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RANK THEOREM IN INFINITE DIMENSION AND LAGRANGE

MULTIPLIERS

JOËL BLOT

Abstract. We use an extension to the infinite dimension of the Rank Theo-
rem of the differential calculus to establish a Lagrange theorem for optimization
problems in Banach spaces. We provide an application to variational problems
on a space of bounded sequences under equality constraints.
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1. Introduction

Firstly we recall the extension of the rank theorem to the infinite dimension as
it is established in [5] (Section 3).

Secondly we establish a theorem of existence of Lagrange multipliers in Banach
spaces for maximization problems under equality constraints (Section 4) like the
following one

(M)

{

Maximize J(x)
subject to f(x) = 0

where the functional J and the mapping f are defined on an open subset of a Banach
space, and the mapping f takes its values in a Banach space. Among the classical
multiplier rules, when the differential of f at the solution is surjective we obtain
the existence of Lagrange multipliers without a multiplier before the criterion, i.e.
x̂ being a solution of (M), we have DJ(x̂) = λ ◦ Df(x̂) where λ belongs to the
topological dual space of the co-domain of f , and when we have only the closedness
of the image of the differential of f at the solution, there exists a multiplier rule
with a multiplier before the criterion, i.e. λ0DJ(x̂) = λ◦Df(x̂) with (λ0, λ) 6= (0, 0)
and λ0 ∈ R. Our aim is to establish a necessary optimality condition in the form
DJ(x̂) = λ ◦Df(x̂) wihtout assuming the surjectivity of Df(x̂). To reach this aim
we establish a result by using assumptions which are issued from a generalization
to the infinite-dimensional Banach spaces of the classical Rank Theorem.

Thirdly, in Section 5, we establish results on the space of the bounded sequences
with values in a Banach space to prepare the following section.

Lastly, in Section 6, we apply our theorem on Lagrange multipliers to a variational
problem in infinite horizon and in discrete time on a space of bounded sequences
under equality constraints.

2. Notation

When E and F are sets, when f : E → F is a mapping, when E0 ⊂ E and
F0 ⊂ F are such that f(E0) ⊂ F0, we define the abridgement of f (relatively to E0
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2 BLOT

and F0) as abf ;E0 → F0 by setting abf(x) := f(x); this notation comes from [13]
(p. 12).
When X is a topological space, O(X) denotes the topology of X , and when x ∈ X ,
Ox(X) denotes the set of the open neighborhoods of x in X .
The topological interior is denoted by Int.
When E is a Banach space and E1, E2 are closed vector subspaces of E, the
writting E = E1⊕

aE2 (respectively E = E1⊕E2) means the algebraic (respectively
topological) direct sum, i.e. the mapping (x1, x2) 7→ x1+x2, from E1×E2 into E is
an isomorhism of vector spaces (respectively an isomorphism of topological vector
spaces). When E1 is a closed vector subspace of E, to say that E1 is topologically
complemented in E means that there exists a closed vector subspace of E, say E2,
such that E = E1 ⊕ E2.
The letter D denotes the Fréchet differentiation, and when i ∈ {1, 2}, Di denotes
the partial Fréchet differentiation of a mapping defined on a product space E1×E2

with respect to the ith variable.

When X and Y are real Banach spaces, L(X,Y ) denotes the space of the linear
continuous mappings from X into Y , and if L ∈ L(X,Y ), its norm is ‖L‖L :=
sup{‖L(x)‖ : x ∈ X, ‖x‖ ≤ 1}. The topological dual space of X , L(X,R), is
denoted by X∗. When L ∈ L(X,Y ), the adjoint of L is L∗ ∈ L(Y ∗, X∗) defined by
L∗ϕ := ϕ ◦ L for all ϕ ∈ Y ∗. When M ⊂ X , the orthogonal of M is M⊥ := {ϕ ∈
X∗ : ∀x ∈M,ϕ(x) = 0}.

When A ∈ O(X), C1(A, Y ) denotes the space of the continuously Fréchet differen-
tiable mappings from A into Y . When f : A→ Y is a mapping and y ∈ Y , we set
[f = y] := {x ∈ A : f(x) = y}.
When M ⊂ X and a ∈ M , the tangent space of M at a is TaM := {α′(0) : α ∈
C1((−ǫ, ǫ),M), α(0) = a}.

We consider Ω as N or N∗ := N \ {0}. When E is a set, EΩ denotes the space of
the sequences defined on Ω with values in E.
An element of EΩ will be denoted by x = (xt)t∈Ω.
When E is a normed space, x ∈ ℓ∞(Ω, E) denotes the set of the bounded sequences
from Ω into E; we set ‖x‖∞ := supt∈Ω ‖xt‖.
When A ⊂ E, ℓ∞(Ω, A) := {x ∈ ℓ∞(Ω, E) : ∀t ∈ Ω, xt ∈ A}.
We also write B∞(x, r) := {u ∈ ℓ∞(Ω, E) : ‖u− x‖∞ < r}.
ℓ1(Ω, E) denotes the space of the sequences x = (xt)t∈Ω ∈ EΩ such that
∑

t∈Ω ‖pt‖ < +∞.

c0(Ω, E) denotes the space of the sequences x = (xt)t∈Ω ∈ EΩ such that
limt→+∞ xt = 0.

3. The rank theorem in infinite dimension

In this section we recall the Rank Theorem in infinite dimension and we establish
several consequences of this theorem which are useful for the sequel. Under the
assumptions of the Rank Theorem we describe the tangent space of a level set. As
we indicate in [5], there exist other generalizations of the classical Rank Theorem
to the infinite-dimensional Banach spaces.

X and Y are real Banach spaces. The following result is given in [4] and it is
established in Theorem 1 and in Theorem 5 of [5].
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Theorem 3.1. Let A ∈ O(X), f ∈ C1(A, Y ), x̂ ∈ A, and we set ŷ := f(x̂).
We assume that E2 := KerDf(x̂) is topologically complemented in X and F1 :=
ImDf(x̂) is closed and topologically complemented in Y ; and so X = E1⊕E2 where
E1 is a closed vector subspace of X, and Y = F1 ⊕ F2 where F2 is a closed vector
subspace of Y . We also assume that the following condition is fulfilled:

(∗) ∃A0 ∈ Ox̂(A) s.t. ∀x ∈ A0, ImDf(x) ∩ F2 = {0}.

Then the following assertions hold.

(i) ∃V1 ∈ OD1f1(x̂)−1(ŷ1)(E1), ∃V2 ∈ Ox̂2
(E2), ∃B ∈ Ox̂(X), ∃ψ : V1 × V2 → B

a C1 diffeormorphism, ∃W ∈ O(ŷ1,0)(X), ∃Ω1 ∈ Oŷ1
(F1), ∃Ω2 ∈ Oŷ2

(F2),

∃φ :W → Ω1 ×Ω2 a C1 diffeomorphism such that φ−1 ◦ f ◦ ψ = Df(x̂) on
V1 × V2.

(ii) ∃G1 ∈ Ox̂1
(E1), ∃G2 ∈ Ox̂2

(E2), ∃ξ ∈ C1(G2, G1) such that
[f = ŷ] ∩ (G1 ×G2) = {(ξ(x2), x2) : x2 ∈ G2}.

Note that the equality of the conclusion (i) can be rewritten as follows (cf.
Theorem 1 of [5])

∀(x1, x2) ∈ V1 × V2, φ−1 ◦ f ◦ ψ(x1, x2) = (D1f1(x̂)x1, 0) (3.1)

which a kind of local linearization of f .
When X and Y are finite-dimensional, the assumption (∗) of Theorem 3.1 is equiv-
alent to the constancy of the rank of Df(x) on a neighborhood of x̂, cf. Proposition
4 in [5]. We can provide a heuristic meaning of the condition (∗): when x is closed
to x̂, due to the continuity of Df , Df(x) is closed to Df(x̂) and ImDf(x) cannot
be ”smaller” than ImDf(x̂); this is a consequence of the openness of the set of the
invertible linear continuous operators in the normed space of the linear continuous
operators. And so to have ImDf(x) isomorphic to ImDf(x̂), it suffices to forbid
ImDf(x) to be too ”big”. The condition ImDf(x) ∩ F2 = {0} is a way to forbid
ImDf(x) to be too ”big”.

Now we describe consequences of Theorem 3.1.

Proposition 3.2. In the setting and under the assumptions of Theorem 3.1, the
following assertions hold.

(i) Df2(x̂) = 0.
(ii) D2f1(x̂) = 0.
(iii) ξ(x̂2) = x̂1.
(iv) Dξ(x̂2) = −D1f1(x̂)

−1 ◦D2f1(x̂) = 0.

Proof. π2 : Y → F2 and p2 : X → E2 denote the projections.
(i) f2 = π2 ◦ f implies Df2(x̂) = π2 ◦Df(x̂) = 0 since ImDf(x̂) ∩ F2 = {0}.
(ii) D2f1(x̂) = Df1(x̂) ◦ p2 = 0 since E2 := KerDf(x̂).
(iii) From Theorem 3.1(ii), since f(x̂1, x̂2) = ŷ, we necessarily obtain x̂1 = ξ(x̂2).
(iv) Using (ii) of Theorem 3.1, we have, for all x2 ∈ G2, f1(ξ(x2), x2) = ŷ2.
Differentiating this equality with respect to x2 at x̂2, we obtain 0 = D1f(x̂) ◦
Dξ(x̂2) +D2f(x̂) which implies the announced formulas. �

Proposition 3.3. In the setting and under the assumptions of Theorem 3.1 we
have Tx̂[f = ŷ] = KerDf(x̂).
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Proof. Let v ∈ Tx̂[f = ŷ]. Hence there exists c ∈ C1((−ǫ, ǫ), X), where ǫ > 0,
such that c((−ǫ, ǫ)) ⊂ [f = ŷ], c(0) = x̂ and c′(0) = v. Since f(c(θ)) = ŷ for
all θ ∈ (−ǫ, ǫ), differentiating this equality with respect to θ at 0, we obtain 0 =
Df(c(0))c′(0) = Df(x̂)v, and so v ∈ KerDf(x̂). We have proven that Tx̂[f = ŷ] ⊂
KerDf(x̂).

To prove the inverse inclusion, we consider v = (v1, v2) ∈ KerDf(x̂). Therefore
we have v1 = 0 after the definition of E1, E2, and so v = (0, v2). Using Theorem
3.1(ii), since G2 is open, there exists ǫ > 0 such that, for all θ ∈ (−ǫ, ǫ), we have
x̂2+θv2 ∈ G2. We define c : (−ǫ, ǫ) → X by setting c(θ) := (ξ(x̂2+θv2), x̂2+θv2) ∈
[f = ŷ] ∩ (G1 × G2). Note that we have c(0) = (ξ(x̂2), x̂2) = x̂ after Proposition
3.2(iii). Note that we have c′(0) = (Dξ(x̂2)v2, v2) = (0, v2) = v after Proposition
3.2(iv) and so we have v ∈ Tx̂[f = ŷ]. We have proven that KerDf(x̂) ⊂ Tx̂[f = ŷ],
ansd so we have proven the announced equality. �

4. Lagrange multipliers in Banach spaces

In this section we establish a theorem of existence of Lagrange multipliers for
problem (M) (written in Introduction) by using the Rank Theorem in infinite
dimension. The interest of this result is to avoid a surjectivity on the differential of
the equality constraint and nevertheless to avoid the presence of a multiplier before
the criterion.

Let X and Y be real Banach spaces, A ∈ O(A), J : A → R be a functional, and
f : A→ Y be a mapping. We consider the problem (M).

Theorem 4.1. Let x̂ be a local solution of the problem (M). We assume that the
following conditions are fulfilled.

(a) J is Fréchet differentiable at x̂ and f is of class C1 on a neighborhood of
x̂.

(b) E2 := KerDf(x̂) is topologically complemented in X; i.e. X = E1 ⊕ E2

where E1 is a closed vector subspace of X. F1 := ImDf(x̂) is closed and
topologically complemented in Y ; i.e. Y = F1 ⊕ F2 where F2 is a closed
vector subspace of Y .

(c) There exists A0 ∈ Ox̂(A) such that, for all x ∈ A0, ImDf(x) ∩ F2 = {0}.

Then there exists λ ∈ Y ∗ such that DJ(x̂) = λ ◦Df(x̂).

Proof. Using Theorem 4.1, we know that the set [f = 0] is a C1 manifold around
x̂, and since J is of class C1 at x̂, the first-order necessary optimality condition is
DJ(x̂)h = 0 when h ∈ Tx̂[f = 0]. Using Proposition 3.3, we know that Tx̂[f =
0] = KerDf(x̂), hence we obtain DJ(x̂)h = 0 when h ∈ KerDf(x̂), i.e., DJ(x̂) ∈
(KerDf(x̂))⊥. Since ImDf(x̂) is closed, using Theorem 2.19 in [9] (p. 46), we
have (KerDf(x̂))⊥ = ImDf(x̂)∗, and then we have DJ(x̂) ∈ Im(Df(x̂))∗, hence
there exists λ ∈ Y ∗ such that DJ(x̂) = Df(x̂)∗λ = λ ◦Df(x̂). �

Notice that in Theorem 4.1 we have not a multiplier before the differential of the
criterion. Such a result in finite-dimensional spaces is proven in [10] (Proposition
2.3).
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5. On spaces of bounded sequences

In this section we establish several results on the space of the bounded sequences
to prepare the using of the theorem on the Lagrange multipliers of the previous
section in such sequence spaces.

First we recall a result on the characterization of the closedness of linear operators.

Proposition 5.1. Let X and Y be two real Banach spaces and L ∈ L(X ,Y). The
two following assertions are equivalent.

(i) ImL is closed in Y.
(ii) ∃c(L) > 0, ∀y ∈ ImL, ∃xy ∈ X s.t. L(xy) = y and ‖xy‖ ≤ c(L)‖y‖.

We can find two different proofs of this result in [3] (Lemma 3.4) and in [6]
(Lemma 2.1).

Remark 5.2. About the constant c(L), under (i), when in addition we assume
that KerL is topologically complemented in X , i.e. X = KerL ⊕ X1, where X1 is
a closed vector subspace of X , we can consider the abridgement abL : X1 → ImL,
abL(x) := L(x), which is an isomorphism of Banach spaces, and we have c(L) =
‖(abL)−1‖L.

Let X and Y be real Banach spaces. Let (Tt)t∈N∗
∈ L(X,Y )N∗ . We consider the

three following conditions on this family of linear operators.

(C1) supt∈N∗

‖Tt‖L < +∞.
(C2) For all t ∈ N∗, KerTt is topologically complemented in X , i.e. there exists

a closed vector subspace of X , say St, such that X = KerTt⊕St, and ImTt
is closed and topologocally complemented in Y , i.e. there exists a closed
vector subspace of Y , say Wt, such that Y = ImTt ⊕Wt.

(C3) ĉ := supt∈N∗

c(Tt) < +∞.

Notice that (C2) is automatically fulfilled when dimX < +∞ and dimY < +∞.
We associate to this family the four following sequence spaces.

K := {x ∈ ℓ∞(N∗, X) : ∀t ∈ N∗, xt ∈ KerTt}.

S := {x ∈ ℓ∞(N∗, X) : ∀t ∈ N∗, xt ∈ St}.

I := {y ∈ ℓ∞(N∗, Y ) : ∀t ∈ N∗, yt ∈ ImTt}.

W := {y ∈ ℓ∞(N∗, Y ) : ∀t ∈ N∗, yt ∈ Wt}.

The condition (C1), which is equivalent to the boundeness of (Tt(xt))t∈N∗
when x

is bounded after the Banach-Steinhaus theorem, permits us to define the operator

T : ℓ∞(N∗, X) → ℓ∞(N∗, Y ), T (x) := (Ty(xt))t∈N∗
. (5.1)

Lemma 5.3. Under (C1, C2, C3) the following assertions hold.

(i) ℓ∞(N∗, X) = KerT ⊕ S.
(ii) ℓ∞(N∗, Y ) = ImT ⊕W.

Proof. For each t ∈ N∗, we consider the mappings πt : ℓ
∞(N∗, X) → X defined by

πt(x) := xt, and the mapping ̟t : ℓ
∞(N∗, Y ) → Y , defined by ̟t(y) := yt. Clearly

we have πt ∈ L(ℓ∞(N∗, X), X) and ̟t ∈ L(ℓ∞(N∗, Y ), Y ). Note that we have

K =
⋂

t∈N∗

π−1
t (KerTt),S =

⋂

t∈N∗

π−1
t (St), I =

⋂

t∈N∗

̟−1
t (ImTt),W =

⋂

t∈N∗

̟−1
t (Wt).
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Due to the continuity of the πt and ̟t, these four spaces are intersections of closed
subsets which implies that K and S are closed vector subspaces of ℓ∞(N∗, X) and
I and W are closed vector subspaces of ℓ∞(N∗, Y ).

It is easy to verify that

ℓ∞(N∗X) = K ⊕a S, ℓ∞(N∗, Y ) = I ⊕a W .

Since ℓ∞(N∗, X) and ℓ∞(N∗, Y ) are Banach spaces and since K, S, I, W are closed
vector subspaces, from the Inverse Mapping Theorem of Banach-Schauder, [11]
(Corollary 1.5, p. 388), we obtain

ℓ∞(N∗, X) = K ⊕ S, ℓ∞(N∗, Y ) = I ⊕W . (5.2)

We easily verify that K = KerT , and from (5.2) we obtain (i).

About the image, we see that ImT ⊂ I. if y ∈ I then, for all t ∈ N∗, we have
yt ∈ ImTt. From (C2), using Proposition 5.1, we can say that there exists xt,yt

∈ X

such that Tt(xt,yt
) = yt and ‖xt,yt

‖ ≤ c(Tt)‖yt‖. Hence, setting xy := (xt,yt
)t∈N∗

,

we have T (xy) = y and ‖xy‖∞ ≤ ĉ‖y‖, therefore xy ∈ ℓ(N∗, X) and T (xy) = y, i.e.

y ∈ ImT . We have proven that I ⊂ ImT , and consequently I = ImT From (5.2)

we obtain (ii). �

Lemma 5.4. Let A ∈ O(X). Then the following assertions hold.

(i) Intℓ∞(N∗, A) = {x ∈ ℓ∞(N∗, A) : inft∈N∗
d(xt, A

c) > 0}, where
d(xt, A

c) := inf{‖xt − z‖ : z ∈ Ac}.
(ii) Let x ∈ Intℓ∞(N∗, A). We set r := inft∈N∗

d(xt, A
c) > 0. Then we have

∏

t∈N∗

B(xt,
r
2 ) ⊂ Intℓ∞(N∗, A).

Proof. Assertion (i) is proven in [7] (Lemma A.1.1). To prove (ii),
if u ∈

∏

t∈N
B(xt,

r
2 ), then we have ‖ut − xt‖ <

r
2 , and for all v ∈ Ac, we have

r < ‖xt − v‖ ≤ ‖xt − ut‖+ ‖ut − v‖ ≤
r

2
+ ‖ut − v‖ =⇒ r −

r

2
≤ ‖ut − v‖

which implies d(ut, A
c) ≥ r

2 > 0, and so u ∈ Intℓ∞(N∗, A). �

Definition 5.5. Let A ∈ O(X) and gt : A → Y be a mapping for all t ∈ N∗.
The sequence (gt)t∈N∗

is said uniformly equicontinuous on the bounded subsets of
A when

{

∀B ∈ B(A), ∀ǫ > 0, ∃ηB,ǫ > 0, ∀u, v ∈ B,

‖u− v‖ ≤ ηB,ǫ =⇒ (∀t ∈ N∗, ‖gt(u)− gt(v)‖ ≤ ǫ).

Proposition 5.6. Let A ∈ O(X) and gt : A → Y be a mapping for all t ∈ N∗.
We assume that the following condition is fulfilled: ∀x ∈ ℓ∞(A), (gt(xt))t∈N∗

∈
ℓ∞(N∗, Y ).
This condition permits to define the operator G : ℓ∞(N∗, A) → ℓ∞(N∗, Y ) by setting
G(x) := (gt(xt))t∈N∗

.
If, in addition we assume that (gt)t∈N is uniformly equicontinuous in the bounded
subsets of A, then G is continuous from Intℓ∞(N∗, A) into ℓ

∞(N∗, Y ).

Proof. We arbitrarily fix x ∈ Intℓ∞(N∗, A). Hence there exists r > 0 such that
B∞(x, r) ⊂ ℓ∞(N∗, A).
The set B := {u ∈ A : ∃tu ∈ N∗, ‖u − xtu‖ < r} is bounded since, when u ∈ B,
‖u‖ ≤ ‖u − xtu‖ + ‖xtu‖ ≤ r + ‖x‖∞ < +∞. We arbitrarily fix ǫ > 0. Let
z ∈ Intℓ∞(N∗, A) such that ‖z − x‖∞ < min{r, ηB,ǫ} where ηB,ǫ is provided by
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Definition 5.5. Hence we have zt ∈ B since ‖zt − xt‖ < r for all t ∈ N∗, and
we have ‖zt − xt‖ < ηB,ǫ which implies ‖gt(zt) − gt(xt)‖ < ǫ. Hence we have
‖G(z)−G(x)‖∞ ≤ ǫ. We have proven that G is continuous at x. �

Proposition 5.7. Let A ∈ O(X) and (gt)t∈N∗
∈ C1(A, Y )N∗ . We assume that the

following conditions are fulfilled.

(a) ∀x ∈ Intℓ∞(N∗, A), (gt(xt))t∈N∗
∈ ℓ∞(N∗, Y ).

(b) ∀x ∈ Intℓ∞(N∗, A), (Dgt(xt))t∈N∗
∈ ℓ∞(N∗,L(X,Y )).

(c) (Dgt)t∈N∗
is uniformly equicontinuous on the bounded subsets of A.

We consider the operator G : Intℓ∞(N∗, A) → ℓ∞(N∗, Y ) defined by G(x) :=
(gt(xt))t∈N∗

.
Then the following assertions hold for all x ∈ Intℓ∞(N∗, A).

(i) G is Fréchet differentiable at x, and, for all v ∈ ℓ∞(N∗, X), we have
DG(x)v = (Dgt(xt)vt)t∈N∗

.
(ii) G ∈ C1(Intℓ∞(N∗, A), ℓ

∞(N∗, Y )).

Proof. We arbitrarily fix x ∈ Intℓ∞(N∗, A). Using (b), the linear operator T :
ℓ∞(N∗, X) → ℓ∞(N∗Y ), defined by T h := (Dgt(xt)ht)t∈∗N, is well-defined and
continuous.
We can use Lemma 5.4(ii) and assert that

∏

t∈N∗

B(xt,
r
2 ) ⊂ Intℓ∞(N∗, A). Using

the set B := {u ∈ A : ∃tu ∈ N∗, ‖u− xt‖ < r}, we have yet seen that B is bounded
in A and we have B(xt,

r
2 ) ⊂ B.

We arbitrarily fix ǫ > 0, and, using assumption (c), we consider ηB,ǫ > 0 provided
by Definition 5.5 for the sequence (Dgt)t∈N∗

.
We arbitrarily fix h ∈ ℓ∞(N∗, X) such that ‖h‖∞ < min{ r

2 , ηB,ǫ}. Hence, ∀t ∈ N∗,
∀zt ∈ [xt, xt + ht] ⊂ B(xt,

r
2 ), we have ‖zt − xt‖ < ηB,ǫ which implies ‖Dgt(zt) −

Dgt(xt)‖L < ǫ.
Now using the Mean Value Inequality as established in [1] (Corollary 1, p. 144),
we obtain, for all t ∈ N∗,
‖gt(xt + ht) − gt(xt) − Dgt(xt)ht‖ ≤ supzt∈[xt,xt+ht] ‖Dgt(zt) − Dgt(xt)‖L‖ht‖ ≤

ǫ‖ht‖, and taking the sup on the t ∈ N∗, we obtain

‖G(x+ h−G(x)− T h‖∞ ≤ ǫ‖h‖∞.

Hence we have proven that G is Fréchet differentiable at x and that DG(x)h =
(Dgt(xt)ht)t∈N∗

.
Applying Proposition 5.6 to DG, we obtain the continuity of DG. �

Proposition 5.8. Let A ∈ O(X) and (gt)t∈N∗
∈ C1(A, Y )N∗ . We assume that

the conditions (a), (b), (c) of Proposition 5.7 are fulfilled. Let x̂ = (x̂t)t∈N∗
∈

Intℓ∞(N∗, A). We assume that the following conditions are fulfilled.

(d) supt∈N∗

‖Dg(x̂t)‖L < +∞.
(e) For all t ∈ N∗ there exist a closed vector subspace of X, say St, and a

closed vector subspace of Y , say Wt, such that X = KerDg(x̂t) ⊕ St and
Y = ImDg(x̂t)⊕Wt.

(f) ĉ := supt∈N∗

c(Dg(x̂t)) < +∞.

Then we have ℓ∞(N∗, X) = KerDG(x̂)⊕S and ℓ∞(N∗, Y ) = ImDG(x̂)⊕W, with
S := {v ∈ ℓ∞(N∗, X) : ∀t ∈ N∗, vt ∈ St} and W := {w ∈ ℓ∞(N∗, Y ) : ∀t ∈ N∗, wt ∈
Wt}.
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Proof. This result is a consequence of Proposition 5.7 and of Lemma 5.3 with
Tt = Dg(x̂t). �

Notice that (e) is automatically fulfilled when dimX < +∞ and dimY < +∞.

6. A variational problem

In this section we consider a maximization problem in infinite horizon and in
discrete time under holonomic constraints. The unknown variable is a bounded
sequence with values in a real Banach space X . Using the results of the previous
sections we obtain a first-order necessary optimality condition in the form of a
nonhomogeneous Euler-Lagrange equation.

Let A be a nonempty subset of X . For all t ∈ N, let ut : A × A → R and for all
t ∈ N∗ let gt : A→ Y be functions, where Y is a real Banach space. We fix a vector
σ ∈ A, a real number β ∈ (0, 1) and we consider the following variational problem
under holonomic constraints.

(V)







Maximize J(x) :=
∑+∞

t=0 β
tut(xt, xt+1)

subject to x ∈ ℓ∞(N, A), x0 = σ

and ∀t ∈ N∗, gt(xt) = 0.

The problems of Calculus of Variations or of Optimal Control in discrete time and
in infinite horizon are very usual in Economics and in Management; see for instance
[8], [3], [7] and references therein.

Theorem 6.1. Let x̂ be a solution of (V). We assume that the following conditions
are fulfilled

(A1) (x̂t, x̂t+1)t∈N ∈ Intℓ∞(N, A×A).
(A2) ∀t ∈ N, ut ∈ C1(A×A,R).
(A3) ∀(x, y) ∈ Intℓ∞(N, A×A), (ut(xt, yt))t∈N ∈ ℓ∞(N,R).

(A4) ∀(x, y) ∈ Intℓ∞(N, A×A), (Dut(xt, yt))t∈N ∈ ℓ∞(N, (X ×X)∗).
(A5) (Dut)t∈N is uniformly equicontinuous on the bounded subsets of A×A.
(A6) x̂ ∈ Intℓ∞(N, A).
(A7) ∀t ∈ N∗, gt ∈ C1(A,R).
(A8) ∀x ∈ Intℓ∞(N∗, A), (gt(xt))t∈N∗

∈ ℓ∞(N∗, Y ).
(A9) ∀x ∈ Intℓ∞(N∗, A), (Dgt(xt))t∈N∗

∈ ℓ∞(N∗,L(X,Y )).
(A10) (Dgt)t∈N∗

is uniformly equicontinuous on the bounded subsets of A.
(A11) For all t ∈ N∗, there exists a closed vector subspace of X, say St, such that

X = KerDgt(x̂t) ⊕ St, and there exists a closed vector subspace of Y , say
Wt, such that Y = ImDgt(x̂t)⊕Wt.

(A12) supt∈N∗
c(Dgt(x̂t)) < +∞.

(A13) ∃r > 0, ∀x ∈ B∞(x̂, r), ∀t ∈ N∗, ImDgt(xt) ∩Wt = {0}.

Then there exists a sequence (pt)t∈N∗
∈ ℓ1(N∗, Y

∗) which satisfies, for all t ∈ N∗,
the following equality

βtD1ut(x̂t, x̂t+1) + βt−1D2ut−1(x̂t−1, x̂t) = pt ◦Dgt(x̂t).

Proof. For each t ∈ N∗ we consider the following static problem.

(Rt)

{

Maximize Jt(xt) := βt−1ut−1(x̂t−1, xt) + βtut(xt, x̂t+1)
subject to xt ∈ A, gt(xt) = 0.
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Since x̂ is a solution of (V), proceeding by contradiction, it is easy to see that x̂t
is a solution of (Rt). Under our assumptions we can use Theorem 4.1 on (Rt) and
assert that there exists qt ∈ Y ∗ such the following equality holds.

βt−1D2ut−1x̂t−1, x̂t) + βtut(x̂t, x̂t+1) = qt ◦Dgt(x̂t). (6.1)

Under (A11), we know that, for every y ∈ Y , there exists a unique (z, w) ∈
ImDgt(x̂t)×Wt such that y = z +w. We define pt ∈ Y ∗ by setting pt(y) := qt(z).
Hence we deduce from (6.1) the following equality:

βt−1D2ut−1(x̂t−1, x̂t) + βtD1ut(x̂t, x̂t+1) = pt ◦Dgt(x̂t). (6.2)

Now we ought to prove that (pt)t∈N∗
∈ ℓ1(N∗, Y

∗).

Let y ∈ ℓ∞(N∗, Y ). Using Proposition 5.8, there exists x ∈ ℓ∞(N∗, X) and w ∈ W
such that y = DG(x̂)x+ w, i.e. yt = Dgt(x̂t)xt + wt. Hence we have

pt(yt) = pt ◦Dgt(x̂t)xt + pt(wt)
= pt ◦Dgt(x̂t)xt + 0
= βt−1D2ut−1(x̂t−1, x̂t)xt + βtD1ut(x̂t, x̂t+1)xt

The sequences (D2ut−1(x̂t−1, x̂t))t∈N∗
and (D1ut(x̂t, x̂t+1))t∈N∗

are bounded after
(A4), and since (xt)t∈N∗

is bounded, the sequences (D2ut−1(x̂t−1, x̂t)xt)t∈N∗
and

(D1ut(x̂t, x̂t+1)xt)t∈N∗
are bounded.

Since β ∈ (0, 1), the series
∑

t≥1 β
t−1D2ut(x̂t−1, x̂t)xt and

∑

t≥0 β
tD1ut(x̂t, x̂t+1)xt

are convergent in R, and consequently the series
∑

t≥1 pt(yt) is convergent in R.

Since c0(N∗, Y ) ⊂ ℓ∞(N∗, Y ), we obtain that the series
∑

t≥1 pt(yt) is convergentin

R when y ∈ c0(N∗, Y ). Using [12](assertion (α) in page 247), we can assert that
(pt)t∈N∗

∈ ℓ1(N∗, Y
∗). �

Notice that (A3), (A4), (A8), (A9) and (A11) are automatically fulfilled when
dimX < +∞ and dimY < +∞. When dimY < +∞, using a represention of
the topological dual space of ℓ∞(N∗, Y

∗) (as a direct of ℓ1(N∗, Y
∗) and of another

subspace) which is given in [2] Chapter 15, Section 15.8) we can process as in [8]
(Chapter 3) and to obtain the sequence (pt)tb∈N∗

as the component in ℓ1(N∗, Y
∗)

of an element of ℓ∞(N∗, Y
∗)∗.
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