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Jürgen Eichberger2 and Ani Guerdjikova3
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Abstract
We study how ambiguity and ambiguity attitudes affect asset prices when consumers form their ex-

pectations based on past observations. In an OLG economy with risk-neutral yet ambiguity sensitive

consumers, we describe limiting asset prices depending on the proportion of investor types. We

then study the evolution of consumer type shares. With long memory, the market does not select

for ambiguity-neutrality. Whenever perceived ambiguity is sufficiently small, but positive, only pes-

simists survive and determine prices in the limit. With one-period memory, equilibrium prices are

determined by Bayesians. Yet, the average price of the risky asset is lower than its fundamental value.
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1 Introduction

There is a wide-spread view that optimism and pessimism may cause excessive pro-cyclical buying or sell-

ing in financial markets. In consequence asset prices may substantially and persistently deviate from their

fundamental values. In a recent article on the financial crisis, Shefrin and Statman (2012) quote Keynes on

the psychology of financial booms and crises: “The later stages of the boom are characterized by optimistic

expectations as to the future yield of capital goods. . . of speculators who are more concerned with forecasting

the next shift of market sentiment than with a reasonable estimate of the future yield of capital assets, that

when disillusion falls upon an over-optimistic and over-bought market, it should fall with sudden and even

catastrophic force. Moreover, the dismay and uncertainty as to the future which accompanies a collapse in the

marginal efficiency of capital naturally precipitates a sharp increase in liquidity preference. . . it is not so easy to

revive the marginal efficiency of capital, determined as it is by the uncontrollable and disobedient psychology

of the business world. It is the return of confidence, to speak in ordinary language, which is so insusceptible to

control in an economy of individualistic capitalism.” Keynes (1936, pp. 315-317).

In this view, investors’ trades in asset markets rely on forecasts not only about the unknown real returns, but

also about prices which are endogenously generated by demand and supply. Investors’ preferences and beliefs

determine the equilibrium prices which in turn feed back into the updates of these beliefs. Depending on

whether investors hold identical or heterogeneous subjective beliefs, this feedback process may lead to up- or

downward biased price predictions and, in consequence, to converging or cyclical price processes. Most of the

literature (see Section 1.2) on the dynamics of financial markets assumes that investors are subjective expected

utility (SEU) maximizers who update their beliefs according to Bayes’ law. Combined with the assumption of

rational expectations, embodied in an equilibrium price functional, pro-cyclical price movements enter these

models via trading frictions and constraints. The "uncontrollable and disobedient psychology of the business

world" is controlled by a rational expectations equilibrium price function.

In Eichberger and Guerdjikova (2013), we provide an α-Max-Min Expected Utility (α-MEU) representation of

preferences and beliefs, when information is in the form of data sets as in the case-based decision theory initi-

ated by Gilboa and Schmeidler (2001). The beliefs are given by a set of probability distributions. They depend
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on the frequency of observed cases, but also on the degree of perceived ambiguity which itself is a function of

the type and number of observations. Attitudes towards uncertainty make investors bias their decision-relevant

beliefs, upwards for optimists and downwards for pessimists, whenever beliefs are ambiguous. If an investor

feels no ambiguity, either as an SEU-maximizer or because ambiguity vanishes, possibly with large amounts

of consistent data, then the individual’s attitude becomes irrelevant. Thus, over and under weighting of pre-

dictions will depend both on attitudes and on the endogenously generated price data. We feel that this type of

preferences and beliefs can capture some of the "uncontrollable and disobedient psychology of the business

world" as mentioned by Keynes.

The dynamics of asset prices in a model with case-based investors facing ambiguity will depend on the distrib-

ution of ambiguity attitudes in the population. In turn, as the quote from Keynes suggests, the general level of

optimism and pessimism in the population might itself be driven by the market. Results in social psychology

show that optimism and pessimism may be intergenerationally transmitted. Zuckerman (2001, p. 184) finds

that these attitudes may be adaptive traits "selected in evolution for our species" characterized by "a low [...]

but significant heritability. [...] Optimism is also influenced by shared familial factors and non-shared life

events, but pessimism seems to be primarily learned by events outside of the shared family environment."

Evidence also suggests that macroeconomic events may have an impact on investors’ ambiguity attitudes and,

thus, on their market behavior. Malmendier and Nagel (2011) find that individuals who have experienced low

stock market returns during the Great depression show lower willingness to take financial risk, are less likely to

participate in the stock market, invest a lower fraction of their liquid assets in stocks, and are more pessimistic

about future stock returns. Such experience need not be "personal" – individual preferences may adjust in

response to the observed performance of others.

In this paper, we propose a model of financial markets where (i) investors form ambiguous beliefs about future

asset prices and dividends based on endogenously generated financial data, (ii) the population of investors

consists of optimists, pessimists and Bayesian SEU maximizers, and (iii) the shares of these three types of

investors evolve depending on their market performance. Although data about prices are generated endoge-

nously, we treat the amount of data, i.e., the length of memory, on which investors base their predictions as

an exogenous variable. We focus on two cases: short memory, containing the µ most recent observations, and
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long memory, containing all past observations. We also treat as exogenous the function relating the degree

of ambiguity to the amount of available data. We discuss the case where ambiguity vanishes, i.e. the set of

probability distributions shrinks to a singleton, as the amount of data grows and the case where ambiguity

is persistent, i.e., the set of probability distributions does not converge to a singleton, no matter how much

evidence is available.

1.1 Framework and results

We consider an OLG model with a risky asset and a riskless bond. Investors’ preferences and beliefs are de-

scribed by the case-based α-MEU representation developed in Eichberger and Guerdjikova (2013). Investors

live for two periods. They observe data from an exogenous i.i.d. dividend process and endogenously deter-

mined past asset prices. Although each generation plans for just two periods, investors have access to data sets

containing observations of previous generations. Based on these observations they form expectations about

asset returns. Ambiguity arises because investors perceive uncertainty about the precision of their predictions

depending on quantity and quality of data. We distinguish three types of investors as to their attitude towards

ambiguity: optimists, pessimists, and ambiguity-neutral Bayesians.

With no ambiguity and infinitely many observations, predicted asset prices converge towards their fundamental

values and in the limit investors hold rational expectations. In general, however, predictions of future returns

depend on the investors’ (limited) memory, on their perceived ambiguity, and on their attitude towards this

ambiguity. Hence, asset prices reflect these characteristics, as well as the shares of investor types in the market.

For fixed shares of types in the population, if memory includes all past cases, consumers learn the dividend

process, and prices converge. However, if ambiguity is persistent, the limit price exceeds (falls below) the

fundamental value for a high share of optimists (pessimists). Market prices are thus biased by the ambiguity

attitudes in the population.

When the memory is short, investors cannot learn the dividend process and the asset price does not converge.

The price dynamics can be described by an irreducible recurrent Markov process. The support of the invariant

distribution of this process depends on the shares of types in the economy: it is shifted up (down) if optimists

(pessimists) dominate the market. In general, however, short memory produces cycles of optimism, Bayesian-

ism and pessimism, each of the regimes occurring with strictly positive probability.
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To capture the idea that attitudes towards ambiguity in the population may evolve, as suggested by Zuckerman

(2001) and Malmendier and Nagel (2011), we next assume (in the spirit of the indirect evolutionary approach4

initiated by Güth and Yaari (1992)) that the proportions of investor types adjust to imitate the more successful

types in previous generations. We capture this process by a replicator dynamics5. Equilibrium prices and

population shares are now determined by the learning dynamics for a given memory length and by the replicator

dynamics. When the price of the asset is constant and equals its fundamental value, the replicator dynamics

favors the more cautious pessimistic investors. Hence, the state in which the asset prices are set by Bayesian

investors with rational expectations and coincide with the fundamental values is not stable. With infinite

memory, only pessimists survive in the unique stable steady state of the economy. Furthermore, with small but

persistent ambiguity, the economy converges to this pessimistic steady state a.s. and in expectations.

In an economy with one-period memory and without Bayesian investors, cycles emerge: a sequence of high

(low) dividend realizations leads to an "optimistic (pessimistic) market", in which the share of optimists (pes-

simists) is relatively high and the equilibrium price equals the optimists’ (pessimists’) reservation price.

With all three types of consumers and one-period memory no cycles occur. Almost surely, after a finite number

of periods, the economy reaches a state, in which the equilibrium price in each period is set by the Bayesian

investors. However, the average price lies below the fundamental value. Moreover, although the equilibrium

price is determined by a "Bayesian" regime, optimists or pessimists need not disappear.

1.2 Related literature

The model presented in this paper combines elements of (i) temporary equilibrium theory with overlapping

generations (OLG), (ii) case-based decision theory for agents learning from data with ambiguous beliefs, and

(iii) the theory of market selection. The discussion of the literature focuses on these three aspects.

1. Rational expectations in stochastic dynamic general equilibrium and temporary equilibrium

The literature on dynamic economies with asset markets comprises two approaches which model price expecta-

tions in different ways. The temporary equilibrium approach (with or without OLG) assumes that expectations

4 In contrast to a large literature, which will be discussed in more detail in Section 1.2, in our model evolutionary

pressure does not select for "investment strategies", or beliefs, but for a feature of the preferences, specifically the attitude

towards ambiguity.
5 Hofbauer and Schlag (2000) show that the replicator dynamics can be interpreted as an imitation process.
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about future prices and endowments are based on information about past prices which are generated sequen-

tially by demand and supply. Rational expectations thus do not hold in every temporary equilibrium, but may

be learned in the long run, if the environment is sufficiently stationary6, see Bray (1982), Bray and Kreps

(1987), Blume and Easley (1982), Grandmont (1998).

The approach taken by the stochastic intertemporal general equilibrium theory studies investors who plan for

the full horizon of the economy. It assumes a stochastic process of endowments and investors who learn about

the true parameters from observations of realizations of the endowment process and from endogenous rationally

predicted asset prices which are formed according to an equilibrium pricing function. Rational expectations

regarding asset prices are guaranteed by the endogenous equilibrium pricing function. Learning concerns only

the stochastic process of endowments. In the tradition of Radner (1982), these models are at the core of the

computable general equilibrium literature, see e.g., Marcet and Sargent (1988), Marcet and Sargent (1989),

Branger, Schlag, and Wu (2015), and Chien, Cole, and Lustig (2015).

For economies with ambiguity-aversion, Condie and Ganguli (2011) show that equilibrium prices are only

partially revealing for a generic set of economies. This result raises questions about the equilibrium pricing

function approach in a model where decision makers face ambiguity.

In this paper, we use a Lucas-tree model common in macroeconomics and finance, see Ljungqvist and Sargent

(2004). Belief formation and learning in this model have been studied both with OLG and with infinitely-lived

consumers, Marcet and Sargent (1988), Marcet and Sargent (1989), Branger, Schlag, and Wu (2015).

We chose the OLG model for several reasons. First, it is not clear how to define an equilibrium with adaptive

expectations in a model with infinitely-lived case-based decision makers facing ambiguity, cf. Adam and

Marcet (2011). Second, the notion of ambiguity, which is usually associated with deficient data and bounded

rationality, seems to be at odds with rational predictions at any point in time. Finally, in combination with the

replicator dynamics over types, the OLG-model seems also better suited to incorporate the results from social

psychology on the intergenerational transmission of optimism and pessimism — it captures both the hereditary

mechanism and the social learning aspect of this dynamics. Hence, we follow the temporary equilibrium

6 In general, convergence towards rational expectations fails, even in representative agent economies, see Evans and

Honkapohja (2001).
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approach in which the process of learning may converge to an equilibrium under rational expectations when

data is abundant and the environment is sufficiently stationary.

2. Ambiguity and learning

A number of studies have shown that ambiguity aversion can explain stylized facts such as the home bias (Uppal

and Wang (2003)), the equity premium puzzle (Epstein and Schneider (2007), Collard, Mukerji, Sheppard, and

Tallon (2011), Zimper (2012)), or negative correlation between asset prices and returns (Ju and Miao (2012)).

These models typically consider a representative investor with rational expectations.

We deviate from this literature by using the case-based decision approach of Gilboa and Schmeidler (2001) to

focus on belief formation and learning. The representation developed in Eichberger and Guerdjikova (2010)

and Eichberger and Guerdjikova (2013) allows us to study agents with heterogeneous attitudes towards ambi-

guity arising from insufficient data7. While for a Bayesian investor a signal which increases the probability of

an event, by necessity decreases the probability of its complement, for an investor with non-additive beliefs,

information has an additional value: it reduces ambiguity. For an optimist (pessimist), the additional value of

information is positive (negative). Hence, the beliefs and the optimal portfolio choices of optimists / pessimists

in our model cannot be mimicked by a Bayesian, Eichberger and Guerdjikova (2013, p. 1449).

A small literature studies learning under ambiguity asking whether with sufficient data ambiguity will vanish

and whether the limit beliefs form a rational prediction. Contrary to intuition, such learning processes need

not always converge, even when the draws are i.i.d. For an i.i.d. process with a finite set of parameter values,

Marinacci (2002) identifies conditions for full Bayesian updating on a set of priors to converge to the truth.

In contrast, Marinacci (1999) considers a class of capacities, which he associates with an i.i.d. process, and

shows that the limit capacity corresponds to a non-singleton set of priors and ambiguity is persistent.

Epstein and Schneider (2007) examine Bayesian updating on a set of priors in combination with an α-expected

maximum likelihood rule and show that this process converges to the true probability when the process is

i.i.d.. Zimper and Ma (forthcoming) reexamine the results of Epstein and Schneider (2007), but using an α-

log-maximum-likelihood updating rule and show that in this case convergence towards a single prior fails.

Ambiguity, thus need not vanish even for an i.i.d. process. For non-i.i.d. processes, Epstein and Schneider

7 This approach has been applied to technological adaptation in Eichberger and Guerdjikova (2012).
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(2007), p. 1276, note that "ambiguity need not vanish in the long run".

Experimental evidence by Nicholls, Romm, and Zimper (2015) shows that statistical information about i.i.d.

draws from an urn does not reduce the number of violations of the Sure-Thing Principle, although subjects’

probability estimates converge to the truth. Convergence of beliefs and persistent ambiguity can thus coexist.

In Eichberger and Guerdjikova (2013), we address these issues in an axiomatic context identifying persistent

and vanishing ambiguity from the decision maker’s preferences. The case of persistent ambiguity is of partic-

ular interest in this model, since a correct prediction of prices requires learning not only the dividend and the

price process but also the evolution of types. As in the changing urn example studied in Epstein and Schneider

(2007), the evolution of investor types cannot be learned from price and dividend data. Investors thus might

perceive ambiguity even in the limit, after having learned the dividend and price distribution.

3. Market selection

There is a large literature dealing with selection in markets, which may operate on investment strategies, beliefs

(Bayesian vs. biased non-Bayesian beliefs) or preferences (discount factors, risk aversion, ambiguity attitudes).

Results in this literature concern the limiting distributions of strategies or types.

Two major strands have developed in this literature: the first one, inititated by Blume and Easley (1992)

and Hens and Shenk-Hoppé (2001) considers the evolution of exogenously given portfolio rules, see also

Evstigneev, Hens, and Schenk-Hoppe (2002), Evstigneev, Hens, and Schenk-Hoppé (2006), Evstigneev, Hens,

and Schenk-Hoppé (2008), Amir, Evstigneev, and Schenk-Hoppe (2011), Bottazi, Dindo, and Giachini (2015).

A main result of this literature is the discovery of the Kelly rule, a globally stable investment rule which

maximizes the log-expected utility function with correct beliefs. The second strand of the literature initiated

by Blume and Easley (2006) and Sandroni (2000) studies the evolution of long-lived optimizing investors with

different beliefs and preferences. In bounded economies with complete markets populated by SEU investors,

only investors with correct beliefs survive. Risk preferences are irrelevant for survival.

A characteristic feature of both strands of the literature is that uncertainty concerns only the exogenous endow-

ment process and is represented by a filtration. Investors’ portfolio choices have to be measurable with respect

to this filtration. Hence, this framework does not allow for adaptive learning about prices as in our paper. Bot-

tazzi and Dindo (2014) and Brock et al. (2001) in contrast model selection in markets with adaptive learning.
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They study the "deterministic skeleton" of the system, replacing the dividend process with the expectation of

the dividends and show that market outcomes converge to the equilibrium under rational expectations with

correct beliefs. In contrast, we study the stochastic process per se and show that such a deterministic approxi-

mation is not appropriate, when aggregate wealth is stochastic and the evolutionary dynamics is non-linear.

The assumptions of Blume and Easley (2006) have been relaxed to show that risk preferences matter for

survival in unbounded economies, (Rader (1981), Kogan, Ross, Wang, and Westerfield (2006), Kogan, Ross,

Wang, and Westerfield (2011) and Yan (2008)) and that with incomplete markets8, correct beliefs are neither

necessary, nor sufficient for survival, (Coury and Sciubba (2012) and Beker and Chattopadhyay (2010)). In

our model, endowments are bounded, but markets are incomplete. However, our main result on survival,

Proposition 15, will also hold true for a dividend process with only two realizations (rather than a continuum),

i.e., for a complete market.

A small literature studies survival of investors with incorrect beliefs in OLG-models, e.g., Long, Shleifer,

Summers, and Waldmann (1990), Long, Shleifer, Summers, and Waldmann (1991), Palomino (1996), and

Wang (2001). In these models traders choosing riskier strategies may dominate the market.

While most of the literature works directly with the endogenous wealth dynamics, Brock, Hommes, and Wa-

gener (2001), Alós-Ferrer and Ania (2005) and Wang (2001) introduce an exogenous dynamics over investor

types. Our approach is most similar to Wang (2001) in that the replicator dynamics parallels the evolution of

wealth in an economy with infinitely-lived agents with identical, but exogenous saving rates, see Remark 12.

Few papers investigate preferences other than SEU. Often, asset demand of investors with non-SEU preferences

mimicks that of SEU-investors with wrong beliefs and such investors disappear. E.g., Condie (2008) and Silva

(2011) show that agents with time-separable ambiguity-averse preferences can survive only if their behavior

mimicks that of SEU-maximizers with correct beliefs. Without time-separability, smooth ambiguity-averse

agents may engage in precautionary savings and survive with effectively wrong beliefs while driving SEU with

correct beliefs out of the market, Guerdjikova and Sciubba (2015). In our OLG-model, the saving motive is

absent. Nevertheless, the replicator dynamic need not select for ambiguity-neutral preferences.

8 Even when markets are complete, differential access to assets, (Chien, Cole, and Lustig (2015) and Guerdjikova

and Quiggin (2017)) may allow agents with incorrect beliefs to survive.
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Borovicka (2014) and Dindo (2016) examine survival in the context of Epstein and Zin (1989) preferences

and show that time-nonseparability allows agents with wrong beliefs to survive. However, they do not discuss

whether Epstein-Zin preferences can survive in the presence of SEU investors with correct beliefs. Finally,

Easley and Yang (2014) analyze the survival of loss-averse decision makers and show that these agents dis-

appear in the presence of investors with Epstein-Zin preferences who do not exhibit loss-aversion. Hence,

loss-aversion cannot have a long-lasting effect on prices.

1.3 Organization of the paper

In section 2, we describe the economy, explain the process of belief formation in the light of the available data

and define a temporary equilibrium for this economy. Section 3 analyzes the economy with fixed type shares

for the two cases of finite and infinite memory, describes the limit distribution of prices and provide some

comparative statics results. Section 4 studies the evolution of investor types with infinite and with one-period

memory. Section 5 concludes. All proofs are collected in the Appendix.

2 The Model

2.1 The Economy

Consider an OLG model where in each period a mass 1 of young consumers is born. Consumers live for two

periods and receive y units of the consumption good in the first period of their life and no endowment in the

second period. Young consumers can use their endowment y to buy a portfolio of assets. The assets’ payoffs

consist of dividends and capital gains. Since consumers’ endowments are 0 in the second period of their life,

the returns on their portfolio determine their old-age consumption.

There are two assets (Lucas trees) in the economy: a bond in exogenous supply B which pays in each period t

a riskless dividend r per unit and has a price of pt and a risky asset in supply A which pays a random dividend

δ ∼i.i.d. ρ and has a price qt. The distribution ρ is continuous with support
[
δ; δ̄
]
. Both assets can be traded in

every period. Their returns can be written as
pt+1+r
pt

for the bond and
qt+1+δt+1

qt
for the risky asset.

In order to focus on the portfolio choice, we will assume that consumers are interested exclusively in second-

period consumption ct+1. Hence, young consumers at time t will spend all their income on a portfolio (at; bt),

whereas old consumers will consume the asset returns and capital gains of the portfolios bought when young.
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Short-sales are prohibited9, hence, (at; bt) ∈ R2+
0 . With these assumptions on preferences, Walras’ law im-

plies

qtA+ ptB = y(1)

for all asset price systems (qt, pt) in this economy. In consequence, there is only one free asset price, qt, while

the bond price pt is given by pt = h(qt) := 1
B (y − qtA).

2.2 Consumers’ beliefs, data and learning

The bond rate of return r is assumed to be certain and publicly known. However, investors know neither the

probability distribution ρ of the exogenous dividend process nor the future asset prices (pt+1; qt+1).

Consumers form beliefs about future asset prices and dividends based on past observations. In particular,

in period t, a case consisting of the dividend realization δt of the risky asset and the equilibrium asset prices

(p∗t ; q
∗
t ) is observed. The publicly available (hard) information at time t is given by a data set Pt, which contains

the cases observed in the last µ periods: Pt =
{(
p∗t−1; q∗t−1; δt−1

)
...
(
p∗t−µ; q∗t−µ; δt−µ

)}
. The parameter µ

describes the amount of hard information available in the economy.

Since the information contained in the data set Pt might not be sufficient to make an informed prediction

about future prices and dividends, the consumers also form (subjective) perceptions about the lower and upper

bounds of prices and dividends. These are given by p and p for the bond, q and q for the risky asset and δ and

δ̄ for the dividends10. Denote by P :=
{
δ; δ
}
×
{
p; p
}
×
{
q; q
}

the set of all extreme cases.

Let M (Pt ∪ P) be the set of distinct cases in Pt ∪ P and m denote their number, m = |M (Pt ∪ P)|. Given

the available hard information and his subjective perceptions, an investor i forms beliefs about future prices

and dividends given by a set of priors

Πi (Pt ∪ P) :=
(
1− γiµ

)
fPt + γiµ∆m,(2)

where fPt is the frequency of cases observed in the data set Pt,
(
1− γiµ

)
is the degree of confidence consumer

9 As Remark 4 explains, introducing short-sales, but restricting consumption to be non-negative in all states of the

world will leave the major part of our results unchanged.
10 For simplicity, we assume that the perceptions of the upper and lower bounds of dividends are correct. While the lower

and upper bounds are assumed to be identical across agents, we will see that pessimists will only use the lower bounds,

optimists – only the upper bounds and Bayesians will not rely on these bounds at all when choosing their portfolios.
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i puts in the hard information. Since the number of observations in Pt is limited, consumers might feel am-

biguous about a prediction based entirely on the frequency fPt . γ
i
µ is the degree of ambiguity regarding this

prediction – the weight assigned to the ∆m, the simplex (the set of all possible probability distributions) over

all possible cases in Pt ∪ P .

The degree of ambiguity γiµ will depend on the length of memory µ, i.e., the number of cases in Pt. If the

length of memory increases, i.e., as more information becomes available, ambiguity may shrink and might

even disappear. We will assume that γiµ is decreasing in µ. However, given the agents’ uncertainty about

the price formation process, we will not assume that ambiguity necessarily vanishes in the limit. Hence,

limµ→∞ γiµ = γi > 0 might obtain even when agents observe the entire history of the economy. We will refer

to an agent, for whom γiµ = 0 for all µ ∈ N as a Bayesian with a frequency-based prior or Bayesian, for short.

Following Eichberger and Guerdjikova (2013), we will assume that consumers i’s preferences on the set of

portfolios consisting of ait units of the risky asset and bit units of bonds,
(
ait; b

i
t

)
can be represented by the

following functional11 with a linear von Neumann-Morgenstern utility function12:

V i
t (ait, b

i
t;Pt) = αi max

π∈Πi(Pt∪P)

∑
(p;q;δ)∈M(Pt∪P)

((r + p) bit + (δ + q) ait)π (p; q; δ)(3)

+
(
1− αi

)
min

π∈Πi(Pt∪P)

∑
(p;q;δ)∈M(Pt∪P)

[
((r + p) bit + (δ + q) ait)

]
π (p; q; δ)

where Πi (Pt ∪ P) is the set of priors defined in (2), whereas αi is the consumers’ degree of optimism.

We will distinguish three types of consumers: (i) optimists with αo = 1 respond to their ambiguity by focussing

on the "best probability distribution" in Π (Pt ∪ P), (ii) pessimists with αp = 0 decide on the basis of the worst

probability distribution, and (iii) Bayesians (γbµ ≡ 0, Πi (Pt ∪ P) = {fPt}) focus on the frequency of cases

fPt . We will assume that for optimists and pessimists the perceived ambiguity only depends on µ and write

γoµ = γbµ = γµ. The population of consumers consists of a fraction ω ∈ [0; 1] of optimists, a fraction β ∈ [0; 1]

of Bayesians, and a fraction σ := 1− ω − β ∈ [0; 1] of pessimists.

The upper and lower limits of prices and dividends in P determine the extreme values of the expected asset

11 Such a preference functional can be derived axiomatically from preferences over acts and data, see Eichberger and

Guerdjikova (2013).
12 Risk-neutrality, i.e., a linear von Neumann-Morgenstern utility function u(x) = x, is a common assumption in asset

demand models, e.g., Adam and Marcet (2011).
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returns. In order to rule out that consumers expect returns which allow unlimited arbitrage, we will assume that

beliefs about these upper and lower bounds are arbitrage-free. In particular, we will require that consumers

consider the lowest possible return of the risky asset,
δ
q̄ to be lower than the minimal perceived return of the

bond, rp̄ and the maximal return of the risky asset δ̄q to exceed the maximal return of the bond r
p :

δ

q̄
<
r

p̄
<
r

p
<
δ̄

q
(4)

Assumption A1 (Strongly Arbitrage-Free Beliefs) We call the consumers’ beliefs about prices and dividends

strongly arbitrage-free if the upper and lower bounds of prices and dividends q̄, q, p̄, p, δ̄ and δ satisfy

δ

q̄
<
δ̄

q̄
<
r

p̄
<
r

p
<
δ

q
<
δ̄

q
(5)

Under Strongly Arbitrage-Free Beliefs, the ranges of returns are nested. The returns of the safe asset will

always lie between the extreme returns of the risky asset, i.e., the entire range of bond returns
(
r
p̄ ; rp

)
lies

between the highest range
(
δ
q ; δ̄q

)
and the lowest range

(
δ
q̄ ; δ̄q̄

)
of stock returns. Hence, the expected returns

of the two assets can never dominate each other. This precludes q̄ and q from being equilibrium prices, since

there would be arbitrage opportunities at these prices.

For most of our results we will rely on Assumption A1. For Proposition 17, however, a weaker notion of

arbitrage-free beliefs, which allows for some overlap of the expected return ranges, is necessary.

Assumption A2 (Weakly Arbitrage-Free Beliefs) We call the consumers’ beliefs about prices and dividends

weakly arbitrage-free if the upper and lower bounds of prices and dividends q̄, q, p̄, p, δ̄ and δ satisfy

(i) Larger Price Uncertainty for the Risky Asset,
q̄
q >

p̄
p , and

(ii) Overlapping Expected Returns of the Assets

δ

q̄
<
r

p̄
<
δ̄

q̄
<
δ

q
<
r

p
<
δ̄

q
.

Notice that Strongly Arbitrage-Free Beliefs (Assumption A1) implies Larger Price Uncertainty for the Risky

Asset (Assumption A2 i). Under Weakly Arbitrage-Free Beliefs the ranges of the expected returns of the assets

may intersect. In this case, the extreme values of the risky asset price may obtain in equilibrium. Clearly, both

Assumptions 1 and 2 are stronger than (4). Apart from being easy to interpret, the stronger constraints have the
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advantage of allowing us to rank the reservation prices of investors for any temporary equilibrium13 and, thus,

allow us to provide a tractable analysis of the price dynamics.

2.3 Temporary equilibrium

In each period t, Walras’ law (1) relates bond prices pt in a unique way to stock prices qt. Hence, each case is

fully described by the price qt and the dividend δt. Simplifying the data setQt = {(qt, δt) | (h(qt), qt, δt) ∈ Pt},

one obtains the following optimization problems.

A young consumer of type i ∈ {o; b; p}, chooses a portfolio
(
ait; b

i
t

)
so as to maximize V i

t (ait, b
i
t;Qt) given in

(3) subject to the budget constraint qta
i
t + ptb

i
t ≤ y, where

• V o
t (aot , b

o
t ;Qt) = max

π∈Π(Qt)

∑
(p;q;δ)∈M(Qt)

((r + p) bot + (δ + q) aot )π (p; q; δ)

for optimists,

• V p
t (apt , b

p
t ;Qt) = min

π∈Π(Qt)

∑
(p;q;δ)∈M(Qt)

((r + p) bpt + (δ + q) apt )π (p; q; δ)

for pessimists,

• V b
t (abt , b

b
t ;Qt) =

∑
(p;q;δ)∈M(Qt)

((r + p) bbt + (δ + q) abt)fQt (p; q; δ)

for Bayesians

Denoting by EQt [q] = 1
µ

∑t−µ
τ=t−1 qτ and EQt [δ] = 1

µ

∑t−µ
τ=t−1 δτ the average dividend and the average price

realized in Qt, we obtain the following demand correspondences for the three types of consumers.

Proposition 1 For each type of consumers i ∈ {o; b; p}, the demand correspondence for the risky asset is

given by

ait (qt;Qt) =


y
qt

if qt < qi
(
Qt; γµ

)[
0; y

qi(Qt;γµ)

]
if qt = qi

(
Qt; γµ

)
0 if qt > qi

(
Qt; γµ

)(6)

with reservation prices

• qo
(
Qt; γµ

)
:=

y[(1−γµ)(EQt [q]+EQt [δ])+γµ(q+δ)]
(1−γµ)y+[(1−γµ)EQt [δ]+γµ(q+δ)]A+(γµp+r)B

for optimists,

• qb
(
Qt; γµ

)
:=

y(EQt [q]+EQt [δ])
y+AEQt [δ]+rB

for Bayesians,

• qp
(
Qt; γµ

)
:=

y[(1−γµ)(EQt [q]+EQt [δ])+γµ(q+δ)]
(1−γµ)y+A[(1−γµ)EQt [δ]+γµ(q+δ)]+(γµp+r)B

for pessimists.

(7)

13 Assumption A1 implies that the optimists’ reservation price will exceed that of the Bayesians, which in turn will be

higher than that of the pessimists (see Lemma 3). Assumption A2 implies that the optimists’ reservation price will

exceed that of the pessimists and is only used for the result in Proposition 17.
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Note that for each type i ∈ {o; b; p}, the critical value qi
(
Qt; γµ

)
can also be written as qi

(
EQt [q] ;EQt [δ] ; γµ

)
and is increasing in the realized average dividend EQt [δ].

Aggregating over all consumers yields the aggregate demand function for the risky asset:

at
(
q;Qt; γµ

)
:= ωaot

(
qt;Qt; γµ

)
+ βabt

(
qt;Qt; γµ

)
+ (1− ω − β)apt

(
qt;Qt; γµ

)
Definition 2 A temporary equilibrium in period t for a given data set Qt and a given degree of ambiguity

γµ is a stock market price system q∗t such that at
(
q∗t ;Qt; γµ

)
= A.

To simplify notation, from now on and w.l.o.g., we will normalize the exogenous income to y = 1 and the

asset supplies to A = B = 1. The following Lemma shows that, as long as ambiguity matters in the limit, for

sufficiently large t, the reservation prices of optimists, Bayesians and pessimists on the equilibrium path can

be ranked: optimists always overvalue the risky asset relative to Bayesians, whereas pessimists undervalue it.

This property can be used to compute the temporary equilibrium given
(
Qt; γµ

)
:

Lemma 3 Suppose that memory length is either fixed at µ and γµ > 0, or memory is infinite and limµ→∞ γµ =

γ > 0. If beliefs are strongly arbitrage-free, there is a.s. a finite period t̄ such that for all t ≥ t̄, qo
(
Qt; γµ

)
>

qb (Qt) > qp
(
Qt; γµ

)
. Hence, for given shares of optimists ω, Bayesians β and pessimists σ, there is a.s. a

finite t̄ such that for all t ≥ t̄ the temporary equilibrium at time t for memory Qt is given by:

(i) q∗t = qo
(
Qt; γµ

)
, aot = 1

ω , abt = apt = 0 for ω ≥ qo
(
Qt; γµ

)
,

(ii) q∗t = ω, aot = 1
ω , abt = apt = 0 for qo

(
Qt; γµ

)
> ω ≥ qb (Qt) ,

(iii) q∗t = qb (Qt) , aot = qb (Qt)
−1

,

abt = 1−ωqb(Qt)−1

β , apt = 0 for ω + β ≥ qb (Qt) > ω,

(iv) q∗t = ω + β, aot = abt = (ω + β)−1
, apt = 0 for qb (Qt) > ω + β ≥ qp

(
Qt; γµ

)
,

(v) q∗t = qp
(
Qt; γµ

)
, aot = abt = qp

(
Qt; γµ

)−1
,

apt =
1−(ω+β)qp(Qt;γµ)

−1

1−ω−β for qp
(
Qt; γµ

)
> ω + β.

.

Remark 4 In this model, short-selling is prohibited. In fact, allowing for short-sales will not significantly

alter our analysis. Short-sales in the model would still be restricted by the non-negativity constraints on

consumption. As long as we require that consumption of all agents in equilibrium remains non-negative for all

possible realizations of prices and dividends, we obtain that for each investor, the share of wealth invested in

the risky asset should belong to a convex and compact set. Combining this result with the reservation prices

in (7), we obtain the same 5 cases for the temporary equilibrium constellations, which differ from the table
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in Lemma 3 only w.r.t. the cut-off values of the investor shares ω and β. This leaves the main results of our

analysis, notably the results in Section 3, as well as Proposition 14 and 15 unchanged.

3 Equilibrium Dynamics with Optimists and Pessimists

We now study the learning dynamics in the economy driven by the exogenous dividend process and the endoge-

nous asset price process for fixed shares of types ω, β and σ = 1− ω − β. We focus on the effects of memory

length and perceived ambiguity on the limit equilibrium price process and we compare economies with infinite

memory to economies with finite memory length µ. With finite memory, we assume that ambiguity γµ remains

positive and constant. For infinite memory, we study both the case in which ambiguity vanishes, γµ → 0, as

the number of observations grows and the case of persistent ambiguity where γµ → γ > 0.

3.1 Economies with Infinite Memory

Suppose first that investors have access to all previous observations of prices and dividends. Then, consumers

"learn" both the process of dividend realizations ρ and the equilibrium price:

Proposition 5 Suppose that consumers have access to all past cases until time t, µ = t, and that perceived

ambiguity γt converges to γ as memory length increases with time, limt→∞ γt → γ. If beliefs are strongly

arbitrage-free, then

lim
t→∞

q∗t (Qt; γt) =



qo∞ =:
(1−γ)Eρ[δ]+γ(q̄+δ̄)

(γp̄+r)+[(1−γ)Eρ[δ]+γ(q̄+δ̄)]
if ω > qo∞

ω if qo∞ ≥ ω > qb∞

qb∞ =: Eρ[δ]
Eρ[δ]+r if ω + β > qb∞ ≥ ω

ω + β if qb∞ ≥ ω + β > qp∞

qp∞ =:
(1−γ)(Eρ[δ])+γ(q+δ)

(γp+r)+((1−γ)Eρ[δ]+γ(q+δ))
if qp∞ ≥ ω + β

obtains a.s. Furthermore, for γ > 0, we have qo∞ > qb∞ > qp∞ and, for γ = 0, qo∞ = qb∞ = qp∞.

Several special cases of this proposition are of interest: first consider a representative agent economy (ω = 1 or

β = 1 or ω + β = 0). If the representative agent is Bayesian (β = 1), he perceives no ambiguity and the limit

price equals the fundamental value of the asset. If the representative agent is optimistic (ω = 1) or pessimistic

(ω + β = 0), the price converges a.s. to a rational expectations price where the actual expected dividend of

the asset is distorted upwards or downwards with a weight γ. More generally, if ambiguity is persistent, the

limit price depends positively on the ambiguity attitude: a market with a higher share of optimists (pessimists)
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systematically over(under)values the risky asset compared to a Bayesian market. Finally, if ambiguity vanishes,

the rational expectation price obtains regardless of the distribution of investor types.

3.2 Economies with Finite Memory

We now consider the case of finite memory. Since the memory length µ is fixed, we use γ to denote the

perceived constant ambiguity γµ. We will consider two types of economies: "pure" economies, for which

temporary equilibrium prices are determined by a single type of investor (even though the fractions of all three

types might be positive) and "economies with different regimes" for which all three types of investors may

become decisive for prices. In the latter case, different price regimes (optimistic, pessimistic or Bayesian) will

obtain depending on the observed prices and dividends.

3.2.1 Optimists’, Pessimists’, and Bayesian Markets

Lemma 3 identifies the different equilibrium constellations which can occur depending on the shares of op-

timists, pessimists and Bayesians. In a first step, we consider economies in which a single type of investors

determines equilibrium prices.

Definition 6 If there is a finite period t̄ such that in each period t ≥ t̄, the equilibrium price is given a.s. by

q∗t = qi (Qt; γ) for some i ∈ {o; b; p}, we call the economy an

• "optimists’market" if q∗t = qo (Qt; γ) ,

• "Bayesian market" if q∗t = qb (Qt) ,

• "pessimists’market" if q∗t = qp (Qt; γ) .

Our next proposition identifies the sets of values of ω and β, for which each of the three cases occurs.

Proposition 7 Suppose beliefs are strongly arbitrage-free. For i ∈ {o; b; p}, define qmin i and qmax i are

implicitly as:

qmax i = qi
(
EQt [q] = qmax i;EQt [δ] = δ̄; γ

)
qmax i = qi

(
EQt [q] = qmin i;EQt [δ] = δ; γ

)
.

Then,

• for ω > qmax o the economy is an optimists’ market;

• for ω < qmin b < qmax b < ω + β the economy is a Bayesian market;

• for ω + β < qmin p the economy is a pessimists’ market.

Intuitively, qmin i is the price predicted by an investor of type i when the data set contains only observations of
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that same price qmin i and the lowest possible dividend. It is the lowest price that can be sustained if prices are

set by type i investors. The maximal sustainable price pmax i is defined analogously.

For given values of ω and β, the dynamics of the economy is fully determined by the memory Qt, since the

temporary equilibrium in period t depends only on the price and dividend data in Qt. This Markov property is

a key feature of our analysis. For the case of a one-period memory, µ = 1, the equilibrium price q∗t is itself a

Markov process, i.e., the distribution of q∗t is fully described by the exogenous distribution of δt−1, ρ (δ) and

the asset price in the previous period q∗t−1. When the memory is longer, µ > 1, the asset price q∗t is no longer a

Markov process. However, (q∗t−µ+1...q
∗
t ; δt−µ+1...δt−1) is a Markov process: given the last µ price realizations(

q∗t−µ...q
∗
t−1

)
and the last µ− 1 dividend realizations, (δt−µ...δt−2), the distribution of q∗t , is fully determined

by the distribution of δt−1, ρ.

We now make use of this Markov property in order to characterize the long-run equilibrium price distribution.

Proposition 8 Assume that beliefs are strongly arbitrage-free. Let (ω;β) be such that the economy is either

an optimists’, a pessimists’, or a Bayesian market and let i ∈ {o; p; b} stand for the type of agent who deter-

mines market prices. Then the µ-tuples
(
q∗t−µ+1...q

∗
t ; δt−µ+1...δt−1

)
of equilibrium prices and dividends form

a Markov process which is ψ-irreducible, positive recurrent and has an invariant probability distribution π̃iµ

with a marginal distribution πiµ on q∗t satisfying πiµ
([
qmin i; qmax i

])
= 1.

The proposition demonstrates the existence of an invariant distribution for the Markov process of price and

dividend tuples
(
q∗t−µ+1...q

∗
t ; δt−µ+1...δt−1

)
, π̃iµ, which will describe the behavior of the economy in the long-

run. For a given set Q of such realizations, π̃iµ (Q) can be interpreted as the fraction of time that the economy

will spend in this set in the long-run. Of particular interest is the marginal of this distribution14 on q∗t , πiµ,

i.e., the invariant distribution of equilibrium prices in the economy. Proposition 8 shows that, for parameter

values (ω;β) which allow for markets dominated by a single type of agent i ∈ {o; b; p}, the support of this

distribution will be given by
[
qmin i; qmax i

]
– the range between the lowest and the highest price sustainable by

this type of investor. The Proposition demonstrates that only prices in this interval will be observed in the long-

run. Furthermore, any non-zero interval of prices in the respective price range will be reached in a recurrent

14 In the Appendix, we show that the marginals of π̃iµ on q1...qµ are identical, thus we can meaningfully talk about

an invariant price distribution.
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manner with strictly positive probability. Similarly to the interpretation of π̃iµ, for a given set of equilibrium

prices S ⊂
[
qmin i; qmax i

]
, in the long-run, πiµ (S) will coincide with the fraction of time, during which the

equilibrium asset price falls into this range, q∗t ∈ S.

Since qmax o > qmax b > qmax p and qmin o > qmin b > qmin p holds, see Lemma 18 in the Appendix, the

recurrent prices in a market dominated by optimists will exceed those in a Bayesian market, which in turn will

exceed those in a pessimistic market.

The case of a one-period memory, µ = 1, is special in that the equilibrium price process q∗t itself is a Markov

process. In this case, one can explicitly compute the expected price for the invariant distribution π.

Proposition 9 Given shares of optimists and Bayesians (ω;β) for which the economy is either an optimists’,

a pessimists’, or a Bayesian market, for µ = 1, the expected equilibrium price according to the long-run

equilibrium distribution πi is

Eπb1 [q] =
∫

δ

δ+r+1
ρ′(δ)dδ∫ (δ+r)

δ+r+1
ρ′(δ)dδ

for a Bayesian market,

Eπo1 [q] =

∫ (1−γ)δ+γ(q̄+δ̄)
[(1−γ)δ+γ(q̄+δ̄)]+(γp̄+r)+1−γ

ρ′(δ)dδ∫ [(1−γ)δ+γ(q̄+δ̄)]+(γp̄+r)

[(1−γ)δ+γ(q̄+δ̄)]+(γp̄+r)+1−γ
ρ′(δ)dδ

for an optimists’ market, and

Eπp1 [q] =

∫ (1−γ)δ+γ(q+δ)
[(1−γ)δ+γ(q+δ)]+(γp+r)+1−γ

ρ′(δ)dδ∫ [(1−γ)δ+γ(q+δ)]+(γp+r)
[(1−γ)δ+γ(q+δ)]+(γp+r)+1−γ

ρ′(δ)dδ
for a pessimists’ market.

Remark 10 Notice that for each i ∈ {o, b, p} the expected value Eπi1 [q] in Proposition 9 is lower than the

limit price qi∞ in an economy with a representative agent of type i in Proposition 5, Eπi1 [q] < qi∞.

3.2.2 Economies with Different Regimes

The class of pure economies defined in 6 is quite special. For a large range of parameter values (ω;β), no

one type of consumers determines the long-run equilibrium price distribution. We thus extend our results to

economies in which the equilibrium price is determined by the reservation price of the optimistic, pessimistic

or the Bayesian consumers depending on the observed data.

Our next Proposition first identifies parameter ranges of ω and β for which the economy can exhibit all three

regimes listed in Lemma 3 (i.e., prices can be determined by optimists, pessimists or Bayesians) and then
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establishes that in the limit, the economy will oscillate between these three different regimes spending a strictly

positive fraction of time in each of them15.

Proposition 11 Let beliefs be strongly arbitrage-free and let γ be sufficiently small so that qmin o < qmax p.

If (ω;β) are such that qmin o < ω < ω + β < qmax p, then, for each type of consumer i ∈ {o; b; p}, there

are data sets Qt ∈
[
qmin o; qmax p

]µ × [δ; δ̄]µ for which type i determines the equilibrium price, i.e., q∗t =

qi (Qt; γ). Furthermore, the µ-tuples (q∗t−µ+1...q
∗
t ; δt−µ+1...δt−1) of equilibrium prices and dividends form a

Markov process which is ψ-irreducible on
[
qmin o; qmax p

]µ×[δ; δ̄]µ−1
, positive recurrent and has an invariant

probability distribution π̃µ with marginal distribution on q∗t satisfying πµ
([
qmin o; qmax p

])
= 1.

In order to understand the belief dynamics of the different regimes, consider a data set Qt with observations of

prices and dividends sufficiently low so that the equilibrium price is set by optimists, q∗t = qo (Qt; γ) < ω. The

risky asset is then overvalued relative to its observed performance (EQt [q] and EQt [δ]) since the dominating

optimists believe in higher dividend payments and capital gains
(
q̄ and δ̄

)
. In contrast, when the observed

realizations are sufficiently high, the economy is in a pessimistic regime, q∗t = qp (Qt; γ) > ω+β. Asset prices

are then set by pessimists and the risky asset is undervalued relative to its observed performance. Finally, in

the intermediate case, when Bayesians set prices, q∗t = qb (Qt) ∈ (ω, ω + β), the assets appear to be correctly

priced relative to their observed returns in Qt.

The Proposition also shows that in economies with switching regimes, the presence of optimists and pessimists

leads to a narrower range of observable prices than in a purely Bayesian economy (since qmin o > qmin b and

qmax p < qmax b). This is quite different from the case of pure economies where the presence of ambiguity-

sensitive consumers leads to an unambiguous upward or a downward shift in the range of observable prices.

4 Evolutionary Dynamics

So far we have treated the population shares of optimists, Bayesians and pessimists as fixed parameters. In-

sights from social psychology, see Zuckerman (2001), as much as experimental evidence (e.g., Apesteguia,

Huck, and Oechssler (2007)) suggest, however, that these shares may change in the face of success or failure

of the respective group. In phases of exuberance, when optimists tend to be successful, other consumers might

15 While our main result is stated for an economy with all three regimes it can be easily extended to cases in which

only two types of consumers determine the equilibrium prices.
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imitate their behavior, thus, increasing the total share of optimists. During a depression, investors might be

attracted to conservative strategies, increasing the level of pessimism. This adjustment in the aggregate attitude

towards ambiguity adds a slower procyclical component to the equilibrium price dynamics.

In this section we will investigate the effect of a population share dynamics on equilibrium prices and on the

long-term distribution of investor types. We assume that the population shares will adjust according to the

replicator dynamics as a function of the realized portfolio returns.

Starting in t = 0 from population shares of optimists and Bayesians (ω0;β0), we assume that population shares

evolve according to the following replicator dynamics: ω1 = ω0, β1 = β0 and, for t ≥ 2,

ωt+1 = ωt−1

q∗t+δt
q∗t−1

λot−1 + p∗t+r
p∗t−1

(
1− λot−1

)
1 + δt + r

= ωt−1
(q∗t + δt) a

o
t−1 + (p∗t + r) bot−1

1 + δt + r
(8)

βt+1 = βt−1

q∗t+δt
q∗t−1

λbt−1 + p∗t+r
p∗t−1

(
1− λbt−1

)
1 + δt + r

= βt−1

(q∗t + δt) a
b
t−1 + (p∗t + r) bbt−1

1 + δt + r

where λit := q∗t a
i
t denotes the share of wealth invested into the risky asset by consumer i ∈ {o; b} at time t.

Obviously, the share of pessimists is given by σt = 1−ωt− βt at each t. The evolutionary dynamics operates

with a one-period lag so as to avoid that the equilibrium price at time t, q∗t affect the population shares (ωt;βt)

in the same period.

According to the first equality in (8), the share of optimists ωt+1 equals their initial share ωt−1 multiplied by the

return of their portfolio relative to the return of the market portfolio. If the optimists’ portfolio performs better

than the market portfolio, their share in the population increases. This allows us to interpret the replicator

dynamics as a process of imitation16 that operates on preferences. The replicator dynamics (8) adjusts the

proportions of different attitudes towards ambiguity according to their relative success in the past17.

Remark 12 An alternative way of interpreting the replicator dynamics is as evolution of wealth shares, see

Wang (2001). The numerator in the second equality in (8) expresses the wealth of the old optimists in period

t, while the denominator is the total wealth of the old consumers in this period. Hence, the share of young

consumers of a given type in period t + 1 equals to the share of wealth earned by the old consumers of the

16 Schlag (1998) provides a formal argument for the optimality of such an imitation rule for exogenously given stochastic

payoffs and Alós-Ferrer and Schlag (2007) extend this analysis to games. Alós-Ferrer and Ania (2005) use a different

imitation dynamics to model strategy selection in financial markets with market power.
17 This approach is inspired by the findings of Malmendier and Nagel (2011) as discussed in the Introduction.
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same type in period t. This dynamics thus parallels the evolution of wealth in an economy with infinitely-lived

consumers provided that saving rates are identical across consumers. It follows that saving effects will not

impact the process of selection, contrary, e.g. to the model of Guerdjikova and Sciubba (2015).

We first examine some properties of the evolutionary dynamics which will later allow us to analyze the joint

evolution of asset prices and type shares in the economy. Note that the three extreme states β = 1, ω = 1

and σ = 1, in which a single type is present, are "stationary points" of the evolutionary dynamics (8): since

a representative investor must hold the market portfolio and obtain its returns, his share remains constant at

1. We would like to identify another, non-trivial "stationary" state, characterized by a price q̃ such that as

long as q∗t = q∗t−1 = q̃, type shares remain constant in expectation (even though they might fluctuate with

the stochastic dividend realizations). The next Lemma computes the price q̃, but shows that it differs from the

fundamental value due to the non-linearity18 of the evolutionary dynamics in the stochastic dividend δt.

Lemma 13 Given memory Qt and consumer shares
(
βt−1;ωt−1

)
and (βt;ωt):

• the expected share of optimists satisfies Eρ
[
ωt+1 | ωt−1;ωt;βt−1;βt;Qt

]
≥ ωt−1 iff

Eρ

[
q∗t + δt

1 + δt + r
| ωt−1;ωt;βt−1;βt;Qt

]
≥ q∗t−1;

• the expected share of pessimists satisfies Eρ
[
σt+1 | ωt−1;ωt;βt−1;βt;Qt

]
≥ σt−1 iff

Eρ

[
q∗t + δt

1 + δt + r
| ωt−1;ωt;βt−1;βt;Qt

]
≤ q∗t−1;

• the expected share of Bayesians satisfies Eρ
[
βt+1 | ωt−1;ωt;βt−1;βt;Qt

]
≥ βt−1 iff(

Eρ

[
q∗t + δt

1 + δt + r
| ωt−1;ωt;βt−1;βt;Qt

]
− q∗t−1

)(
abt−1 − 1

)
≥ 0.

In particular, for q∗t = q∗t−1 = Eρ[δ]
Eρ[δ]+r , the expected share of a given type in t+ 1 will exceed (lie below) its

share at t − 1 iff consumers of this type hold less (more) than one unit of the risky asset in their portfolio,

whereas for q∗t = q∗t−1 = q̃ with

q̃ :=

∫
δ

1+δ+rρ
′ (δ) dδ∫

δ+r
1+δ+rρ

′ (δ) dδ
.(9)

the shares of all types of consumers remain constant in expectation.

18 The standard replicator dynamics used in game theoretical models is deterministic, see Weibull (1995), but can also be

adjusted by introducing a linear noise term.
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Lemma 13 shows that the evolutionary dynamics in equation (8) favors the more cautious pessimistic con-

sumers. Even when the price of the risky asset is constant at its fundamental value and thus, expected returns

of both assets are equal, the proportion of consumers who invest more in the riskless asset than its share in the

market portfolio will grow in expectations. According to Lemma 3, optimists (pessimists) consistently hold a

portfolio which contains at least (at most) one unit of the risky asset. Hence, for equal expected returns, the

evolutionary dynamics will select against optimists and in favor of pessimists in expectation. More generally,

the share of optimists (pessimists) in the population will grow in expectations whenever the initial price of the

risky asset q∗t−1, is relatively low (high). The fraction of the risky asset held by Bayesians can vary with the

memory Qt. Their expected share will grow when they hold a larger (smaller) share of the risky asset than in

the market portfolio and the price of the risky asset is relatively low (high). Finally, if the equilibrium price is

constant at q̃, the shares of all types of investors remain constant in expectations. Note that q̃ is lower than the

fundamental value of the risky asset.

4.1 Evolution in Economies with Long Memory

We will first study the evolution of consumer types in an economy with infinite memory and check whether a

Bayesian market is "stable" against the introduction of small proportions of optimists and pessimists19.

From the analysis of markets with infinite memory and constant consumer shares in the previous section, we

know that the equilibrium prices converge. We first consider the three extreme steady states, (ω = 1; q∗ = qo∞),(
β = 1; q∗ = qb∞

)
and (σ = 1; q∗ = qp∞), where qo∞, qb∞ and qp∞ are the equilibrium prices for representative-

agent economies with long memory derived in Proposition 5. Note that both qb∞ and qo∞ exceed the critical

price q̃ determined in Lemma 13 at which consumer shares remain constant.

Consider a steady state with ω = 1 or β = 1 in which we introduce an ε share of pessimists. For small

ε, the equilibrium price will remain unchanged. However, since the equilibrium price exceeds the critical

value q̃, according to Lemma 13, the pessimists’ share will increase in expectation making this steady-state

unstable. Similarly, the steady state with σ = 1 will be unstable if qp∞ < q̃ holds, since at this price the

19 This analysis is similar to the notion of evolutionary stable state (ESS) used in evolutionary game theory, see Weibull

(1995). A "strategy" in our context corresponds to a consumer type. It is evolutionary stable if an economy populated only

by this type of consumers cannot be invaded by "mutants" using a different "strategy".

23



share of optimists and Bayesians would be growing in expectations. For qp∞ ≥ q̃, however, the steady state

(β∗ = 0; ω∗ = 0; q∗ = qp∞) with only pessimists in the market is stable. At this price the expected shares of

both Bayesians and optimists will be decreasing. The following proposition summarizes these findings.

Proposition 14 For qp∞ < q̃, no extreme steady-state is stable, i.e., for each extreme steady-state there is

a type i ∈ {o; b; p} consumers whose share is 0 in the steady-state but will grow in expectations if a small

fraction ε of type i is introduced into the market.

For qp∞ ≥ q̃, there is one stable extreme steady-state: (ω∗ = 0;β∗ = 0; q∗ = qp∞) .

Interestingly, a situation in which Bayesians have learned the distribution of dividends and the equilibrium

price of the risky asset equals its fundamental value is not "stable" against the introduction of pessimists. This

result relates to the property of the replicator dynamics to favor investors with less risky portfolios whenever

the price is constant and equals the fundamental value of the risky asset. Hence, a pure Bayesian market cannot

be stable, and the only potentially stable steady state is the pessimistic one.

Next, we will examine the dynamics of an economy where the pessimistic steady state is stable. We will show

that the system converges a.s. to this steady state if perceived ambiguity is not too large.

Proposition 15 Suppose that ω0 + β0 = β1 + ω1 < 1. For qp∞ > q̃, there is γ̄ ∈ (0; 1) such that for all

γ < γ̄, limt→∞ σt = 1 and limt→∞ q∗t = qp∞ a.s. in expectations.

If β0 + ω0 = β1 + ω1 = 1, then there is a γ̄ ∈ (0; 1) such that for all γ < γ̄, limt→∞ βt = 1 and

limt→∞ q∗t = qb∞ a.s. in expectations.

The analysis of economies with long memory shows that in general, evolution does not select for ambiguity-

neutrality nor does it push prices towards fundamental values. Provided perceived ambiguity is small, but

positive20, the economy a.s. converges to a steady state in which only pessimists remain in the market and

where the risky asset is undervalued relative to its price under rational expectations. Furthermore, Proposition

15 shows that under the replicator dynamics optimists are driven out of the market, whenever Bayesians or

pessimists are present. In particular, if only Bayesians and optimists populate the economy then limit prices

20 If ambiguity is too large, prices might fluctuate too much to ensure that the share of pessimists behaves as a submartin-

gale and thus converges to 1. If ambiguity vanishes in the limit, all three types of investors behave as Bayesians with cor-

rect beliefs.
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are determined by Bayesian consumers and converge to those under rational expectations.

4.2 Evolution in Economies with One-Period Memory

We now proceed to the analysis of economies populated by consumers with one-period memory. The first

proposition shows that a.s. after a finite number of periods, an economy with one-period memory and a

positive share of Bayesians will be indistinguishable from a pure Bayesian market with one-period memory.

Proposition 16 Consider an economy with one-period memory, µ = 1, strictly positive initial shares of

optimists, Bayesians and pessimists, and assume beliefs are strongly arbitrage-free. Then, a.s., after a finite

number of periods, the equilibrium price in each period will be determined by the reservation price of Bayesian

consumers, q∗t = qbt .

It may surprise that the equilibrium prices do not reflect the presence of optimistic and pessimistic consumers.

We know from Proposition 9, however, that the average price of the risky asset in a Bayesian market with one-

period memory exactly equals the critical price q̃ derived in Lemma 13 at which expected consumer shares

remain constant. Hence, optimists and pessimists need not disappear from the market, even though they will

have no impact on equilibrium prices after a finite number of periods.

The fact that the evolutionary dynamics selects for different attitudes towards ambiguity depending on the

length of the memory is interesting per se. This last result relies, however, on the fact Bayesian learning with

one-period memory uses the same criterion to evaluate portfolios as does the replicator dynamics (last-period

returns). This makes the case of one-period memory somewhat special and we do not expect this result to

generalize to memories of arbitrary, but finite length.

Our result, however, points out a common feature between economies with infinite and those with one-period

memory: in both cases, the risky asset is undervalued relative to its fundamental value. In the former case, the

price converges to the pessimists’ limit reservation value pp∞, which (in order for the result to hold) has to be

larger than q̃, whereas in the latter case, the average price converges to q̃.

Since Bayesians determine prices in each period, no cycles of the type described in Proposition 11 occur in this

economy with one-period memory. We next consider an economy populated only by optimists and pessimists

in which beliefs are weakly arbitrage-free and show that such an economy will oscillate between periods

of optimism, in which the share of optimists is high and the equilibrium price coincides with the optimists’
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reservation price and periods of pessimism, in which the share of pessimists is high and the equilibrium price

coincides with the pessimists’ reservation price.

Proposition 17 Consider an economy with one-period memory, no Bayesians (β0 = β1 = 0) and positive

initial shares of optimists and pessimists (ω0 = ω1 ∈ (0; 1)). Suppose that beliefs are weakly arbitrage-

free. Then there exists an open set of parameters of the model such that qot > qpt holds a.s. after a finite

number of periods. For these parameters, the economy can be described by a ψ-irreducible, positive recurrent

Markov process with an invariant probability distribution π. The probability distribution π assigns a positive

probability to states, in which optimists determine the market price, i.e., q∗t = qot and ωt > q∗t , to states, in

which pessimists determine the market price, i.e., q∗t = qpt and ωt < q∗t and to states in which the share of

optimists determines the market price, q∗t = ωt.

Our last result shows that in economies with one-period memory and no Bayesian consumer, the evolutionary

dynamics does not select for a specific attitude towards ambiguity and the economy cycles21 between periods

of optimism and pessimism, in which the corresponding type of investors determines the equilibrium price.

5 Concluding comments

Our paper contributes to a large body of literature on market selection which asks the question whether market

prices correctly aggregate the available information. The two seminal papers by Blume and Easley (2006) and

Sandroni (2000) showed that (absent market imperfections), heterogeneity w.r.t. to risk-aversion does not affect

the ability of the market to select for agents with correct beliefs. In contrast, we show that in the presence of

heterogeneity w.r.t. ambiguity-attitudes, markets might select for agents with effectively wrong beliefs. Prices

might thus deviate from fundamentals not just in the short- but also in the long-run. In this sense, pessimism

21 Note, however that cyclical behaviour only emerges if we relax the assumption of strongly arbitrage-free beliefs:

two processes drive the dynamics of economy – the learning dynamics, which determines the reservation prices qot and

qpt and the evolutionary dynamics, which determines the share of optimists ωt. To enter an "optimistic phase" with

q∗t = qot , ωt has to exceed qot . Since both ωt and qot increase with the observed dividend realizations going from a

pessimistic phase, in which ωt0 < qot0 to an optimistic one with ωt > qot requires the two processes to cross. With

a one-period memory, this can occur only for dividend realizations satisfying δ > q̄+δ̄
r+p̄r. Such dividend values are

feasible under weakly, but not under strongly arbitrage-free beliefs. A symmetric argument applies to the case of a

"pessimistic phase", where the relevant condition for the dividend is δ <
q+δ

r+pr.
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might be a self-fulfilling prophecy.

There are differing views on whether pessimism is a rational response to the lack of probabilistic information

or an expression of boundedly-rational behavior, cf. Gilboa, Postlewaite, and Schmeidler (2009). However,

both experimental studies and market data seem to suggest that it is a prevalent characteristic that can explain

certain stylized facts. Our paper shows that market forces need not select against this feature and hence, even

if we consider pessimism irrational, we should not necessarily expect its effects to disappear with time.

In this model, we restrict attention to extremely optimistic and extremely pessimistic agents (α ∈ {0; 1}).

Allowing for moderate attitudes towards ambiguity would make the model more realistic, but also complicate

the analysis. Nevertheless, we believe that the main result of the paper will still hold in this more general

setting: the evolutionary dynamics with infinite memory will not select the Bayesian investors, but rather

for more pessimistic behavior which results in a lower limit price than qRE , as illustrated by Lemma 13.

Furthermore, for small values of γ, the only stable steady state (as in Proposition 14) will be that with α = 0.

6 Appendix: Proofs

Proof of Proposition 1:

V i
t

(
ait; b

i
t;Pt

)

=



(1− γµ)
∑

(δ,p,q)∈M(Pt)
[(r + p) bt + (δ + q) at] fPt (δ, p, q) + γµ

[
(r + p) bt +

(
δ + q

)
at
]

for i = ω∑
(δ,p,q)∈M(Pt)

[(r + p) bt + (δ + q) at] fPt (δ, p, q)

for i = β

(1− γµ)
∑

(δ,p,q)∈M(Pt))
[(r + p) bt + (δ + q) at)] fPt (δ, p, q) + γµ

[(
r + p

)
bt +

(
δ + q

)
at
]

for i = p

Using Walras’ Law, pτ = 1−qτ , p = 1−q and the definitions ofEQt [q] andEQt [δ] yields the desired result.�

Proof of Lemma 3: For a given Qt and γµ denote by qREi
(
Qt; γµ

)
, i ∈ {o; b; p} the solution to the equation:

qREi
(
Qt; γµ

)
=:


[(1−γµ)(qRE,i(Qt;γµ)+EQt [δ])+γµ(q̄+δ̄)]

[(1−γµ)+(γµp̄+r)+[(1−γµ)EQt [δ]+γµ(q̄+δ̄)]]
if i = o

((1−γµ)(qRE,i(Qt;γµ)+EQt [δ])+γµ(q+δ))
[(1−γµ)+(γµp+r)+((1−γµ)EQt [δ]+γµ(q+δ))]

if i = p

(qRE,i(Qt)+EQt [δ])
1+r+EQt [δ]

if i = b

,
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or

qREi
(
Qt; γµ

)
=


(1−γµ)EQt [δ]+γµ(q̄+δ̄)

(γµp̄+r)+[(1−γµ)EQt [δ]+γµ(q̄+δ̄)]
if i = o

(1−γµ)EQt [δ]+γµ(q+δ)
(γµp+r)+((1−γµ)EQt [δ]+γµ(q+δ))

if i = p

EQt [δ]
r+EQt [δ]

if i = b

.

Intuitively, qREi is the price under "rational expectations" for a market with a representative agent i ∈ {o; b; p}

given the information contained in Qt. Since qREi
(
Qt; γµ

)
only depends on EQt [δ] and γµ, we write

qREi
(
EQt [δ] ; γµ

)
. Simple algebra shows that

qREi
(
Qt; γµ

) >

(<)
EQt [q]⇐⇒ qREi

(
Qt; γµ

) >

(<)
qi
(
Qt; γµ

) >

(<)
EQt [q](10)

for all i ∈ {o; b; p}. I.e., upon observing a data set Qt, i’s reservation price will lie strictly between the

average observed price in the data and the investor i’s price under "rational expectations". In a market with a

representative agent i, q∗t = qi
(
Qt; γµ

)
and we thus obtain that in such a market

qREi
(
Qt; γµ

) >

(<)
EQt [q]⇐⇒ qREi

(
Qt; γµ

) >

(<)
q∗t
(
Qt; γµ

) >

(<)
EQt [q] .(11)

Using this observation, we can now show:

Lemma 18 Consider a market with a representative agent i ∈ {o; b; p} and finite memory length µ. In

such a market, there is a.s. a finite period t̄ such that for all t ≥ t̄, the observable prices lie in the interval[
qmin i; qmax i

]
, where qmin i and qmax i are given by:

• for a market with a representative optimist: qmax o =
γµq̄+δ̄

(γµp̄+r)+[γµq̄+δ̄]
, qmin o =

(1−γµ)δ+γµ(q̄+δ̄)
(γµp̄+r)+[(1−γµ)δ+γµ(q̄+δ̄)]

;

• for a market with a representative Bayesian: qmax b = δ̄
δ̄+r

, qmin b = δ
δ+r ;

• for a market with a representative pessimist: qmax p =
((1−γµ)δ̄+γµ(q+δ))

(γµp+r)+((1−γµ)δ̄+γµ(q+δ))
, qmin p =

γµq+δ

(γµp+r)+(γµq+δ)
.

Furthermore, if (5) holds, then qmax o > qmax b > qmax p and qmin o > qmin b > qmin p.

Proof of Lemma 18: Note that qmin i = qREi
(
δ; γµ

)
and qmax i = qREi

(
δ; γµ

)
for i ∈ {o; b; p}. Suppose

that in an economy with a representative agent i, EQt [q] < qmin i. Then, the fact that δ > δ w.pr. 1 combined

with (10) and (11), implies that qi
(
Qt̄; γµ

)
= q∗t̄ > qmin i will obtain a.s. in finite time t̄ and qi

(
Qt; γµ

)
=

q∗t > qmin i for all t > t̄. Similarly, if EQt [q] > qmax i, then, the fact that δ < δ̄ w.pr. 1 combined with (10)

and (11), implies that qi
(
Qt̄; γµ

)
= q∗t̄ < qmax i will obtain a.s. in finite time t̄ and qi

(
Qt; γµ

)
= q∗t < qmax i

for all t > t̄. We conclude that q∗t ∈
(
qmin i; qmax i

)
will a.s. obtain after a finite number of periods in a market
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with a representative agent i.

It remains to check the ranking of the prices. Note that qmax o > qmax b is equivalent to
γµq̄+δ̄

(γµp̄+r)+[γµq̄+δ̄]
> δ̄

δ̄+r
,

or to r > δ̄
q̄ p̄. qmax b > qmax p is equivalent to δ̄

δ̄+r
>

((1−γµ)δ̄+γµ(q+δ))
(γµp+r)+((1−γµ)δ̄+γµ(q+δ))

, or to δ̄
p

q +
(δ̄−δ)
q r > r,

which is satisfied whenever r < δ
qp. qmin o > qmin b is equivalent to

(1−γµ)δ+γµ(q̄+δ̄)
(γµp̄+r)+[(1−γµ)δ+γµ(q̄+δ̄)]

> δ
δ+r , or

to r > δ
q̄ p̄ +

r(δ−δ̄)
q̄ , which is satisfied whenever δ̄

q̄ p̄ < r, whereas qmin b > qmin p is equivalent to
δ
δ+r >

γµq+δ

(γµp+r)+(γµq+δ)
or to

δp

q > r. Since (5) implies
δ
qp > r > δ̄

q̄ p̄, we obtain the desired ranking.�

For an economy, in which all three types of agents are present, Lemma 18 then implies:

Corollary 19 Consider an economy with finite memory of length µ, in which all three types of agents are

present and let (5) hold. There is a.s. a finite period t̄ such that for all t ≥ t̄ the observable prices lie in the

interval
[
qmin p; qmax o

]
.

According to Corollary 19, we can choose t̄ so that for all t ≥ t̄, q∗t ∈
[
qmin p; qmax o

]
. We start by showing

that for all Qt which only contain observations of q in this range, qo (Qt) > qb (Qt). Indeed, this is equivalent

to: (
q̄ + δ̄

)
[1 + r] > EQt [q]

[
(p̄+ r) +

(
q̄ + δ̄

)]
+ EQt [δ] (p̄+ r)(12)

The inequality will thus be satisfied for all observable data sets if it is satisfied for EQt [q] = qmax o and

EQt [δ] = δ̄ and it is therefore enough to show that qmax o > qb
(
EQt [q] = qmax o;EQt [δ] = δ̄

)
. This is

equivalent to
γµq̄+δ̄

(γµp̄+r)+[γµq̄+δ̄]
> δ̄

δ̄+r
, which, as shown in the proof of Lemma 18 is implied by (5).

Next, we check that qb (Qt) > qp (Qt), which is equivalent to

(
q + δ

)
(1 + r) < EQt [q]

[(
p+ r

)
+
(
q + δ

)]
+ EQt [δ]

(
p+ r

)
(13)

The inequality will thus be satisfied for all observable data sets if it is satisfied for EQt [q] = qmin p and

EQt [δ] = δ and it is therefore enough to show that qmin p < qb
(
EQt [q] = qmin p;EQt [δ] = δ

)
. This is

equivalent to
γµq+δ

(γµp+r)+(γµq+δ)
< δ

δ+r , which, as shown in the proof of Lemma 18 is implied by (5).

Next, consider a market with infinite memory, in which limµ→∞ γµ = limt→∞ γt = γ > 0. Since limt→∞EQt [δ] =
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Eρ [δ] a.s., and since γt → γ, we have a.s.,

lim
t→∞

qREi (Qt; γt) =


qo∞ =:

(1−γ)Eρ[δ]+γ(q̄+δ̄)
(γp̄+r)+(1−γ)Eρ[δ]+γ(q̄+δ̄)

if i = o

qp∞ =:
(1−γ)Eρ[δ]+γ(q+δ)

(γp+r)+(1−γ)Eρ[δ]+γ(q+δ)
if i = p

qb∞ =: Eρ[δ]
r+Eρ[δ] if i = b

.(14)

For γ > 0, qo∞ > qb∞ is equivalent toEρ [δ] <
(q̄+δ̄)r
p̄+r , which is satisfied, since (5) impliesEρ [δ] ≤ δ̄ < (q̄+δ̄)r

p̄+r .

Similarly, qb∞ > qp∞ is equivalent to Eρ [δ] >
r(q+δ)
p+r , which is satisfied, since (5) implies Eρ [δ] ≥ δ > r(q+δ)

p+r .

Choose an ξ > 0 such that qo∞ − ξ > qb∞ + ξ > qb∞ − ξ > qp∞ + ξ and note that by (10) and (11),

there is a.s. a finite period t̄ such that qo (Qt; γt) < ω, qb (Qt) ∈ (ω;ω + β) and qp (Qt; γt) > ω + β for

all t ≥ t̄. For a given γt, q
o (Qt) > qb (Qt) is equivalent to (12) and qb (Qt) > qp (Qt) is equivalent to

(13). Now note that since qo∞ > qb∞ > qp∞, we have by (10), qo∞ > qb (EQt [q] = qo∞;EQt [δ] = Eρ [δ]) >

qb (EQt [q] = qp∞;EQt [δ] = Eρ [δ]) > qp∞. Hence, we can choose ξ to be sufficiently small so that

qot (EQt [q] = qo∞ + ξ;EQt [δ] = Eρ [δ] + ξ; γt) > qb (EQt [q] = qo∞ + ξ;EQt [δ] = Eρ [δ] + ξ)

qb (EQt [q] = qp∞ − ξ;EQt [δ] = Eρ [δ]− ξ) > qp∞ (EQt [q] = qp∞ − ξ;EQt [δ] = Eρ [δ]− ξ; γt)

hold for all values of γt < ξ. Hence, for all t ≥ t̄, reservation prices qit (Qt; γt) are ranked as required.

Once the order of the reservation prices has been established, obtaining the temporary equilibrium is straightforward.�

Proof of Proposition 5: Consider first an economy with a representative agent of type i. Since limt→∞EQt [δ] =

Eρ [δ] a.s., and since γt → γ, we obtain that (14) a.s. holds. By (11), it follows that a.s., limt→∞ q∗t (Qt; γt) =

qi∞. As shown in the proof of Lemma 3, qo∞ > qb∞ > qp∞ obtains for γ > 0 (for γ = 0, qo∞ = qb∞ = qp∞).

Now suppose that the shares of investor types ω, β and σ are arbitrary. Suppose that ω and β satisfy one of the

5 conditions listed in the statement of the Proposition with strict inequalities. Note that for ε > 0, on almost

every path, Q, there is a period t̄ (Q) such that EQt [δ] ∈ [Eρ [δ]− ε;Eρ [δ] + ε], EQt [q] ∈ [qp∞ − ε; qo∞ + ε]

and γt < γ + ε for all t ≥ t̄ (Q). Choose ε to be sufficiently small so that for all t ≥ t̄ (Q), qo (Qt; γt) >

qb (Qt) > qp (Qt; γt), qREi (Qt; γt) ∈
(
qi∞ − ε; qi∞ + ε

)
holds and so that

(i)if ω > qo∞, for t ≥ t̄ (Q), ω > qREo (Qt; γt)

(ii)if qo∞ > ω > qb∞, for t ≥ t̄ (Q), qREo (Qt; γt) > ω > qREb (Qt);

(iii)if qb∞ ∈ (ω;ω + β), for t ≥ t̄ (Q), qREb (Qt) ∈ (ω;ω + β);
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(iv)if qb∞ > ω + β > qp∞, for t ≥ t̄ (Q), qREb (Qt) > ω + β > qREp (Qt; γt);

(v)if qp∞ > ω + β, for t ≥ t̄ (Q), qREp (Qt; γt) > ω + β.

In cases (i), (iii) and (v), respectively, if for some t ≥ t̄ (Q), q∗t = qi (Qt; γt) for i = o, b, p, respectively,

then

qo (Qt; γt) < ω, or qb (Qt) ∈ (ω;ω + β) , or qp (Qt; γt) > ω + β,(15)

respectively. Assume first that EQt [q] 6∈
(
qi∞ − ε; qi∞ + ε

)
. By (14), for a given qREi (Qt; γt), the equilibrium

price q∗t = qi (Qt; γt) will lie between EQt [q] and qREi (Qt; γt), and hence, EQt+1
[q] will lie between EQt [q]

and the interval
(
qi∞ − ε; qi∞ + ε

)
, or EQt+1

[q] ∈
(
qi∞ − ε; qi∞ + ε

)
. Hence, qi

(
Qt+1; γt+1

)
will lie between

qi (Qt; γt) and the interval
(
qi∞ − ε; qi∞ + ε

)
or in the interval

(
qi∞ − ε; qi∞ + ε

)
. Now since qi (Qt; γt) satis-

fies the corresponding condition in (15), which ensures that q∗t = qi (Qt; γt), then by the choice of ε above, so

does qi
(
Qt+1; γt+1

)
and hence, q∗t+1 = qi

(
Qt+1; γt+1

)
. Suppose now that EQt [q] ∈

(
qi∞ − ε; qi∞ + ε

)
, then

q∗t = qi (Qt; γt) will lie betweenEQt [q] and qREi (Qt; γt), or also in the interval
(
qi∞ − ε; qi∞ + ε

)
and so will

qi (Qt; γt). Hence, if at a t′ ≥ t̄ (Q), q∗t′ = qi (Qt′ ; γt′), then q∗t = qi (Qt; γt) for all t ≥ t′. It remains to show

that such a period will eventually be reached. Suppose not, and let qi∞ not belong to the interval
(
qj∞; qk∞

)
,

i.e., condition (i) or condition (v) holds. If j and k are the only ones who set prices in the economy, there will

be a.s. a time t̃ (Q) such that for all t ≥ t̃ (Q), q∗t ∈
(
qj∞ − ε; qk∞ + ε

)
. Since however the reservation prices

of the three types of investors are strictly ordered and since condition (i) or (v) is satisfied, we know that the

economy cannot have an equilibrium in this price range. Hence, there is a.s. a finite period t′ ≥ t̄ (Q), such

that q∗t = qi (Qt; γt) for all t ≥ t′. Then, by (11), limt→∞ q∗t = limt→∞ qi (Qt; γt) = qi∞.

If condition (iii) holds, and hence, β > 0, the same argument as above can be used to show that optimists

or pessimists alone cannot set prices in each period. Consider a period in which the economy switches from

an optimistic state, qp (Qt; γt) < q∗t = qo (Qt; γt) < ω to a pessimistic one, q∗t+1 = qp
(
Qt+1; γt+1

)
>

ω + β. Note however, that since the price and dividend realizations are bounded, if t is sufficiently large,∣∣qp (Qt; γt)− qp
(
Qt+1; γt+1

)∣∣ will not exceed β, a contradiction.

Next consider cases (ii) and (iv). We will show the argument for case (iv) — the one for (ii) is analogous.

Note that whenever qb (Qt; γt) ≥ ω+β, q∗t = ω+β and qb
(
Qt+1; γt+1

)
≥ ω+β. If q∗t = qb (Qt; γt) < ω+β,

the argument above shows that q∗t+1 = qb
(
Qt+1; γt+1

)
and qb (Qt; γt) eventually converges to ω + β. We
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can also replicate the arguments used above to show that optimists and pessimists cannot determine prices

indefinitely, and hence, a period t with q∗t = qb (Qt; γt) will eventually be reached.

Finally, note that for ω + β = qb∞, the same argument as the one made for case (iv) applies. Thus, the cases

ω = qo∞, ω = qb∞ and ω + β = qp∞ can be treated analogously.�

Proof of Proposition 7: Follows from combining the results of Corollary 19 and Lemma 3.

Proof of Proposition 8: Consider first the case of µ = 1.

Claim 18: For µ = 1, q∗t is a scalar nonlinear state space model and, therefore, also a T-chain.

Proof of Claim 18: For i ∈ {o; b; p} as in the statement of the Proposition, defineF i
(
q∗t−1; δt−1

)
= qit

(
q∗t−1; δt−1; γ

)
=

q∗t
(
q∗t−1; δt−1; γ

)
. Since qit is smooth, and the variable (δt)t is i.i.d. with a density supported on an open set,

F i satisfies the conditions of a scalar nonlinear state space model (SNSS1) and (SNSS2) in Meyn and Tweedy

(1993, p. 30). We now check that the Rank Condition for the Scalar CM(F ) Model, (CM2), Meyn and Tweedy

(1993, p. 155) is satisfied. As noted in the text, all F i are strictly increasing in δ for any q∗t−1. Finally, the

condition that the distribution of δt is absolutely continuous, while the density of δt is lower-semicontinuous

(SNSS3), Meyn and Tweedy (1993, p. 156) is satisfied as well. We can thus conclude, by Proposition 7.1.2.,

Meyn and Tweedy (1993, p. 156), that F i is a T -chain.�

Claim 19: For µ = 1, the Markov process q∗t has an invariant set given by
[
qmin i; qmax i

]
.

Proof of Claim 19: Take an initial price q0 6∈
[
qmin i; qmax i

]
. If q0 < qmin i, or q0 > qmax i, then the prob-

ability that the process reaches the set
[
qmin i; qmax i

]
is 1. To see this, consider F i (q; δ) and let qi (δ) =:

F i
(
qi (δ) ; δ

)
. If q ≶ qi (δ), qi (δ) ≷ F i (q; δ) ≷ q. If q0 < qmin i, since δ > δ with probability 1, it follows

that with probability 1, the process eventually exceeds qmin i. Symmetrically, if the process starts above qmax i,

since δ < δ̄ with probability 1, eventually the process crosses qmax i from above.

Note, however, that once the process has reached the set
[
qmin i; qmax i

]
, the probability of leaving this set is 0.

Since, by definition, for q ∈
[
qmin i; qmax i

]
, qmax i = F i

(
qmax i; δ̄

)
≥ F i (q; δ) ≥ F i

(
qmin i; δ

)
= qmin i, it

follows that all states q0 6∈
[
qmin i; qmax i

]
are transient and hence, that the set

[
qmin i; qmax i

]
is invariant.�

Claim 20: For µ = 1, q∗t is ψ-irreducible, positive recurrent and has an invariant probability distribution πi1

with support
[
qmin i; qmax i

]
.

Proof of Claim 20: As we saw above, F i is a T -chain on this set and furthermore, for any q0 ∈
[
qmin i; qmax i

]
,
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there is a positive probability that the process reaches any open set L ⊂
[
qmin i; qmax i

]
. To see this, let

(
δ̌; δ̂
)

be such that L = (q̌; q̂), where q̌ =: F
(
q̌; δ̌
)

and q̂ =: F
(
q̂; δ̂
)

. For a given q0 and a given positive ε, let T

denote the number of periods such that if δt ∈
(
δ̌ + ε; δ̂ − ε

)
for all t ≤ T , then qT ∈ (q̌; q̂). It is obvious

that T is finite, and, hence, the probability of reaching L starting from q0 is strictly positive. By Theorem 6.0.1

in Meyn and Tweedy (1993, p. 131), F i is ψ-irreducible on
[
qmin i; qmax i

]
and this set is petite. Hence, by

Theorem 8.3.6. in Meyn and Tweedy (1993, p. 191), the process is positive recurrent. This, in turn implies the

existence of an invariant measure πi1 and since there is a petite set
[
qmin i; qmax i

]
such that the expected time of

reaching this set starting from any element in this set is finite, the measure πi1 is finite. It assigns a probability

of 1 to
[
qmin i; qmax i

]
.�

Claim 21: For µ > 1, qt = F i (qt−1...qt−µ; δt−1...δt−µ) is a Nonlinear Autoregressive-Moving Average Model

and the associated Markov process is a T-chain.

Proof of Claim 21: For µ > 1, qt can be written as a Nonlinear Autoregressive-Moving Average Model,

see Meyn and Tweedy (1993, p. 34): qt = F i (qt−1...qt−µ; δt−1...δt−µ) and F i is a smooth function, whereas

(δt) ∼ i.i.d.Defining the state variable xt =: (qt...qt−µ+1; δt−1...δt−µ+1)′, we obtain the Markov process x on

Rµ, which has the form of a nonlinear state space model with an associated control model qt = F (xt−1; ; δt...δt−µ+1).

We can thus apply the same reasoning as above to show that the states, in which qt−k 6∈
[
qmin i; qmax i

]
for

some k ∈ {0...µ− 1} are transient. Just as above, the process almost surely reaches the set (qt...qt−µ+1) ∈[
qmin i; qmax i

]µ
and never leaves it afterwards. Defining (qµ...q1) recursively as a function of q0 and (δ0...δµ−1)

and taking the µ × µ matrix of the derivatives of
(
∂qk
∂δm

)
k,m

with respect to δ, we obtain that for all q0,(
∂qk
∂δk

)
k,k

> 0 for all k,
(
∂qk
∂δm

)
k,m

= 0 for all m > k, and hence, Det

((
∂qk
∂δm

)
k,m

)
> 0, as required by

the Rank condition (CM3) in Meyn and Tweedy (1993, p. 160). Hence, we can apply Proposition 7.1.4. in

Meyn and Tweedy (1993, p. 160) to obtain that the Markov process xt is a T -chain.�

Claim 22: For µ > 1, and any q ∈
[
qmin i; qmax i

]
, δ ∈

(
δ; δ̄
)

satisfying q = F i

(q..q)︸ ︷︷ ︸
µ-times

; δ...δ︸︷︷︸
(µ−1)-times

 the state

(q..q)︸ ︷︷ ︸
µ-times

; δ...δ︸︷︷︸
(µ−1)-times

 is a global attractor.

Proof of Claim 22: For every initial
(
q′1...q

′
µ; δ′1...δ

′
µ

)
and every ξ > 0 there is a finite T and ε > 0 such that

if δµ+1...δµ+T ∈ (δ − ε; δ + ε), then qµ+T ∈ (q − ξ; q + ξ). Since the probability of this event is possible, the
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state

(q..q)︸ ︷︷ ︸
µ-times

δ...δ︸︷︷︸
(µ−1)-times

 is accessible in finite time from any initial state, and is, hence, a global attractor.�

Claim 23: For µ > 1, the Markov process (qt...qt−µ+1; δt−1...δt−µ+1) is ψ-irreducible, positive recurrent and

has an invariant probability distribution π̃iµ.

Proof of Claim 23: Since the Markov process has a globally attracting state, by Proposition 7.2.5 and Theorem

7.2.6 in Meyn and Tweedy (1993, p. 164), it is ψ-irreducible on the set S̄ reachable from {

(q..q)︸ ︷︷ ︸
µ-times

δ...δ︸︷︷︸
(µ−1)-times

 |
q ∈

[
qmin i; qmax i

]
}. By Proposition 7.2.5, S̄ is the unique minimal set of the chain, this set is compact and

hence, by Theorem 6.0.1, in Meyn and Tweedy (1993, p. 131), it is petite. Just as above, it follows that the

process is positive recurrent and has a finite invariant measure π̃iµ and its support is S̄ ×
[
δ; δ̄
]µ

.�

Claim 24: For µ > 1, the marginals of the invariant measure π̃iµ of all components of the price vector are

identical and have a support
[
qmin i; qmax i

]
.

Proof of Claim 24: By the definition of an invariant measure, we have:that for a subset S of S̄,

π̃iµ (S) =

∫ ∫
π̃iµ
(
d
(
q′1, q

′
2...q

′
µ; δ′1, δ

′
2...δ

′
µ

))
Φ
{
S | q′1, q′2...q′µ; δ′1, δ

′
2...δ

′
µ

}
dq′dδ′

=

∫
(q′1;δ′1)

∫
(q′2...q′µ;δ′2...δ

′
µ)∈Sµ−1

π̃iµd
(
q′1, q

′
2...q

′
µ; δ′1, δ

′
2...δ

′
µ

)
·Φ
{
S | q′1, q′2...q′µ; δ′1, δ

′
2...δ

′
µ

}
d
(
q′2...q

′
µ; δ′2...δ

′
µ

)
d
(
q′1; δ′1

)
where Φ is the transition probability of the Markov process, Sµ−1 is the projection of S to

[
qmin i; qmax i

]µ−1×[
δ; δ̄
]µ−1

and the second inequality follows from the fact that Φ
{
S | q′1, q′2...q′µ; δ′1, δ

′
2...δ

′
µ

}
= 0 if

(
q′2...q

′
µ; δ′1, δ

′
2...δ

′
µ

)
6∈

Sµ−1.

Let S1 be the projection of S to
[
qmin i; qmax i

]
according to the first component of the price vector. The

marginal of the first component of the price vector, πiµ (S1), is given by:

πiµ (S1) =

∫
(q3...qµ+1;δ2...δµ+1)

∫
q∈S1

π̃iµd (q; q3...qµ+1; δ2...δµ+1)

=

∫
(q′1;δ′1)

∫
(q′3...q′µ;δ′2...δ

′
µ)

∫
(q′µ+1;δ′µ+1)

∫
q∈S1

π̃iµd
(
q′1, q, q

′
3...q

′
µ; δ′1, δ

′
2...δ

′
µ

)
·Φ
{
S1 ×

[
qmin i; qmax i

]µ−1 ×
[
δ; δ̄
]µ | q′1, q, q′3...q′µ; δ′1, δ

′
2...δ

′
µ

}
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=

∫
(q′1;δ′1)

∫
(q′3...q′µ;δ′2...δ

′
µ)

∫
q∈S1

π̃iµd
(
q′1, q, q

′
3...q

′
µ; δ′1, δ

′
2...δ

′
µ

)
∫
(q′µ+1;δ′µ+1)

Φ
{
S1 ×

[
qmin i; qmax i

]µ−1 ×
[
δ; δ̄
]µ | q′1, q, q′3...q′µ; δ′1, δ

′
2...δ

′
µ

}
d
(
q′µ+1; δ′µ+1

)
=

∫
(q′1;δ′1)

∫
(q′3...q′µ;δ′2...δ

′
µ)

∫
q∈S1

π̃iµd
(
q′1, q, q

′
3...qµ; δ′1, δ

′
2...δ

′
µ

)
where the last line is the marginal of the second component of the price vector and the last equality follows

from the fact that for q ∈ S1,∫
(q′µ+1;δ′µ+1)

Φ
{
S1 ×

[
qmin i; qmax i

]µ−1 ×
[
δ; δ̄
]µ | q′1, q, q′3...q′µ; δ′1, δ

′
2...δ

′
µ

}
d
(
q′µ+1; δ′µ+1

)
= 1

Hence, the marginals of the first and the second component of the price vector coincide and reproducing the

same argument, so do the marginals of all µ components of the price vector and hence, the distributions of q1,

q2...qµ are identical and have a support
[
qmin i; qmax i

]
�

Proof of Proposition 9: In the case of µ = 1, the process q∗t is itself Markov. Hence, according to the definition

of the invariant probability derived in Proposition 8, we have: πi (S) =
∫
π (dq) Φ (S | q), or

∫
qπi (dq) =∫

q
∫
πi (dq′) Φ (dq | q′), or Eπi [q] =

∫
qi (Eπi [q] ; δ) ρ′ (δ) dδ. .Substituting for qi (·) for i ∈ {o; b; p} and

taking the integral gives the result of the Proposition.�

Proof of Proposition 11: The existence of data sets Qt as in the statement of the Proposition is obvious given

the result of Lemma 3. It remains to check that qmin o < qmax p. This is equivalent to γ2pq̄ − γ2p̄q +

rγ
(
q̄ − q

)
< γp̄δ̄ − γpδ + r (1− 2γ)

[
δ̄ − δ

]
, which obtains when γ is sufficiently small.

Consider the process
(
q∗t ...q

∗
t−µ+1; δt−1...δt−µ+1

)
. Using the market equilibrium conditions, we can write q∗t

as continuous functions of
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
and δt−1. Since δt is i.i.d., it follows that the process(

q∗t ...q
∗
t−µ+1; δt−1...δt−µ+1

)
is Markov and it obviously describes the state of the economy at time t. Further-

more, the process satisfies the conditions of the NSS(F) model introduced in Chapter 7 of Meyn and Tweedy

(1993), except for the fact that the function F defined by the equilibrium condition derived in Lemma 3,

q∗t = F
((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; δt−1

)
is not smooth. Hence, we will have to first show that the Markov

process is a T-chain, which will then allow us to use the methods in Chapter 7 of Meyn and Tweedy (1993) to
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demonstrate that it is ψ-irreducible and that it has an invariant distribution.

Claim 25: The Markov process
(
q∗t ...q

∗
t−µ+1; δt−1...δt−µ+1

)
is a T-chain.

Proof of Claim 25: To reach q∗t from a given initial state
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
, δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q∗t
)

has to satisfy:

δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q∗t
)
∈

∈



{
µ
q∗t [(1−γ)+(γp̄+r)]−(1−q∗t )

[
(1−γ)

∑µ
k=2

δt−k
µ

+γ(q̄+δ̄)
]
−(1−γ)

∑µ
k=1

qt−k
µ

(1−γ)(1−q∗t )

}
if q∗t < ω

[µ
q∗t (r+1)−(1−q∗t )

∑µ
k=2

δt−k
µ
−
∑µ
k=1

qt−k
µ

1−q∗t ;

µ
q∗t [1−γ+γp̄+r]−(1−q∗t )

[
(1−γ)

∑µ
k=2

δt−k
µ

+γ(q̄+δ̄)
]
−(1−γ)

∑µ
k=1

qt−k
µ

(1−γ)(1−q∗t ) ]

if q∗t = ω

{
µ
q∗t (r+1)−(1−q∗t )

∑µ
k=2

δt−k
µ
−
∑µ
k=1

qt−k
µ

1−q∗t

}
if q∗t ∈ (ω;ω + β)

[µ
q∗t (r+1)−(1−q∗t )

∑µ
k=2

δt−k
µ
−
∑µ
k=1

qt−k
µ

1−q∗t ;

µ
q∗t [(1−γ)+(γp+r)]−(1−q∗t )

[
(1−γ)

∑µ
k=2

δt−k
µ

+γ(q+δ)
]
−(1−γ)

∑µ
k=1

qt−k
µ

(1−γ)(1−q∗t ) ]

if q∗t = ω + β

{
µ
q∗t [(1−γ)+(γp+r)]−(1−q∗t )

[
(1−γ)

∑µ
k=2

δt−k
µ

+γ(q+δ)
]
−(1−γ)

∑µ
k=1

qt−k
µ

(1−γ)(1−q∗t )

}
if q∗t > ω + β

While δt−1 (·) is a correspondence of q∗t , for a given q∗t , δt−1 (·) is either a continuous function of the initial

state
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
, or an interval, whose endpoints are continuous functions of the initial state.

Consider a set S ⊆
(
q; q̄
)
×
(
δ; δ̄
)
. Let SQ = (q̌; q̂) be the projection of S on

(
q; q̄
)

and let Sδ be its projection

on
(
δ; δ̄
)
. For a given initial state of the system

(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
, the probability of reaching q∗t ∈ S

is given by: Pr
{
δt−1 = δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q∗t
)

for some (δt−1; q∗t ) ∈ S
}

. Note that q∗t is an

increasing function of δt−1. Let

δ̌t−1

(
S;
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

))
= min

{
δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q̌
)
∩ Sδ

}
denote the lowest δt−1 such that S is reached starting from the initial state and let δ̂

(
S;
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

))
stand for the maximal δt−1 for which S is reached:

δ̂t−1

(
S;
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

))
= max

{
δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q̂
)
∩ Sδ

}
and

Pr
{
δt−1 = δt−1

((
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
; q∗t
)

for some q∗t ∈ S
}

=

∫ δ̂t−1(S;(q∗t−1...q
∗
t−µ;δt−2...δt−µ))

δ̌t−1(S;(q∗t−1...q
∗
t−µ;δt−2...δt−µ))

ρ′ (δ) dδ

Since for a given S, the endpoints of the interval of integration are continuous functions of the initial state(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
, we obtain that the probability to reach a state22

(
q∗t ; q

∗
t−1...q

∗
t−µ; δt−1...δt−µ+1

)
such

22 Note that all other states with values of (qt−1...qt−µ+1; δt−2...δt−µ+1) different from those in the initial state are
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that (q∗t ; δt−1) ∈ S is continuous in
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
. Hence, the process is a T -chain.�

Claim 26: The NSS(F) model defined by the process
(
q∗t ...q

∗
t−µ+1; δt−1...δt−µ+1

)
is forward accessible.

Proof of Claim 26: For any initial condition
(
q∗t−1...q

∗
t−µ; δt−2...δt−µ

)
and for ε > 0, there is a sufficiently

long sequence of dividends (δt...δK ...δK+µ−2) ∈ (δ; δ + ε) such that q∗K ...q
∗
K+µ−1 ∈

(
qmin o; qmin o + ξ

)
where ξ is such that qmin o+ξ < ω

A . Choose
(
q∗K+µ−1...q

∗
K ...δK+µ−2...δK

)
as an initial condition and observe

that restricting δ ∈ (δ; δ + ε) and, thus, q ∈
(
qmin o; qmin o + ξ

)
, we obtain a system with a smooth function

F , which satisfies the rank condition on p. 160 of Meyn and Tweedy (1993) (see the proof of Proposition 7).

Starting from such an initial condition, the set of accessible states is open and since such an initial condition

can be reached from any initial point of the original system, forward accessibility obtains.�

Claim 27: The Markov process
(
q∗t ...q

∗
t−µ+1; δt−1...δt−µ+1

)
is ψ-irreducible.

Proof of Claim 27: The show ψ-irreducibility, we will find a globally attracting state, which by Proposition

7.2.5 in Meyn and Tweedy (1993, p. 164), implies M -irreducibility, which in turn (see Theorem 7.2.6 in Meyn

and Tweedy (1993, p. 164) implies ψ-irreducibility. Choose δ so that δ
δ+r ∈ (ω;ω + β) and consider the state(

q∗t = δ
δ+r = ... = q∗t−µ+1; δt−1 = δ = ...δt−µ+1

)
. This state is reachable from any initial state through an

infinite sequence (δ...δ...) and is thus, globally attracting. Thus, ψ-irreducibility obtains.

Claim 28: Let µ = 1. Then the set
[
qmin o; qmax p

]
is recurrent.

Proof of Claim 28: Just as in the proof of Proposition 8, it is easy to see that any q 6∈
[
qmin o; qmax p

]
is

transient. We show that the set
[
qmin o; qmax p

]
is recurrent. Let (q̂ − ε; q̂ + ε) ⊂

[
qmin o; qmax p

]
. Choose a

q0 ∈
[
qmin o; qmax p

]
and ε sufficiently small so that one of the following cases holds:

• If ω ≥ q̂ + ε, let δo (q̂) be defined as q̂ = qo (q̂; δo (q̂)). Then, there is a T (ε) such that starting from q0

upon observing (δo (q̂)− ξ; δo (q̂) + ξ) for T (ε) periods in a row, qt = qo (Qt) ∈ (q̂ − ε; q̂ + ε).

• If ω < q̂ − ε < q̂ + ε ≤ ω + β, let δb (q̂) be defined as q̂ = qb
(
q̂; δb (q̂)

)
. Then, there is a T (ε) such

that starting from q0 upon observing
(
δb (q̂)− ξ; δb (q̂) + ξ

)
for T (ε) periods in a row, qt = qb (Qt) ∈

(q̂ − ε; q̂ + ε).

• If q̂ − ε > ω + β, let δp (q̂) be defined as q̂ = qp (q̂; δp (q̂)). In this case, there is a T (ε) such that starting

from q0 upon observing (δp (q̂)− ξ; δp (q̂) + ξ) for T (ε) periods in a row, qt = qp,h (Qt) ∈ (q̂ − ε; q̂ + ε).

reached with probability 0.
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We can thus select ψ to be the Lebesque measure on
[
qmin o; qmax p

]
. From Proposition 8.3.1 (ii) in Meyn and

Tweedy (1993, p. 188), it follows that
[
qmin o; qmax p

]
is indeed recurrent.

Claim 29: Let µ = 1. Then the Markov process q∗t is positive recurrent and has an invariant probability

distribution π with support
[
qmin o; qmax p

]
.

Proof of Claim 29: Proposition 9.1.1 in Meyn and Tweedy (1993, p. 206) implies that q∗t is Harris recurrent

and positive and hence, has an invariant measure π. By Theorem 5.2.2 in Meyn and Tweedy (1993, p. 112), we

know that there is a subset C ⊂
[
qmin o; qmax p

]
, which is small and, hence, petite. Using the same argument as

the one used to show that
[
qmin o; qmax p

]
is recurrent, we can show that the first return time to C starting from

C is finite. Hence, by Theorem 10.4.10 (ii) in Meyn and Tweedy (1993, p. 254), the measure π is positive and

has a support
[
qmin o; qmax p

]
.�

Claim 30: Let µ > 1. The the Markov process
(
q∗t ...q

∗
t−µ+1; δt−1...δt−µ+1

)
is ψ-irreducible and positive

recurrent and has an invariant probability distribution π̃ with support
[
qmin o; qmax p

]µ × [δ; δ̄]µ. All marginal

distributions of the price vector are equal and their support is
[
qmin o; qmax p

]
.

Proof of Claim 30: For µ > 1, we can use the same arguments as for the case of µ = 1, to construct for

each q̂ a corresponding δ̂ by choosing the appropriate case in the proof of Claim 28. Then, there is an εq̂ such

that the sets (q̂ − ε; q̂ + ε)µ × (δ (q̂)− ξ (ε) ; δ (q̂) + ξ (ε))µ−1
are recurrent for any q̂ ∈

[
qmin o; qmax p

]
and

any ε ∈ (0; εq̂], where ξ (ε) are chosen as in the proof of Claim 28. Hence, we can define a measure φ on

B
([
qmin o; qmax p

]µ)
such that φ (A) > 0 only if A ∩ (q̂ − ε; q̂ + ε)µ is a non-empty open set for some q̂ and

some ε ≤ εq̂ and conclude that the Markov chain is φ-irreducible. Proposition 4.2.2 in Meyn and Tweedy

(1993, p. 90), then implies the existence of a measure ψ absolutely-continuous w.r.t. φ such that the Markov

chain is ψ-irreducible. Proposition 8.3.1 (ii) in Meyn and Tweedy (1993) (p. 188), implies that (q̂ − ε; q̂ + ε)µ

is indeed recurrent. From Proposition 9.1.1 in Meyn and Tweedy (1993, p. 206) we further conclude that the

chain is also Harris recurrent and positive. Hence, there exists an invariant measure π̃. By Theorem 5.2.2 in

Meyn and Tweedy (1993) (p. 112), we know that there is a subset C ⊂ (q̂ − ε; q̂ + ε)µ, which is small and,

hence, petite. Using the same argument as above, we can show that the first return time to C starting from C is

finite. Hence, by Theorem 10.4.10 (ii) in Meyn and Tweedy (1993, p. 254), the measure π̃ is positive and its

support is
[
qmin o; qmax p

]µ × [δ; δ̄]µ. The proof that all marginal distributions of the price vector are equal is
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the same as in the proof of Proposition 8. As shown above, their support is
[
qmin o; qmax p

]
.�

Proof of Lemma 13: First note that

(
[(q∗t+δt)ait−1+(p∗t+r)bit−1]

1+δt+r

)′′
δt

=
2(1+r−q∗t )(1−ait−1)
(1−q∗t−1)(1+δt+r)

3 and the replicator dy-

namics is concave or convex in δ depending on whether ait−1 is above or below 1. So, the function is convex if

ait−1 < 1 and concave if ait−1 > 1 and we obtain:

Eρ

 q∗t+δt
q∗t−1

λit−1 + p∗t+r
p∗t−1

(
1− λit−1

)
1 + δt + r

 >
 q∗t+Eρ[δ]

q∗t−1
λit−1 + p∗t+r

p∗t−1

(
1− λit−1

)
1 + Eρ [δ] + r


iff ait−1 < 1. In particular, when the prices are such that the "expected returns" of the two assets are equal, the

r.h.s. equals 1 and we have that the share of type iwill be increasing in expectations iff ait−1 < 1. Hence, a type

of consumers who hold less of the risky asset than the market portfolio will see their share in the population

strictly increase in expectations, and vice versa.

Furthermore,Eρ
[
ωt+1 | ωt−1;ωt;βt−1;βt;Qt

]
≥ ωt−1 is equivalent toEρ

[
[q∗t+δt](aot−1−1)

(1+δt+r)
| ·
]
≥
(
aot−1 − 1

)
q∗t−1.

Now note that optimists always hold more than 1 of the risky asset (intuitively, the fraction of their wealth in-

vested in the risky asset is at least as large as that of the Bayesians and the pessimists, while if everyone were

to invest all of their wealth in a, everyone would hold exactly 1). Hence, aot−1 > 1, and Eρ [ωt+1 | ·] ≥ ωt−1

iff Eρ

[
q∗t+δt

1+δt+r
| ·
]
≥ q∗t−1.

Substituting σ for ω and apt−1, bpt−1 for aot−1, bot−1, we obtain that the share of pessimists increases in expectation

iff Eρ

[
[q∗t+δt](apt−1−1)

(1+δt+r)
| ·
]
≥
(
apt−1 − 1

)
q∗t−1. Now note that pessimists always hold less than 1 of the risky

asset (intuitively, the fraction of their wealth invested in the risky asset is at most as large as that of the

Bayesians and the optimists, while if everyone were to invest all of their wealth in a, everyone would hold

exactly 1). Hence, apt−1 < 1, and Eρ [σt+1 | ·] ≥ σt−1 iff Eρ

[
q∗t+δt

1+δt+r
| ·
]
≤ q∗t−1.

Finally, substituting β for ω and abt−1, bbt−1 for aot−1, bot−1, we obtain that the share of Bayesians increases in ex-

pectation iff
[
Eρ

[
q∗t+δt

1+δt+r
| ·
]
− q∗t−1

] (
abt−1 − 1

)
≥ 0. To determine q̃, note that for q∗t = q∗t−1,Eρ

[
q∗t+δt

1+δt+r
| ·
]
−

−q∗t = 0 is satisfied iff q∗t =
∫

δ

1+δ+r
ρ′(δ)dδ∫

δ+r

1+δ+r
ρ′(δ)dδ

= q̃.�

Proof of Proposition 15:

Claim 31: For every ε > 0 and almost every path of the system η, there is a finite time t̄ (η) such that

q∗t ∈ (qp∞ − ε; qo∞ + ε) for all t ≥ t̄ (η).

Proof of Claim 31: Since limt→∞EQt [δ] = Eρ [δ] a.s., for every ξ, ξ′ > 0 and on almost every path η,
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there is a t̄ (η) such that EQt [δ] ∈
(
Eρ [δ]− ξ′;Eρ [δ] + ξ

)
for all t ≥ t̄ (η). Let ξ and ξ′ be such that

qp∞ − ε = qREp
(
Eρ [δ]− ξ′

)
and qo∞ + ε = qREo

(
Eρ [δ] + ξ′

)
. Since qp

(
Qt+1; γt+1

)
> q∗t whenever

q∗t < qp∞ and qo
(
Qt+1; γt+1

)
< q∗t whenever q∗t > qo∞ and since q∗t ∈ [qp (Qt; γt) ; qot (Qt; γt)] for all t, it

follows that for almost every path η, there is a t̄ (η) such that q∗t (η) ∈ (qp∞ − ε; qo∞ + ε).

Claim 32: There is a κ > 0 such that on a path η, E [σt+2 | σt] ≤ σt implies q∗t+1 ≥ q∗t + κ for all t ≥ t̄ (η)

Proof of Claim 32: A necessary (but not sufficient)23 condition for E [σt+2 | σt] ≤ σt is given by∫
1− q∗t+1 + r

(1− q∗t ) (1 + δ + r)
ρ′ (δ) dδ ≤ 1(16)

Rewrite (16) as: q∗t+1 − q∗t ≥ q∗t
∫

δ+r

1+δ+r
ρ′(δ)dδ∫

1

1+δ+r
ρ′(δ)dδ

−
∫

δ

1+δ+r
ρ′(δ)dδ∫

1

1+δ+r
ρ′(δ)dδ

. Hence, for q∗t ≥ q
p
∞ − ε >

∫
δ

1+δ+r
ρ′(δ)dδ∫

δ+r

1+δ+r
ρ′(δ)dδ

,

q∗t+1 − q∗t ≥ (qp∞ − ε)
∫

δ+r
1+δ+rρ

′ (δ) dδ∫
1

1+δ+rρ
′ (δ) dδ

−
∫

δ
1+δ+rρ

′ (δ) dδ∫
1

1+δ+rρ
′ (δ) dδ

=: κ.(17)

Claim 33: There exists a γ̄ > 0 such that for all γ < γ̄ and for almost every path η, q∗t+1 − q∗t < κ for all

t ≥ t̄ (η).

Proof of Claim 33: Note that for γ > 0, qo∞ > qp∞ and for γ = 0, qp∞ = qo∞. Note further that since

qp∞ >
∫

δ

1+δ+r
ρ′(δ)dδ∫

δ+r

1+δ+r
ρ′(δ)dδ

, qp∞
1∫

1

1+δ+r
ρ′(δ)dδ

−
∫

δ

1+δ+r
ρ′(δ)dδ∫

1

1+δ+r
ρ′(δ)dδ

> qp∞.

Let γ̄ be such that qo∞ (γ) < qp∞ (γ) 1∫
1

1+δ+r
ρ′(δ)dδ

−
∫

δ

1+δ+r
ρ′(δ)dδ∫

1

1+δ+r
ρ′(δ)dδ

for all γ < γ̄. For a given γ, let ε be such

that

qo∞ (γ) < (qp∞ (γ)− ε) 1∫
1

1+δ+rρ
′ (δ) dδ

−
∫

δ
1+δ+rρ

′ (δ) dδ∫
1

1+δ+rρ
′ (δ) dδ

− 2ε

and hence, for t ≥ t̄ (η),

q∗t+1 − q∗t ≤ qo∞ − qp∞ + 2ε << (qp∞ (γ)− ε) 1∫
1

1+δ+rρ
′ (δ) dδ

−
∫

δ
1+δ+rρ

′ (δ) dδ∫
1

1+δ+rρ
′ (δ) dδ

− qp∞ =

= qp∞

∫
δ+r

1+δ+rρ
′ (δ) dδ∫

1
1+δ+rρ

′ (δ) dδ
−
∫

δ
1+δ+rρ

′ (δ) dδ∫
1

1+δ+rρ
′ (δ) dδ

= κ

Hence, q∗t+1 − q∗t < κ for all t ≥ t̄ (η). �

Claim 34: For almost every path η, there is a period t̄ (η) such that the process σ0;σ2...σt;σt+2... is a sub-

23 Note that the condition above refers to the case, in which pessimists do not hold the risky asset in period t. If

they did hold the risky asset, and the price of the risky asset were to rise, the expression above provides a lower bound for

E[σt+2|σt]
σt

. Hence, this condition is indeed necessary for the pessimists’ share to decrease in expectations, regardless of the

pessimists’ portfolio choice at time t.
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martingale for all t ≥ t̄ (η), i.e., E [σt+2 | σt] > σt holds for all t ≥ t̄ (η), whenever σt < 1.

Proof of Claim 34: For a given path η, let t > t̄ (η), where t̄ (η) is the period determined in Claim 31. If the

price of the risky asset decreases between periods t and t+ 1, we have

∫
δ

1+δ+r
ρ′(δ)dδ∫

δ+r

1+δ+r
ρ′(δ)dδ

< qp∞ − ε < q∗t+1 ≤ q∗t ,

and hence, by Lemma 13, E [σt+2 | σt] > σt.

We also know that for t ≥ t̄ (η), if the price of the risky asset decreases between periods t and t+1, q∗t+1−q∗t <

κ, and hence, E [σt+2 | σt] > σt. �

Claim 35: limk→∞ σt = 1 a.s. and in expectations

Proof of Claim 35: By Claim 34, σ2k is a submartingale, and hence, it converges a.s. and in expectations to a

random variable. Since σ is bounded between 0 and 1 and since its expectation is growing, the expectation of

the limit is clearly equal to 1 and thus, σ2k converges to a deterministic variable equal to 1, i.e., limk→∞ σ2k =

1 a.s. Since we can redo the argument for the sequence σ2k+1, we conclude that limt→∞ σt = 1 a.s. and in

expectations.

To prove the second part of the Proposition, exchange σ for β and qp∞ for qb∞ in the proof above.�

To shorten notation, whenever the path of the economy is fixed, we will henceforth write qit =: qi (Qt; γ) for

the reservation price of investor i ∈ {o; b; p} at time t.

Proof of Proposition 16: Consider a sequence of dividend realizations (δg...δg...) with δg ∈
(
δ; δ̄
)
. We know

that there exists a period T such that q∗t ∈
[

(1−γ)δg+γ(q+δ)
[(1−γ)δg+γ(q+δ)]+(r+γp)

;
(1−γ)δg+γ(q̄+δ̄)

[(1−γ)δg+γ(q̄+δ̄)]+(r+γp̄)

]
for all t ≥ T .

In the following 7 claims, we fix δg and T as above and consider t ≥ T .

Claim 36: If in a given period, q∗t = min {qot ;ωt}, then q∗t+2 = min
{
qot+2;ωt+2

}
.

Proof of Claim 36: q∗t = min {qot ;ωt} ≤ ωt implies ωt+2 = ωt

q∗t+1+δg

q∗t
+(p∗t+1+r)bot
δg+r+1 ≥ (q∗t+1+δg)

δg+r+1 = qbt+2.

From Proposition 3, we know that for all t ≥ T , qbt+2 > qpt+2 for all δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
. Hence, q∗t+2 =

min
{
qot+2;ωt+2

}
.

Claim 37: If in a given period, q∗t = max {qpt ;ωt + βt}, then q∗t+2 = max
{
qpt+2;ωt+2 + βt+2

}
Proof of Claim 37: Since q∗t = max {qpt ;ωt + βt} implies q∗t ≥ ωt, ωt+2 = ωt

q∗t+1+δg

q∗t
δg+r+1 ≤

(q∗t+1+δg)
δg+r+1 = qbt+2.

From Proposition 3, we know that for all t ≥ T , qbt+2 < qpt+2 for all δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
. Hence, q∗t+2 =
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max
{
qpt+2;ωt+2 + βt+2

}
.�

Claim 38: If in a given period, the price q∗t ∈ [ωt;ωt + βt], then q∗t+2 = qbt+2.

Proof of Claim 38: If q∗t ∈ [ωt;ωt + βt], we obtain: ωt+2 = ωt
q∗t

q∗t+1+δg

δg+r+1 ≤ q
b
t+2,

σt+2 = 1−
(
ωt+2 + βt+2

)
=

1− (ωt + βt)

p∗t

p∗t+1 + r

δg + r + 1
=

1− (ωt + βt)

1− q∗t
1− q∗t+1 + r

δg + r + 1
≥ 1− qbt+2

and hence, ωt+2 + βt+2 ≥ qbt+2. It follows that q∗t+2 = qbt+2.�

Claim 39: Let i ∈ {o; p}.The economy cannot indefinitely remain in a state such that q∗t = qit.

Proof of Claim 39: Let i = o. Suppose to the contrary that q∗t = qot for all t ≥ T . Then, limt→∞ q∗t =

qREo (δg) > δg

r+δg . However,

qREo(δg)+δg

qREo(δg)

δg+r+1 < 1, and hence, ωt+2 < ωt, i.e., the share of optimists will decrease,

eventually falling below qREo (δg). Hence, q∗t < qit will eventually obtain, a contradiction. A symmetric

argument can be made for the case i = p. �

Claim 40: For a constant sequence of dividends δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
, the economy cannot forever switch in

every subsequent period between an optimistic state with q∗t = qot and a pessimistic state with q∗t = qpt .

Proof of Claim 40: Assume to the contrary that the economy switches from an optimistic to a pessimistic state

in each subsequent period. Then, we would have a price sequence defined by: q∗t = qot = qo
(
q∗t−1; δg

)
=

qo
(
qpt−1; δg

)
and q∗t+1 = qpt = qp

(
q∗t−1; δg

)
= qp

(
qot−1; δg

)
. Assume, w.l.o.g., that qot̄ ≥ q

o
t̄+2 for some t̄, then

qp
t̄+1
≥ qp

t̄+3
and both sequences qot and qpt are decreasing starting from t̄. But these are bounded sequences,

which, therefore converge. The limits qp and qo must, therefore satisfy qo (qp; δg) = qo and qp (qo; δg) = qp.

Hence,

qo =

[
(1− γ) δg + γ

(
q̄ + δ̄

)] [[
(1− γ) δg + γ

(
q + δ

)]
+
(
r + γp

)
+ 2 (1− γ)

][[
(1− γ) δg + γ

(
q + δ

)]
+
(
r + γp

)
+ 1− γ

] [[
(1− γ) δg + γ

(
q̄ + δ̄

)]
+ (r + γp̄) + 1− γ

]
− (1− γ)2

and since we have q∗t ≤ qREo (δg), qo ≤ (1−γ)δg+γ(q̄+δ̄)
[(1−γ)δg+γ(q̄+δ̄)]+(r+γp)

must hold. Simple algebraic computations

show that this is equivalent to:
[[

(1− γ) δg + γ
(
q̄ + δ̄

)]
+ (r + γp̄)

]
≤
[
(1− γ) δg + γ

(
q + δ

)]
+
(
r + γp

)
,

which cannot hold. A cycle between the pessimistic and the optimistic state is thus impossible.�

Claim 41: For a constant sequence of dividends δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
, the economy cannot forever switch in

every subsequent period between an optimistic state, in which q∗t = qot and a Bayesian states, in which q∗t = qbt .

Proof of Claim 41: By the same argument as above, in such a cycle, the limit prices qo and qb would satisfy
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qo
(
qb; δg

)
= qo and qb (qo; δg) = qb, and hence,

qo =
(1− γ) (δg + δg (δg + r + 1)) + γ

(
q̄ + δ̄

)
(δg + r + 1)

(δg + r + 1)
[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

]
− (1− γ)

qb =
(1− γ) δg + γ

(
q̄ + δ̄

)
+ δg

[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

][
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

]
(δg + r + 1)− (1− γ)

.

Note that qb < qo is equivalent to

(1− γ) δg + γ
(
q̄ + δ̄

)
+ δg

[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

][[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

]
(δg + r + 1)− (1− γ)

]
≤

(1− γ) (δg + δg (δg + r + 1)) + γ
(
q̄ + δ̄

)
(δg + r + 1)

(δg + r + 1)
[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

]
− (1− γ)

or δg ≤ (q̄+δ̄)r
r+p̄ , which is satisfied by definition.

Second, qb > δg

δg+r is equivalent to

(1− γ) δg + γ
(
q̄ + δ̄

)
+ δg

[
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

][
(1− γ) δg + γ

(
q̄ + δ̄

)
+ r + γp̄+ (1− γ)

]
(δg + r + 1)− (1− γ)

>
δg

δg + r
,

or
(q̄+δ̄)r
r+p̄ > δg, which is always satisfied.

Consider a period t with q∗t = qo. Hence, aot > 1 and since qo > qb > δg

δg+r , by Lemma 13, if q∗t+1 = q∗t = qo,

ωt+2 < ωt would obtain for any ωt. Since in fact q∗t+1 = qb < q∗t = qo, ωt+2 < ωt for any ωt. Hence,

q∗t = qot for all t implies ωt+2 < ωt for all t and hence, limt→∞ ωt = 0. Thus, eventually, ωt < qot obtains in

contradiction with q∗t = qo for all t and such a cycle cannot occur.�

Claim 42: For a constant sequence of dividends δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
, the economy cannot forever switch in

every subsequent period between a pessimistic state, in which q∗t = qpt and a Bayesian states, in which q∗t = qbt .

Proof of Claim 42: The proof of this Claim uses an argument symmetric to that in the Proof of Claim 41 and

is therefore omitted.�

Claims 36 and 37 demonstrate that if the economy starts in an optimistic (pessimistic) state, q∗t = qot (q∗t = qpt )

at time t, it cannot transition to a pessimistic (optimistic) state at time t+2, q∗t+2 6= qpt (q∗t+2 6= qot ) Furthermore,

by Claims 39 and 40, the economy can neither indefinitely stay in an optimistic or in a pessimistic regime,

nor indefinitely cycle between those. Finally, Claims 41 and 42 also exclude cycles between Bayesian and

optimistic, as well as Bayesian and pessimistic regimes. We conclude that the system eventually reaches two

consecutive periods t̄ and t̄ + 1 in which q∗t̄ ∈ [ωt̄;ωt̄ + β t̄], q
∗
t̄+1 ∈

[
ωt̄+1;ωt̄+1 + β t̄+1

]
, upon which, as
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shown in Claim 38, q∗t̄+2 = qbt̄+2, q∗t̄+3 = qbt̄+3.

Claim 43: Suppose that at time t, q∗t ∈ [ωt;ωt + βt]. Then, for any δt+1 ∈
(
δ; δ̄
)
, q∗t+2 = qbt+2.

Proof of Claim 43: We have ωt+2 = ωt
q∗t

q∗t+1+δt+1

δt+1+r+1 ≤ q
b
t+2 and

σt+2 = 1−
(
ωt+2 + βt+2

)
=

1− (ωt + βt)

p∗t

p∗t+1 + r

δt+1 + r + 1

=
1− (ωt + βt)

1− q∗t
1− q∗t+1 + r

δt+1 + r + 1
≥ 1− qbt+2

and hence, ωt+2 + βt+2 ≥ qbt+2, which implies q∗t+2 = qbt+2.�

Denote by U =:
{
ω;β; q;ω′;β′; q′; δ′ | q ∈ (ω;ω + β)

}
the set of states in which the equilibrium price q

equals the reservation price of the Bayesian consumers. Since for any initial state of the system, x0 =:(
ω0;β0; q0;ω′0;β′0; q′0; δ′0

)
, the set of all attainable states starting from this initial state, A+ (x0) has a non-

empty intersection with U . By Proposition 7.2.2 in Meyn and Tweedy (1993, p. 162), the set U is thus reached

with a positive probability from any initial state. Furthermore, the closure of the set U is an absorbing set of

the system Hence, a.s. after a finite number of periods, q∗t = qbt for all t.�

Proof of Proposition 17: Weak arbitrage-free beliefs is equivalent to δ̄ >
(q̄+δ̄)r
[r+p̄] >

(q+δ)r
r+p > δ.

The condition qo (q; δ) > qp (q; δ) for all q ∈
[
qmin p; qmax o

]
is equivalent to:

(
q̄ + δ̄ − q − δ

)
r + γ

(
pq̄ − p̄q

)
+ pδ̄ − p̄

(
γδ + (1− γ) δ̄

)
> 0

Using the fact that weakly arbitrage free beliefs imply
(
pq̄ − p̄q

)
> 0; δ̄p > rq; rq > δp; δq̄ > δ̄q; δ̄p̄ > rq̄;

rq̄ > δp̄, we find that the inequality would be satisfied if pδ̄ − qr > p̄δ̄ − q̄r. E.g.: q̄ = 1, q = 0, 001,

δ = 0, 0005, p̄ = 0, 8, p = 0, 1, δ̄ = 0, 45, r = 0, 32 satisfy all inequalities and since those are strict, we

conclude that there exists an open set of parameters satisfying the conditions of the Proposition.

Claim 45: The Markov process given by
(
q∗t−1; δt−1;ωt−2; q∗t−2; δt−2

)
is a T-chain.

Proof of Claim 45: Since βt ≡ 0, we can write q∗t and ωt as continuous functions of
(
q∗t−1; δt−1;ωt−2; q∗t−2; δt−2

)
.

Since δt is i.i.d., the process
(
ωt; q

∗
t ;ωt−1; q∗t−1; δt−1

)
is Markov and it describes the economy at time t.

For a given initial condition
(
ωt−1; q∗t−1;ωt−2; q∗t−2; δt−2

)
a given ωt obtains if δt−1 satisfies:

δt−1

(
ωt;ωt−1; q∗t−1;ωt−2; q∗t−2; δt−2

)
= δt−1

(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
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=


− (1 + r) +

(1−ωt−2)(1+r−q∗t−1)
(1−q∗t−2)(1−ωt)

if ωt−2 ≥ q∗t−2

− (1 + r) + ωt−2
1+r−q∗t−1

ωt−2−ωtq∗t−2
if ωt−2 < q∗t−2

This is obviously a continuous function of
(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
. Note that

(
ωt; δt−1; q∗t−1;ωt−2; q∗t−2

)
uniquely

determine the equilibrium price q∗t , which is also a continuous function of these arguments. Since δt−1 can be

written as a function of
(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
, we can eliminate δt−1 from the arguments of q∗t and write:

q∗t = q∗t
(
ωt; δt−1 (ωt) ; q∗t−1;ωt−2; q∗t−2

)
= q∗t

(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
= q∗t (ωt; ·) ,

where · stands for the initial state of the system.

Consider an open and convex set S ⊆ (0; 1)×
(
q; q̄
)
. For a given initial state of the system

(
q∗t−1;ωt−1; q∗t−2; δt−2;ωt−2

)
,

the probability of reaching S is given by:

Pr
{
δt−1 = δt−1

(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
for some ωt s.t. (ωt; q

∗
t (ωt; ·)) ∈ S

}
So for a given set S and given parameters ωt−2, q∗t−1, q∗t−2, let SΩ

(
ωt−2, q

∗
t−1, q

∗
t−2

)
be the set:

SΩ

(
ωt−2, q

∗
t−1, q

∗
t−2

)
=
{
ω |
(
ω; q

(
ω;ωt−2, q

∗
t−1, q

∗
t−2

))
∈ S

}
.

Obviously, this is the set of points in S that is potentially reachable from the given initial state for any possible

realization of δt−1.

Take a δ > 0, by continuity of q∗t
(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
and since the set S is open, it is possible to find a suffi-

ciently small ε > 0 such that if
[(
ωt−2, q

∗
t−1, q

∗
t−2

)
−
(
ω′t−2, q

∗′
t−1, q

∗′
t−2

)]
< ε and if

(
ωt; q

∗
t

(
ωt; q

∗
t−1;ωt−2; q∗t−2

))
∈

S, then
(
ωt; q

∗
t

(
ωt; q

∗′
t−1;ω′t−2; q∗′t−2

))
∈ S. Moreover, q∗t

(
ωt; q

∗
t−1;ωt−2; q∗t−2

)
is a continuous and increasing

function in ωt. So take a set S = Sω × Sq, where Sω and Sq are open convex subsets of (0; 1) and
(
q; q̄
)
,

respectively. Then, SΩ will also be an open convex subset of (0; 1). The lower and upper boundaries of this

set will be continuous functions of
(
q∗t−1;ωt−2; q∗t−2

)
. Hence, the probability of reaching such a set will also

be continuous in
(
q∗t−1;ωt−2; q∗t−2

)
. It thus follows that the Markov process defined above is a T-chain.�

Claim 46: The Markov process
(
q∗t−1; δt−1;ωt−2; q∗t−2; δt−2

)
is forward accessible.

Proof of Claim 46: For each initial condition, the set
{
ω | ω = ωt

(
q∗t−1; δt−1; q∗t−2;ωt−1;ωt−2

)
for some δt−1 ∈

(
δ; δ̄
)}

has a non-empty interior and hence, since the function q∗ (ω; ·) is continuous and increasing in ω, the set of
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reachable q∗’s also has a non-empty interior.�

Consider a sequence of dividend realizations (δg...δg...) with δg ∈
(

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

)
. We know that there

exists a period T such that q∗t ∈
[
qREp (δg) ; qREo (δg)

]
for all t ≥ T .

Claim 47: For a constant sequence of dividends δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
, the economy cannot forever switch in

every subsequent period between a pessimistic state with q∗t = qpt and an "intermediate" state with q∗t = ωt.

Proof of Claim 47: Assume to the contrary that the economy cycles between pessimistic and intermediate

states. Then, the sequence of prices satisfies q∗t+1 = qp (ωt; δ
g) and q∗t+2 = ωt+2 =

ωt
q∗t+1+δg

ωt

δg+r+1 =
ωt

qp(ωt;δg)+δg

ωt

δg+r+1

for all t. As above, w.l.o.g., assume that qp
t̄+1
≥ qp

t̄+3
. It follows that ωt̄+2 ≥ ωt̄+4 and since both sequences

are bounded, both of them have to converge. The limits of ω and qp then have to satisfy:

ω =

(
γ
(
q + δ

)
+ δg

[[
(1− γ) δg + γ

(
q + δ

)]
+
(
r + γp

)
+ 2 (1− γ)

])[[[
(1− γ) δg + γ

(
q + δ

)]
+
(
r + γp

)
+ 1− γ

]
(δg + r + 1)− (1− γ)

]
qp =

(1− γ) (δg + δg (δg + r + 1)) + γ
(
q + δ

)
(δg + r + 1)[[

(1− γ) δg + γ
(
q + δ

)]
+
(
r + γp

)]
(δg + r + 1)− (1− γ)

We then need that ω <
(1−γ)(qp+δg)+γ(q+δ)

[(1−γ)δg+γ(q+δ)]+(r+γp)+1−γ , which simplifies to:

[
(1− γ) +

[
γ
(
q + δ

)
+ (1− γ) δg

]
+
(
γp+ r

)] [
(1− γ) δg + γ

[
r (δg − δ)− qr + pδg

]]
+

+ (1− γ) γ
(
q + δ

)
< 0

We will now show that the expression (1− γ) δg + γ
[
r (δg − δ)− qr + pδg

]
is positive. Indeed,

[
(1− γ) δg + γ

[
r (δg − δ)− qr + pδg

]]
≥
q + δ

p+ r
r (1− γ) + γ

[
r

(
q + δ

p+ r
r − δ

)
− qr + p

q + δ

p+ r
r

]
≥ 0

since 1
p+r (1− γ) ≥ 0. Hence, the condition is never true and a cycle of this type is thus impossible.�

Claim 48: For a constant sequence of dividends δg ∈
[

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

]
, the economy cannot forever switch in

every subsequent period between an optimistic state, with q∗t = qot and an "intermediate" state, with q∗t = ωt.

Proof of Claim 48: The proof of this Claim is symmetric to that of Claim 47 and therefore omitted.

Claim 49: For δg ∈
(

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

)
, xg = (ωg; qg;ωg; qg; δg) with qg = ωg = δg

δg+r is globally attracting.

Proof of Claim 49: Using Claims 36 – 40 from the proof of Proposition 16 (substituting β = 0 and noting

that
(
δ; δ̄
)
⊆
(

(q+δ)r
r+p ;

(q̄+δ̄)r
r+p̄

)
), we can show that the economy cannot indefinitely remain in a state, in

which optimists (pessimists) determine prices, q∗t = qot (q∗t = qpt ). Nor can it indefinitely cycle between

optimistic and pessimistic states. Furthermore, if at time t, q∗t = min {qot ;ωt}, then q∗t+2 = min {qot ;ωt} and
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if q∗t = max {qpt ;ωt}, then q∗t+2 = max
{
qpt+2;ωt+2

}
. Hence, eventually, a period t with q∗t = ωt is reached.

If q∗t−1 = qpt , then q∗t+1 = max
{
qpt+1;ωt+1

}
, and if q∗t−1 = qot , then q∗t+1 = min

{
qot+1;ωt+1

}
. By Claims 47

and 48, a cycle between optimistic and "intermediate" states, (with q∗t = ωt), is impossible, and so is a cycle

between pessimistic and intermediate states.

This implies that there is a finite time t̄ ≥ T such that q∗t̄ = ωt̄ and q∗t̄+1 = ωt̄+1 and thus, q∗t = ωt for all t ≥ t̄.

If ωt < ωg, the share of optimists will increase, whereas for ωt > ωg, it will decrease. It follows that for an

infinite sequence of δg realizations, the economy will converge to xg, regardless of the initial state xg0, i.e., the

state is reachable from any initial state and thus globally attracting. �

Claim 50: The Markov process defined in Claim 45 is ψ-irreducible, positive recurrent and has an invariant

probability distribution π̃.

Proof of Claim 50: Since by Claim 49, a globally attracting state exists, we obtain, by Proposition 7.2.5 in

Meyn and Tweedy (1993, p. 164), that the process is M -irreducible. Since, furthermore, the (NSS3) condition

on the density function of δ is satisfied and the model is forward accessible, we have, by Theorem 7.2.6., in

Meyn and Tweedy (1993, p. 164) that the Markov process is ψ-irreducible on the set S̄ reachable from xg,

which is compact, see Proposition 7.2.5 in Meyn and Tweedy (1993, p. 164) and hence, by Theorem 6.0.1

in Meyn and Tweedy (1993, p. 131), it is petite. Hence, just as in the proof of Proposition 11, the process is

positive recurrent and has an invariant distribution π̃.�

Claim 51: The irreducible set of the Markov process contains a state xo =
(
ωo; qo;ωo′; qo′; δo′

)
with ωo >

qo = qot
(
qo′; δo′

)
and a state xp =

(
ωp; qp;ωp′; qp′; δp′

)
with 1 − ωp > qp = qpt

(
qp′; δp′

)
, which are in the

support of the invariant measure π̃ defined in Claim 50.

Proof of Claim 51: Consider the state xg = (ωg; qg;ωg; qg; δg) as defined above with δg =
r(q̄+δ̄)
p̄+r . Let

δo
′
> δg, then ωt+1 = ωt−1

ωt+δ
ωt−1(1+δ+r) =

δg

δg+r
+δo

′

1+δo
′
+r

=
q̄+δ̄

q̄+δ̄+p̄+r
+δo

′

1+δ+r = qbt+1. Furthermore, for the chosen

values of qt = qg = ωg and δo
′
, we have that qbt+1 > qot+1 =

(1−γ)
(

q̄+δ̄

q̄+δ̄+p̄+r
+δo

′)
+γ(q̄+δ̄)

[(1−γ)δo
′
+γ(q̄+δ̄)]+(r+γp̄)+1−γ . It follows that

ωt+1 > qot+1 and hence, q∗t+1 = qot . I.e., the state

xo = (ωo =
q̄ + δ̄ + δo

′ (
q̄ + δ̄ + p̄+ r

)(
1 + δo

′
+ r
) (
q̄ + δ̄ + p̄+ r

) ; qo =
(1− γ)

(
q̄+δ̄

q̄+δ̄+p̄+r
+ δo

′
)

+ γ
(
q̄ + δ̄

)[
(1− γ) δo

′
+ γ

(
q̄ + δ̄

)]
+ (r + γp̄) + 1− γ

;

ωo′ =
q̄ + δ̄

q̄ + δ̄ + p̄+ r
; qo′ =

q̄ + δ̄

q̄ + δ̄ + p̄+ r
; δo′)
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for δo
′
>

r(q̄+δ̄)
p̄+r satisfies ωo > qo = qot

(
qo′; δo′

)
and is accessible from the globally accessible state xg with

δg =
r(q̄+δ̄)
p̄+r . It is therefore part of the minimal set and hence, in the support of π̃.

A symmetric argument applies for the pessimistic states: consider xg with δg =
(q+δ)r
r+p upon a dividend

realization δp
′
< δg. It is easy to show that the state

xp = (ωp =
q + δ + δp

′ (
q + δ + p+ r

)(
1 + δp

′
+ r
) (
q + δ + p+ r

) ; qp =
(1− γ)

(
q+δ

q+δ+p+r + δp
′
)

+ γ
(
q + δ

)[
(1− γ) δp

′
+ γ

(
q + δ

)]
+
(
r + γp

)
+ 1− γ

;

ωp′ =
q + δ

q + δ + p+ r
; qp′ =

q + δ

q + δ + p+ r
; δp′)

satisfies 1− ωp > qp = qpt
(
qp′; δp′

)
and is accessible from the globally accessible state xg with δg =

(q+δ)r
r+p .

It is therefore part of the minimal set and hence, in the support of π̃.�
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