted scores (highest



Fig. 2: Comparison of the emphasis given by AP (arrows on the left) and the
emphasis given AUCROC (arrows on the right) [20]. One can compare this
emphasis to the intensity of gradient w.r.t the examples if AP and AUCROC
were continuous functions.

score at the top). The key point of this figure is to show that AUCROC and
AP disagree on which list is the best. AUCROC prefers the list on the left
because the positive examples are rather well ranked even though the first three
items are negative. Therefore, we can note that this criterion is very relevant
if we are interested in classifying examples into two classes, for example, the
classifier being based on a threshold (likely after the fifth rank, here) splitting
the items into two parts. AP is in favor of the list on the right because it prefers
to champion the top list accepting to pay the prize to miss some positives. This
criterion is thus very relevant to deal with anomaly and fraud detection where
the goal is to provide the shortest list of alerts (here, typically the first two
items) with the largest precision.

Figure 2 (inspired from [20]) illustrates graphically how the emphasis is done
while computing gradients from pairwise loss function such as AUCROC (black
arrows on the right) or a listwise loss function such as AP (red arrows on the left)
respectively. We can notice that a learning algorithm optimizing the AUCROC
would champion first the worst positive to get a good classifier (w.r.t. an appro-
priate threshold) while the AP would promote first the best positive to get a
good top rank.

The previous analysis shows the advantage of optimizing AP in a learning
to rank algorithm. This is the objective of the next section where we introduce
a differentiable expression of AP in a gradient boosting algorithm.

3 Stochastic gradient boosting with AP

In this section, we present the stochastic gradient boosting framework as intro-
duced in [25]. Then we instantiate the loss function in two different ways: first,
we introduce a differentiable version of AP using the sigmoid function. Then, in
order to reduce the algorithmic complexity, we suggest to use a rough approx-



imation based on the exponential function. We show that this second strategy
allows us not only to drastically reduce the complexity but also, to get similar
or even better results than the sigmoid-based loss. We give some explanations
about this behavior at the end of the section.

3.1 Stochastic gradient boosting

Like other boosting methods, gradient boosting is based on a sequential and
adaptive learning over weak learners that are linearly combined. However, in-
stead of setting a weight for every example, gradient boosting builds each new
weak learner on the residuals of the previous linear combination. We can see gra-
dient boosting as gradient descent in functional space. The linear combination
at step t is defined as follows:

ft(x) = ft−1(x) + γtht(x),

with ht ∈ H an hypothesis belonging to a class of models H (typically,
regression trees) and γt the weight underlying the performance of ht in the
linear combination. Residuals are defined by the negative gradients of the loss
function computed w.r.t. the previous linear combination of weak learners:

gt(x) = −
[∂`(zi, ft−1(xi))

∂ft−1(xi)

]
, i = 1 . . .M.

As in standard boosting, hard examples get more importance along the iter-
ations of gradient boosting. Note that a mini-batch strategy is usually used to
speed-up the procedure by randomly selecting a proportion λ ∈ [0, 1] of exam-
ples at each iteration. Additionally, this stochastic approach allows us to avoid
falling in a local optima. A generic version of the stochastic gradient boosting is
presented in Algorithm 1.

Algorithm 1 Stochastic gradient boosting

INPUT: a training set S = {zi = (xi, yi)}Mi=1, a parameter λ ∈ [0, 1], a weak learner
Require: Initialize f0 = argminh`(y, h)

for t = 1 to T do
Select randomly from S a set S′ = {xi, yi}λMi=1

gt(x) = −
[∂`(z, ft−1(x))

∂ft−1(x)

]
, ∀z = (x, y) ∈ S′ (8)

Fit a weak classifier (e.g. a regression tree) ht(x) to predict the targets gt(x)
Find γt = argminγ`(z, ft−1(x) + γht(x))
Update ft(x) such that ft(x) = ft−1(x) + γtht(x)

end for

The key step of this algorithm takes place in Eq. (8). It requires the definition
of a differentiable loss function with its associated gradients. Unlike the state of



the art ranking methods which make use of gradient boosting, we aim at directly
optimizing in the loss function ` a surrogate of AP.

3.2 Sigmoid-based surrogate of AP

To define a loss function ` based on AP, we need to transform the non differen-
tiable Eq.(6) into an expression for which one will be able to compute gradients
on AP. Therefore, we need to get rid of the indicator function. A standard way
consists in replacing I(f(xi) ≤ f(xj)) by the sigmoid function :

I(f(xi) ≤ f(xj)) ≈
1

1 + e−α(f(xj)−f(xi))
= σ(f(xj)− f(xi))

with α a smoothing parameter. As α grows the approximation gets closer
to the true AP . Considering that

∑M
j=1 I(yj = 1) = P , we get the following

differentiable surrogate of AP:

ÂP sig =
1

P

P∑
i=1

1∑M
j=1

1

1 + e−α(f(xj)−f(x+
i ))

P∑
j=1

1

1 + e−α(f(x
+
j )−f(x+

i ))

=
1

P

P∑
i=1

∑P
j=1 σ(f(x+j )− f(x+i ))∑M
h=1 σ(f(xh)− f(x+i ))

=
1

P

P∑
i=1

p̂(ki) ≈
1

P

P∑
i=1

p(ki). (9)

From ÂP sig, we get the following objective function:

1− ÂP sig = Ezi∈S+`sigap (zi, f),

where `sigap (zi, f) = 1− p̂(ki) is the loss suffered by f in terms of precision at

zi (let us remind that ki is the rank (predicted by f) of the ith positive example
zi). In fact, we can simply rewrite our objective function as:

1− ÂP sig =
1

P

P∑
i=1

∑N
j=1 σ(f(x−j )− f(x+i ))∑M
h=1 σ(f(xh)− f(x+i ))

For the sake of simplicity, let us use the following notations:
σ(f(xj)− f(xi)) = σji and we have

∂σji
∂ft(xj)

= −σji(1− σji) = −σ′ji,

∂σji
∂ft(xi)

= σji(1− σji) = σ′ji.



The gradient w.r.t ft(x
+
p ) or ft(x

−
p ), for positive and negative examples re-

spectively, are given by:

∂(1− ÂP sig)
∂ft(x

+
p )

=
∂(1− ÂP sig)

∂σjp

∂σjp

∂ft(x
+
p )

+
∂(1− ÂP sig)

∂σpi

∂σpi

∂ft(x
+
p )

=

P∑
j=1

(σ′jp
∑M
h=1 σhp − σjp

∑N
h=1 σ

′
hp)

(
∑N
h=1 σhp)

2

+

P∑
i=1

(σ′pi
∑N
h=1 σhi − σjpσ′pi)

(
∑N
h=1 σhi)

2
,

∂(1− ÂP sig)
∂ft(x

−
p )

=
∂(1− ÂP sig)

∂σpi

∂σpi

∂ft(x
−
p )

=

P∑
i=1

P∑
j=1

−σjiσ′pi
(
∑N
h=1 σhi)

2
,

(10)

As,
∂(1−ÂP sig)

∂σjp

∂σjp

∂ft(x
−
p )

= 0, since the example xp from the previous formula-

tion will always be positive in 1− ÂP .

In the following, we call SGBAPsig, Stochastic Gradient Boosting algorithm

using this sigmoid-based approximation 1− ÂP sig.

3.3 Exponential-based surrogate of AP

It is worth noticing that by approximating the indicator function by the sig-
moid function, the computation of the gradients as stated above is performed in
quadratic time. This can be a too strong algorithmic constraint to deal with real
world applications like fraud detection in credit card transactions (see the exper-
imental section where the dataset contains 2,000,000 transactions). To overcome
this issue, we suggest here to resort to a less costly surrogate of AP using the
exponential function as an approximation of the indicator function.

I(f(xi) ≤ f(xj)) ≈ e(f(xj)−f(xi)).

As already done in Rankboost [17], we can show that the use of this expo-
nential function allows us to reduce the time complexity for binary datasets to
O(P +N).

Using the new approximation, AP takes the following form:



ÂP exp =
1

P

P∑
i=1

∑P
j=1 e

f(x+
j )e−f(x

+
i )∑M

h=1 e
f(xh)e−f(x

+
i )

=
1

P

P∑
i=1

e−f(x
+
i )

∑P
j=1 e

f(x+
j )

e−f(x
+
i )

∑M
h=1 e

f(xh)

=

∑P
j=1 e

f(x+
j )∑M

h=1 e
f(xh)

As for the sigmoid approximation, we rather use 1− ÂP exp to minimize it.

1− ÂP exp =

∑M
h=1 e

f(xh) −
∑P
j=1 e

f(x+
j )∑N

h=1 e
f(xh)

=

∑N
n=1 e

f(x−
n )∑M

h=1 e
f(xh)

(11)

Finally, finding the gradients of this new objective function is straightforward.

∂1− ÂP exp
∂f(x+p )

=
−ef(x

+
p ) ∑N

n=1 e
f(x−

n )

(
∑M
h=1 e

f(xh))2

∂1− ÂP exp
∂f(x−p )

=
ef(x

−
p ) ∑M

i=1 e
f(xh) − ef(x

−
p ) ∑N

n=1 e
f(x−

n )

(
∑M
h=1 e

f(xh))2

(12)

In the following, we call our method SGBAP, the stochastic gradient boosting
based on our approximation 1− ÂP exp.

Note that, in Eq. 12, one can see an adverse effect brought by the exponential
approximation of the indicator function. Indeed, if an f(xi) is first in the ranking,
the gradient of xi, g(xi), should decrease as there is no other position in which
it will improve the overall AP . However, in our approximation, when f(xi) is
significantly high, the gradient for this example will be the highest. Assume
∀j ∈ S \ xi, f(xi) >> f(xj), we have g(xi) ≈ 1 and g(xk) ≈ 0 ∀k ∈ S− \ xi. In
fact, this effect is limited with stochastic gradient boosting. Indeed, since g(xi)
is not computed during all the iteration thanks to the random mini-batches,
the gradient is then automatically regularized. However, running the gradient
boosting algorithm instead of the stochastic version would raise the previous
effect. The same holds for any basic gradient descent based algorithm.

3.4 Comparison between the approximations of AP

In this section, we compare experimentally the approximations used in this paper
- ÂP exp and ÂP sig - with a simple one-dimensional sample described in Table 1.
For this experiment, we use a simple linear model f(x) = θ0 + θ1x. The toy
dataset has been made such that the model has three ranking choices: (i) rank
the examples in descending order from x = +7 to x = −6 (when θ1 > 0), (ii)
rank the examples in descending order from x = −6 to x = +7 (θ1 < 0) or (iii)
give the same rank to every example (θ1 = 0). We give the AP and AUCROC



Table 1: Toy dataset constituted of 14 examples on the real line with their
associated labels. x correspond to the feature value and y the class.

x −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

y −1 −1 −1 +1 +1 −1 −1 −1 −1 −1 −1 −1 +1 −1

Fig. 3: 1− ÂP exp (on the left) and 1− ÂP sig (on the right) costs in function of
the two model parameters θ0 and θ1.(better with color)

measures in each case : AP = 0.29, AUCROC = 0.52 when θ1 < 0, AP = 0.33,
AUCROC = 0.49 when θ1 > 0 and AP = 0.22, AUCROC = 0.5 when θ1 = 0.

Figure 3, shows that the two objective functions considered are obviously not
convex. However, they both find their minimum in θ1 > 0 which yields the best
AP . In comparison, we show in the supplementary material a pairwise based
and an accuracy based objective function that find their minimum in θ1 < 0.

Note that, on Figure 3, 1 − ÂP exp has another advantage than the time
complexity over the sigmoid approximation. Indeed, for negative examples with
high scores (e.g. when θ1 > 1), 1 − ÂP sig tends to have vanishing gradients

while, for 1 − ÂP exp, they tend to increase exponentially. Indeed, on Figure 3,
the cost increases for the exponential approximation while it decreases for the
sigmoid approximation.

4 Experiments

In this section, we present an experimental evaluation of our approach in two
parts. In a first setup, we provide a comparative study with different state-of-the-
art methods and various evaluation measures on 5 unbalanced public datasets
coming either from the UCI Irvine Machine Learning repository or the LIB-
SVM datasets 3 and on a real dataset of credit card transactions provided by

3 http://archive.ics.uci.edu/ml/ and https:/www.csie.ntu.edu.tw/∼cjlin/libsvmtools/



the private company ATOS/Worldline4. In a second experiment, we study the
robustness of our method to undersampling of positives instances.

4.1 Top-rank quality over unbalanced datasets

In this experiment, we use the public datasets Pima, Breast cancer, HIV, Heart
cleveland, w8a and the real fraud detection dataset over credit card transactions
provided by ATOS/Worldline. This dataset contains 2 millions transactions la-
belled as 1 fraudulent or −1 genuine where 0.2% are fraudulent. It is constituted
of 2 subsets of transactions of 3 consecutive days each. The first one is fixed as
the training set and the second as the test test. Each subset being separated by
one week in order to have the same week days (e.g. Tuesday to Thursday) in
train and test. This setting models a realistic scenario where the feedback for
every transactions is obtained only few days after the transaction was performed.
The properties of the different datasets are summarized in Table 2.

Table 2: Properties of the 6 datasets used in the experiments.
#examples Positives ratio #Features

Pima 767 34% 8

Breast cancer 286 30% 9

HIV 3, 272 13.3% 8

Heart cleveland (4 vs all) 303 4.3% 13

w8a 64000 3% 300

Fraud 2, 000, 000 0.2% 40

We now describe our experimental setup. For the public datasets where the
training/testing sets are not available directly, we randomly generate 2/3-1/3
splits of the data to obtain training and test sets respectively. Hyperparameters
are tuned thanks to a 5-fold cross-validation over the training set, keeping the
values offering the best AP. We repeat the process over 30 runs and average the
results.

We compare our method, named SGBAP, to 4 other baselines5: SGBAPsig
as defined previously, GB-Logistic which is the basic gradient boosting with
a negative binomial log-likelihood loss function [16] (pointwise and accuracy
based for binary datasets), LambdaMART-AP [22] a version of gradient boosting
that optimizes the average precision and RankBoost [17], a pairwise version of
AdaBoost for ranking. For each method, we fix a time limit to 86, 000sec.

We evaluate the previous methods according to 4 criteria measured on the
test sets. First, we use the classic average precision (AP) and AUCROC. Addi-
tionally, we also consider 2 measures to best assess the quality of the approaches

4 ATOS/Wolrdline is leader in e-transaction payments http://worldline.com/
5 Note that we did not use Adarank in our evaluation because the weights updates

rely on a notion of query that is not adapted to our framework.



for top-rank precision. For this purpose, we use the performance Pos@Top, de-
fined in [26], that gives the percentage of positive example retrieved before a
negative appears in the ranking. In other words, it corresponds to the recall be-
fore the precision drops under 100%. We also evaluate the P@k from Eq. 4. In
our setup, we set k to be the number of positive examples, which makes sense
in our context of highly unbalanced data when the objective is to provide a
short list of alerts to an expert and where the number of positive examples is
much smaller than the negative examples. In fact, the latter measure is both
precision and recall at rank k. This measure is also equivalent to the F1 score
since the latter is an harmonic mean between precision and recall. Note that we
show experimentally in the supplementary material that AP is actually highly
correlated to the F1 score.

The results obtained are reported on Table 3. First, we can remark, that
except for the Pima dataset that has the highest positive ratio, our approach
is always better in terms of AP . SGBAP is also better than other baselines
in terms of Pos@top which is the hardest measure for evaluating the top-rank
performance. Additionally, we see that for all datasets with a significantly low
positive ratio (less than 15%), our approach is always better according to the
P@k measure. Overall, we can remark that when the imbalance is high, our ap-
proach is always significantly better than other baselines according to 3 criteria:
AP , Pos@top and P@k which clearly confirms that our method performs bet-
ter for optimizing top-rank results. Note that, for the dataset HIV, SGBAPsig
performed quite poorly. We believe that this is because of the early vanishing
gradient due to the imbalance in the dataset. This effect does not appear in
heart cleveland dataset most likely because of the small dataset size.

4.2 Top rank capability for a decreasing positive ratio

In this section, we present an experiment showing the robustness of our approach
when the ratio of positives decreases. We consider the Pima dataset because it
has the highest ratio of positive instances and because our approach did not
perform the best for all criteria. We aim at under-sampling the positive class

(I.e. to decrease the positive ratio
P

M
). We start from the original positive ratio

(34%) and go down to 3% by steps of ∼ 0.05. For every new dataset, we follow
the same experimental setup as described previously. At the end of the 30 runs
for a given positive ratio dataset, we compute the average rank obtained by
the examples in the test set and remove the top k positive instances such that
P − k
M

is equal to the next positive ratio to evaluate. We repeat the previous set

up until we reach 3% of positive examples in the dataset. We repeat this process
independently for each method. The objective is to remove from the current
dataset the easiest positive examples for each approach to evaluate its capability
to move at the top new positive examples. Note that this makes harder the
problem of ranking correctly in the top positive instances. Thus, the top rank
performance measures should globally decrease.



Table 3: Results obtained for the different evaluation criteria used in the paper.
We indicate in bold font the best method with respect to each dataset and each
evaluation measure. A − indicates that the method did not finish before the
time limit.
Dataset Algorithm AUCROC AP Pos@Top P@k

Pima

GB-Logistic 0.8279± 0.0352 0.7125± 0.0267 0.0388± 0.0379 0.6608± 0.0296
RankBoost 0.8352± 0.0359 0.7281± 0.0621 0.0620± 0.0546 0.6586± 0.0298

LambdaMART-AP 0.8177± 0.0304 0.7338± 0.0528 0.0407± 0.0443 0.6559± 0.0257
SGBAP 0.8276± 0.0418 0.7119± 0.0486 0.0579± 0.0577 0.6455± 0.0356

SGBAPsig 0.8215± 0.0215 0.7091±, 0.0328 0.0388± 0.0346 0.6514± 0.0325

Breast
cancer

GB-Logistic 0.6821± 0.0756 0.5089± 0.0562 0.0931± 0.0561 0.4457± 0.0739
RankBoost 0.6492± 0.0562 0.4838± 0.0632 0.0461± 0.0513 0.4626± 0.0629

LambdaMART-AP 0.6733± 0.0419 0.5280± 0.0680 0.0859± 0.0828 0.5196± 0.0624
SGBAP 0.7124± 0.0596 0.5602± 0.0830 0.1019± 0.1018 0.4980± 0.0612

SGBAPsig 0.7131± 0.0521 0.5503± 0.0443 0.0729± 0.0693 0.5061± 0.0574

HIV

GB-Logistic 0.8598± 0.0155 0.5557± 0.0376 0.0303± 0.0284 0.5391± 0.0364
RankBoost 0.8599± 0.0127 0.5464± 0.0276 0.0401± 0.0363 0.5309± 0.0254

LambdaMART-AP 0.8222± 0.0466 0.4286± 0.0887 0.0075± 0.0176 0.4874± 0.0814
SGBAP 0.8661± 0.0150 0.5737± 0.0347 0.0536± 0.0410 0.5445± 0.0351

SGBAPsig 0.7578± 0.0231 0.3928± 0.0434 0.041± 0.0250 0.3902± 0.0439

Heart
cleveland

GB-Logistic 0.7544± 0.1020 0.1638± 0.0931 0.0133± 0.0498 0.1± 0.1420
Rankboost 0.8109± 0.0515 0.1739± 0.0638 0.0150± 0.0565 0.0967± 0.1335

LambdaMART-AP 0.7277± 0.1225 0.1809± 0.1011 0.0383± 0.0863 0.1333± 0.1287
SGBAP 0.7789± 0.1178 0.2188± 0.1103 0.0483± 0.0970 0.2017± 0.1044

SGBAPsig 0.7983± 0.0638 0.2136± 0.0964 0.045± 0.0906 0.1566± 0.1295

w8a

GB-Logistic 0.9544± 0.0039 0.7385± 0.0154 0.0534± 0.0529 0.7091± 0.0152
RankBoost 0.9712± 0.0028 0.7649± 0.0135 0.0392± 0.0451 0.7277± 0.008

LambdaMART-AP − − − −
SGBAP 0.9701± 0.0029 0.8351± 0.0100 0.1779± 0.0978 0.7972± 0.0132

SGBAPsig − − − −

Fraud

GB-Logistic 0.8808 0.1477 0.0009 0.2411
RankBoost 0.8829 0.1560 0.0005 0.2449

LambdaMART-AP − − − −
SGBAP 0.6878 0.1747 0.0059 0.3203

SGBAPsig − − − −

The results with respect to the AP criterion and P@k are presented on
Figure 4. From this experiment, we see that SGBAP outperforms the other
models as the imbalance ratio increases and notably when the ratio of positives
becomes smaller than 15% which confirms that our approach behaves clearly the
best when the level of imbalance is high in comparison to other state of the art
approaches.

5 Conclusion and perspectives

In this paper, we presented SGBAP, a novel Stochastic Gradient Boosting based
approach for optimizing directly a surrogate of the average precision measure.
Our approximation is based on an exponential surrogate allowing us to compute
our criterion in linear time which is crucial for dealing with large scale datasets
such as for fraud detection tasks. We claim that this approach is well adapted for



Fig. 4: The average precision and P@k at different positive example ratio for
pima dataset.

supervised anomaly detection in the context of highly unbalanced settings. In-
deed, our criterion focuses specifically on the top-rank yielding a better precision
in the top k positions.

A perspective of this work would be to optimize other interesting measures
for learning to rank such as NDCG by means of a stochastic gradient descent
approach. Another direction, would be to adapt the optimization of the surrogate
of average precision to other learning models such as neural networks where we
could take benefit from recent results in non-convex optimization.
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