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Abstract. The latest molecular data - potential energy curves and Rydberg-valence interactions - characterising the super-excited
electronic states of BF are reviewed in order to provide the input for the study of their fragmentation dynamics. Starting from this
input, the main paths and mechanisms of BF+ dissociative recombination and vibrational excitation are analysed. Their cross sections are
computed for the first time using a method based on the multichannel quantum defect theory (MQDT), and Maxwellian rate-coefficients
are calculated and displayed in ready-to-be-used format for low temperature plasma kinetics simulations.

1. Introduction

Boron fluoride (BF3) containing plasmas are important for applications in the field of material processing. BF3 and Ar/BF3

plasmas are for instance used for p-type doping in the semi-conductor industry (Torregrosa et al 2004, Matsui et al 2004).
Moreover, electrical discharges generated in complex mixture of BF3 with nitrogen containing compounds have been proposed
and investigated for the deposition of boron nitride coatings (Yu & Matsumoto 2003, Yamamoto et al 2006). All these
processes make use of low pressure high density plasma sources where BF3 interacts with the free electrons of the plasma
through elastic and inelastic collisions. These collisions are not only the driver for the generation of the active key-species of
the process, e.g., the positive ions for the plasma immersion ion implantation (PIII) doping processes or active radicals for the
deposition processes, but they also contribute and govern the discharge equilibrium and stability through ionisation, attachment
and recombination processes (Agarwal &Kushner 2007, Farber & Srivastava 1984, Kim & Irikura 2000). In particular, for high
density magnetised inductively coupled radio-frequency sources used in many of these processes, the surface losses are limited
due to the magnetic confinement, which makes the contribution of ion recombination and mutual recombination processes to the
discharge equilibrium very significant. In this context, the BF+ ion can represent a significant fraction of the ions produced when
working at high power density discharge conditions for which BF3 dissociation and dissociative ionisation are strongly enhanced
and the plasma is dominated by BF2 and BF fragments (Maury et al 2016). These species can therefore significantly contribute
either as an active species in the processes or in the discharge ionisation-recombination equilibrium. The investigation of the
dissociative recombination of BF+ is therefore of importance for understanding BF3 plasma processes.

The kinetic description of all the above mentioned environments is based on the knowledge of the rate coefficients of the
dominant reactions, including those between electrons and molecular ions. As for the BF+ ions, their abundance and their
vibrational distribution are strongly affected by the dissociative recombination (DR),

BF+(v+
i ) + e− → B + F, (1)

and also by other competitive processes, such as inelastic collisions (v+
f > v+

i ) and super-elastic collsions (v+
f < v+

i ) which are
also known as collisions of the second kind:

BF+(v+
i ) + e− → BF+(v+

f ) + e−, (2)

where v+
i and v+

f stand for the initial and final vibrational quantum number of the target ion, and rotational structure is neglected.
In the present work, we compute the DR and vibrational transition (VT) - vibrational excitation/de-excitation (VE/VdE)

- cross sections and rate coefficients for the lowest three vibrational levels of the BF+ in its ground electronic state using the
multichannel quantum defect theory (MQDT). The paper is structured as follows: Section 2 outlines the main ideas and steps of
our MQDT approach. Section 3 presents the molecular data used in the calculation. The main results are given in section 4 and
the paper ends by conclusions.



2. The MQDT-type approach to DR

The MQDT approach (Seaton 1983, Greene and Jungen 1985, Jungen 1996, Giusti-Suzor 1980) has been shown to be a powerful
method for the evaluation of the cross sections in collisions of electrons/photons with molecular cation/neutral systems. It
was applied with great success in calculating DR cross sections to several diatomic systems like H+

2 and its isotopologues
(Giusti-Suzor et al 1983, Schneider et al 1991, Takagi 1993, Tanabe et al 1995, Schneider et al 1997, Amitay et al 1999),
O+

2 (Guberman and Giusti-Suzor 1991, Guberman 2000), NO+(Sun and Nakamura 1990, Vâlcu et al 1998, Schneider
et al 2000a) and triatomics like H+

3 (Schneider et al 2000b, Kokoouline et al 2001, Kokoouline and Greene 2003), and for
its competitive processes like ro-vibrational transitions in case of NO+ (Motapon et al 2006), CO+ (Mezei et al. 2015) and
H+

2 (Ngassam et al 2003a, Epée Epée et al 2015). Recently, a global version of MQDT (Jungen 2011) has been used to describe
the photoabsorption, photoionisation and photodissociation of H2 (Mezei et al 2012, Mezei et al 2014, Sommavilla et al 2016),
providing very good agreement with highly accurate experimental results.

In the present paper, we use an MQDT-type method to study the electron-impact collision processes given by eqs. (1) and
(2) which result from the quantum interference of the direct mechanism - the capture takes place into a dissociative state of the
neutral system (BF∗∗) - and the indirect one - the capture occurs via a Rydberg state of the molecule BF∗ which is predissociated
by the BF∗∗ state. In both mechanisms the autoionization is in competition with the predissociation and leads, through the
reaction (2), to super-elastic collision (SEC) (v+

i > v+
f in eq. (2)), elastic collision (EC) (v+

i = v+
f ) and inelastic collision (IC)

(v+
i < v+

f ).
A detailed description of our theoretical approach is given in previous studies (Little et al 2014, Mezei et al. 2015). The

major steps of the method only can be briefly outlined as follows:

(i) Defining the interaction matrix V :
Within a quasi-diabatic representation of the BF states, the interaction matrix is based on the computed (Chakrabarti and
Tennyson 2009, Chakrabarti et al 2011) couplings between ionisation channels - associated to the vibrational levels v+ of
the cation and to the orbital quantum number l of the incident/Rydberg electron - and dissociation channels dj .

(ii) Computation of the reaction matrix K:
Given H0 the Hamiltonian of the molecular system under study in which the Rydberg-valence interaction is neglected, we
adopt the second-order perturbative solution for the Lippman-Schwinger integral equation (Ngassam et al 2003a, Florescu
et al 2003, Motapon et al 2006), written in operatorial form as:

K = V + V 1

E −H0
V . (3)

(iii) Diagonalization of the reaction matrix,
yields the corresponding eigenvectors and eigenvalues which are used to build the eigenchannel wavefunctions.

(iv) Frame transformation from the Born-Oppenheimer (short-range) to the close-coupling (long-range) representation,
relying, for a given electronic total angular momentum quantum number Λ and a given orbital quantum number of the
incident/Rydberg electron l, on the quantum defect µΛ

l (R) and on the eigenvectors and eigenvalues of the K-matrix.
(v) Construction of the generalised scattering matrixX ,

based on the frame-transformation coefficients, this matrix being organised in blocks associated to open and/or closed (o
and/or c respectively) channels:

X =

(
Xoo Xoc

Xco Xcc

)
. (4)

(vi) Construction of the generalised scattering matrix S,

S = Xoo −Xoc
1

Xcc − exp(−i2πν)
Xco. (5)

based on the open channels, the first term in eq. (5), but also on their mixing with the closed ones, given by the second
term, the denominator being responsible for the resonant patterns in the shape of the cross section (Seaton 1983). Here the
matrix exp(−i2πν) is diagonal and contains the effective quantum numbers νv+ associated to the vibrational thresholds of
the closed ionisation channels.

(vii) Computation of the cross-sections:
For each of the relevant BF states, which are grouped by symmetry properties: electronic total angular momentum quantum
number Λ, electronic spin singlet/triplet, and for a given target cation vibrational level v+

i and energy of the incident
electron ε, the dissociative recombination and the vibrational excitation/de-excitation cross sections are computed using,
respectively:

σsym

diss←v+i
=

π

4ε
ρsym

∑
l,j

| Sdj ,lv+i |
2, (6)

σsym

v+f ←v
+
i

=
π

4ε
ρsym

∑
l,l′

| Sl′v+f ,lv+i − δl′lδv+i v+f |
2, (7)

where ρsym stands for the ratio between the multiplicity of the involved electronic states of BF and that of the target, BF+.
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Figure 1. The dissociative states and electronic couplings relevant for BF+ dissociative recombination within the major symmetries,
indicated in each figure. Top panel: the potential energy curves of the dissociative BF∗∗ states (colour, cf section 3), the ground state
potential energy curve of BF+ and its vibrational levels (black). Bottom panel: couplings between the valence BF∗∗ dissociative states
and the ionisation continua BF+ + e−.

3. Molecular data

The molecular data necessary to model the DR are the potential energy curve (PEC) of the ground state of the ion, the PECs
of the neutral valence dissociative states interacting with the ionization continua, those of the Rydberg states associated to these
continua below the threshold, and all the relevant Rydberg-valence couplings. These molecular data are mostly obtained from
ab initio R-Matrix calculations. In order to extend the PECs to small and large values of the internuclear distance R, we used the
quantum chemistry molecular data of Magoulas et al (2013).

3.1. Ab initio R-Matrix calculations for the molecular states

Ab initio R-matrix calculations of electron collision with the BF+ ion yielding the relevant molecular data were performed by
three of us (Chakrabarti and Tennyson 2009, Chakrabarti et al 2011). The R-matrix method is a state-of-the-art quantum
scattering technique which can be used to calculate the properties of bound and resonant electronic states of a molecule
(Tennyson 2010). The BF+ target states were first obtained by performing a configuration interaction (CI) calculation.
Subsequently this CI target wave function was used in an R-matrix calculation. The bound states of the BF molecule were
obtained by searching for negative energy solutions using the BOUND program available within the R-Matrix code suite (Sarpal
et al. 1991, Carr et al 2012). This also produces quantum defects of the bound states. Resonances were detected and fitted to a
Briet-Wigner profile (Tennyson & Noble 1984) to obtain their energies and widths. Subsequently the electronic couplings Vdj ,l
were obtained from the resonance widths Γdj ,l using the relation

Vdj ,l =

√
Γdj ,l

2π
. (8)

The calculations were repeated for 11 internuclear distances in the range 1.5 a0 − 3.5 a0. While the R-matrix calculations used
several partial waves l to represent the scattering, one single generic partial wave for each symmetry was considered to take in
charge the total strength of the Rydberg-valence interaction in the current calculations. Dissociative curves were constructed
using the resonance data above the ion PEC and their continuation as bound states below the ion PEC.

3.2. Modeling of the potential energy curves and electronic couplings

Our earlier studies on molecular systems such as H2 (Epée Epée et al 2015), HD (Motapon et al 2014), NO (Motapon et al 2006),
N2 (Little et al 2014) and CO (Mezei et al. 2015) revealed that accurate and complementary R-matrix and quantum chemistry
calculations are needed for a reliable description of the molecular dynamics in electron/molecular cation collisions. In particular,
we found that the DR cross section is extremely sensitive to the position of the PECs of the neutral dissociative states with respect
to that of the target ion. Indeed, a slight change of the crossing point of the PEC of a neutral dissociative state with that of the ion
ground state can lead to a significant change in the predicted DR cross section. In addition, the PECs of the dissociative states
must also go to the correct asymptotic limits for large values of the internuclear distance R.

In order to fulfil these accuracy criteria, we smoothly matched the PECs corresponding to R-matrix resonances, situated
above the ion PEC, to branches of adiabatic PECs coming from previous quantum chemistry calculations (Magoulas et al 2013).
Some of these latter PECs allowed us to complete the relevant diabatic landscape. More specifically, since for the states having
1Σ+ and 1Π symmetry the avoided crossings involved always two adiabatic states only, the adiabatic PECs can be a transformed
into (quasi-)diabatic PECs using a 2 × 2 rotation matrix (Roos et al 2009). Meanwhile, far from the avoided crossing, we
assumed that the adiabatic and diabatic potential curves are identical. This assumption forces the rotational angle to be a function
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Figure 2. DR cross section for the direct (dashed lines) and the total (direct and indirect) processes (continuous lines) for each symmetry,
with the ion initially in v+i = 0,

that varies steeply from 0 to π/2, chosen in the present case a tangent hyperbolic function. In this way we were able to extract
the diabatic PECs for the dissociative states with singlet symmetries relevant for DR.

The electronic couplings provided by the R-matrix theory (Chakrabarti et al 2011) for the triplet states are at least one or
even two orders of magnitude smaller then those of the singlet ones, so they are omitted in the present calculation.

The data on the PECs are limitted to internuclear distances with R ≤ 8 a0. We completed the diabatic PECs by adding a
long-range tail ofD−

∑
n Cn/R

n type (Stone 1996, Lepers and Dulieu 2011) for larger values ofR, whereD is the dissociation
limit as given in the (NIST Atomic Spectra Database 2016). For the ground state of BF+, the leading term C3/R

3 of the
multipolar expansion comes from the interaction between the charge of B+ and the quadrupole moment of fluorine in its ground
state 2P o(ML = 0), with ML the azimuthal quantum number of F with respect to the internuclear axis. The corresponding
coefficient C3 = Q = 0.731 a.u. (Medved et al 2000) gives rise to a repulsive interaction, which is balanced by the next term
C4/R

4 of the multipolar expansion, due to the polarisation of the electronic cloud of F by the ion B+. The coefficient is given
by C4 = −αzz/2 = −1.72 a.u., where αzz = 3.43 a.u. (Medved et al 2000) is the static dipole polarisability of the ground
state 2P o(ML = 0) of fluorine. As for the states of the BF , the Cn coefficients are calculated as fitting parameters to ensure a
smooth connection with the existing part of the PECs.

The top panel of Figure 1 shows the PEC of the ion ground state - together with its vibrational structure - and the PECs
of the DR-relevant dissociative states obtained using the procedure outlined above and taken into account in the present MQDT
calculation. The electronic couplings of these latter states with the ionization continua, computed from the R-Matrix-produced
autoionization widths followed by Gaussian-type extrapolations to small and large internuclear distances, are shown in the bottom
panel of the same figure.

4. Results and discussion

4.1. Evaluation of the cross section using the MQDT approach

Using the set of molecular data (PECs, electronic couplings and quantum defects) determined as described in the previous section,
we performed a series of MQDT calculations of cross sections for DR and competitive processes, assuming BF+ to be initially
in its electronic ground state X 2Σ+ and on one of its lowest vibrational levels v+

i = 0, 1 and 2. We have considered that the
reactive processes take place via BF-states of total symmetry of 1∆, 1Π, 1Σ+ - see Figure 1 - and we neglected rotational and
spin-orbit effects.

We consider incident electron energies from 0.01 meV up to 5 eV - the dissociation energy of BF+ X 2Σ+ electronic state
- and all the 30 vibrational levels of the ion are included in the calculations.

At very low energy, all the excited levels are associated with closed ionisation channels, as defined in section 2, responsible
for temporary resonant capture into Rydberg states. As the energy increases, more and more ionisation channels open, which
results in autoionization, leading to competitive processes, such as IC and SEC, and decreasing the flux of DR.

The direct electronic couplings between ionisation and dissociation channels - mentioned in paragraph (i) of section 2 -
were extracted from the autoionization widths (see eq. (8)) of the valence states calculated by Chakrabarti and Tennyson (2009).
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Figure 3. Total DR cross sections for different initial vibrational levels of the ion, for all of the symmetries considered. Black continuous
lines are for DR from v+i = 0, while the red dotted and green dashed lines are for DR from v+i = 1 and 2, respectively.

For each dissociation channel available, we considered interaction with the most relevant series of Rydberg states including only
one partial wave for each symmetry.

By examining the magnitude of the valence-Rydberg couplings (shown in the bottom panel of figure 1) and the positions
of the crossing points between the dissociative states correlating to the B(2p1) + F(2p5) atomic limits with the ionic ground
state - blue and black curves in the first figure of the upper panel of the same figure - at low collision energies (up to 1 eV) one
may predict that the major part of the total cross section comes from the 1∆ symmetry (solid black line in figure 2), while the
1Σ and 1Π symmetries (solid green and red lines in the same figure) only make a minor contribution to the cross section. The
importance of these latter two symmetries is revealed at higher collision energies, when the crossing of the first dissociative state
with the molecular ion becomes favorable. At collision energies about 1 eV, the 1Σ+ states give a larger contribution to the DR
cross section than the 1∆ symmetry, which in turn is exceeded by the 1Π symmetry at about 2 eV. Moreover, one can notice that
at higher collision energies, around 3.5 eV, when all the dissociative states are open, the DR cross section shows a sharp revival
and, at 5 eV, the resonance structures disappear since all the ionization channels are open, and consequently the direct process
only drives the DR.

Figure 2 shows the importance of the indirect process for the DR of vibrationally relaxed BF+ at low energies.
Within the 1∆ symmetry, the entrance ionization channel associated with the v+

i = 0 state is strongly coupled to the
dissociation continuum (see Figure 1), allowing the direct process to dominate. The indirect process diminishes the cross section
- destructive interferences with the direct one - due to stronger coupling between closed channels associated with highly-excited
vibrational levels - v+ = 12− 16 - and the dissociative ones.

Within the 1Π symmetry one finds the opposite. The direct process gives only a minor contribution to the DR cross section,
due to the poor Franck-Condon overlap between the vibrational wave function of the initial state of the ion and the dissociative
neutral states. However, the much stronger couplings between some closed ionisation channels - v+ = 8 − 10 - and the
dissociative states significantly increases the total cross section through the indirect mechanism (Pop et al 2012, Schneider
et al 2012) resulting into constructive quantum interferences.

Finally, for the states with 1Σ+ symmetry, the indirect process plays a relatively minor role, the magnitude of the total
cross section being given mainly by the direct process. The indirect process is responsible for resonant structures which are a
consequences of both constructive and destructive interference.

For a given initial vibrational level of BF+, the total DR cross section is obtained by summing over the partial cross sections
of the three symmetries contributing to the process - 1∆, 1Π and 1Σ+ - given in eq, (6). The results of the calculations performed
for the lowest three vibrational levels of the ground electronic state of the ion are shown in Figure 3.

4.2. Reaction rate coefficients for DR and its competitive processes

Besides the dissociative recombination cross sections presented in Figure 3, we use eq. (7) to calculate the vibrational excitation
(VE) and de-excitation (VdE) cross sections for the same vibrational levels of the target. Since many of the features of the VE
and VdE cross sections either are similar to, or may be understood with the same reasoning as those of DR, we do not display
them here. Instead, we present in this section their Maxwell rate coefficients for a broad range of electronic temperatures, in
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comparison with those of the DR. All these data are relevant for cold non-equilibrium plasmas.
Figure 4 shows the total DR and vibrational transition - VE and VdE - rate coefficients for the three lowest vibrational levels

of the ion. The DR rate for v+
i = 0 shows different behaviour to those for the v+

i = 1 and 2 states. It has a maximum at an
electron temperature Te of about 400 K, while the rates for the other two states are monotonically decreasing with Te, reaching
nearly the same magnitude at higher temperatures. This behaviour for v+

i = 0 comes from the strong resonant peaks just below
0.01 eV, see Figure 2 and black curve in Figure 3.

For other recently studied molecular systems, N2 (Little et al 2014) and CO (Mezei et al. 2015), the DR clearly dominates
the electron-ion collisions. However, for BF the calculated VdE rate coefficients are larger than the DR-ones, and VE rate
coefficients exceed the DR-ones at high Te by almost an order of magnitude. Thus, one can conclude that in the case of the BF+

containing plasma, the internal vibrational energy is much more important for energy-exchange via VE and VdE, than the kinetic
energy release via the exothermic DR.

To facilitate the use of our rate coefficients (Figure 4) in modeling calculations, we fit them using modified Arrhenius-type
formulas. The calculated DR rate coefficients for v = 0, 1, 2 are given by :

kDRBF+,v(Te) = AvTe
αv exp

[
−

7∑
i=1

Bv(i)

i · Tei

]
(9)

over the electron temperature range 100 K<Te< 3000 K. The parametersAv , αv , and Bv(i) are listed in table 1. The corresponding
formula for the vibrational transitions (VE and VdE) has the form:

kDRBF+,v′→v′′(Te) = Av′→v′′Te
αv′→v′′ exp

[
−

7∑
i=1

Bv′→v′′(i)

i · Tei

]
(10)

over the electron temperature range Tmin<Te< 3000 K. The parameters Tmin, Av′→v′′ , αv′→v′′ , and Bv′→v′′(i) for i =
1, 2, . . . , 7 are given in tables 2-4.

Table 1. Parameters used in equation (9) to represent the DR rate coefficient of BF+. Powers of 10 are given in square brackets.

v Av αv Bv(1) Bv(2) Bv(3) Bv(4) Bv(5) Bv(6) Bv(7)

0 0.703050632[−5] -0.108298227[1] -0.363984388[2] 0.68522753[6] -0.341534791[9] 0.86262362[11] -0.117919938[14] 0.821543800[15] -0.229194862[17]

1 0.205402433[−11] 0.557133316[0] -0.185580405[4] 0.110399946[7] -0.316387400[9] 0.531242790[11] -0.525109108[13] 0.283203635[15] -0.643843159[16]

2 0.144845145[−5] -0.806777388[0] 0.285629778[4] -0.322036339[7] 0.160926033[10] -0.409338097[12] 0.558087964[14] -0.388815002[16] 0.108682270[18]
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Table 2. Parameters used in equation (10) to represent the VE rate coefficient of BF+ (v = 0). Powers of 10 are given in square brackets.

v′ → v′′ Tmin(K) Av′→v′′ αv′→v′′ Bv′→v′′ (1) Bv′→v′′ (2) Bv′→v′′ (3) Bv′→v′′ (4) Bv′→v′′ (5) Bv′→v′′ (6) Bv′→v′′ (7)

0→ 1 100 0.262533924[−5] -0.547999875[0] 0.214096395[4] 0.639318590[6] -0.338435157[9] 0.871079196[11] -0.119891991[14] 0.844485990[15] -0.238785179[17]

0→ 2 250 0.173038633[−11] 0.899303013[0] -0.154506863[4] 0.103113831[8] -0.802809891[10] 0.345037537[13] -0.831154448[15] 0.104995341[18] -0.541063017[19]

0→ 3 350 0.228322632[−19] 0.298753871[1] 0.362608159[4] -0.187052923[8] 0.462415666[11] -0.437428769[14] 0.208086587[17] -0.496004570[19] 0.471734143[21]

0→ 4 500 0.117098647[13] -0.484209878[1] 0.440674967[5] -0.535140469[8] -0.648699676[9] 0.669344086[14] -0.628654524[17] 0.237907644[20] -0.333577789[22]

0→ 5 700 0.409903965[−3] -0.115252435[1] 0.195259810[5] -0.556269189[7] 0.845592131[10] -0.259895652[14] 0.300647776[17] -0.147809013[20] 0.269130250[22]

0→ 6 1000 0.208106654[−4] -0.886590160[0] 0.164181737[5] 0.130228539[8] -0.448925166[11] 0.652593625[14] -0.524133410[17] 0.227101018[20] -0.413751683[22]

0→ 7 1000 0.191744424[−4] -0.916885978[0] 0.176354084[5] 0.715839067[7] -0.242161884[11] 0.338962077[14] -0.251630983[17] 0.964448872[19] -0.147532452[22]

Table 3. Parameters used in equation (10) to represent the VE rate coefficient of BF+ (v = 1). Powers of 10 are given in square brackets.

v′ → v′′ Tmin(K) Av′→v′′ αv′→v′′ Bv′→v′′ (1) Bv′→v′′ (2) Bv′→v′′ (3) Bv′→v′′ (4) Bv′→v′′ (5) Bv′→v′′ (6) Bv′→v′′ (7)

1→ 0 100 0.452471923[−4] -0.870739533[0] 0.482355385[3] -0.159745070[6] 0.206190286[8] -0.357598119[9] -0.236882495[12] 0.278880714[14] -0.100143557[16]

1→ 2 100 0.206894707[−4] -0.534102059[0] 0.240138665[4] 0.240026523[6] -0.118750781[9] 0.294642142[11] -0.398661667[13] 0.277400105[15] -0.775646365[16]

1→ 3 500 0.132913428[3] -0.796311915[0] 0.528489192[4] -0.227298093[6] 0.992018062[8] -0.246177290[11] 0.334949142[13] -0.234694329[15] 0.661421602[16]

1→ 4 1000 0.618690809[−3] -0.105997410[1] 0.102015058[5] -0.102556918[8] 0.227295645[11] -0.322366448[14] 0.285015517[17] -0.142527673[20] 0.306796130[22]

1→ 5 1000 0.195393605[−5] -0.554467702[0] 0.874898467[4] 0.410394065[7] -0.950355092[10] 0.129851249[14] -0.110278414[17] 0.546465683[19] -0.120534084[22]

1→ 6 1500 0.144480570[27] -0.772731693[1] 0.121808074[6] -0.696758177[9] 0.243696228[13] -0.508560332[16] 0.633554530[19] -0.436110956[22] 0.127890210[25]

Table 4. Parameters used in equation (10) to represent the VE rate coefficient of BF+ (v = 2). Powers of 10 are given in square brackets.

v′ → v′′ Tmin(K) Av′→v′′ αv′→v′′ Bv′→v′′ (1) Bv′→v′′ (2) Bv′→v′′ (3) Bv′→v′′ (4) Bv′→v′′ (5) Bv′→v′′ (6) Bv′→v′′ (7)

2→ 0 100 0.206905711[−4] -0.534094193[0] -0.522292591[2] 0.239747229[6] -0.118624395[9] 0.294301198[11] 0.235044551[13] 0.277059236[15] -0.774678282[16]

2→ 1 100 0.281749676[−3] -0.939661066[0] 0.573963533[3] -0.266713211[6] 0.925188414[8] -0.195045354[11] -0.831154448[15] -0.149951574[15] 0.392910054[16]

2→ 3 200 0.677540315[−6] -0.180526927[0] 0.165713437[4] 0.786441694[6] -0.355111141[9] 0.865145438[11] -0.110403668[14] 0.586781113[15] -0.159145807[16]

2→ 4 500 0.312513647[−2] -0.113354017[1] 0.791543066[4] -0.692210036[7] 0.883457770[10] -0.684463255[13] 0.319179702[16] -0.822026586[18] 0.896873812[20]

2→ 5 1000 0.641993202[−3] -0.101279417[1] 0.931521134[4] -0.338959607[7] 0.140747992[10] 0.325809186[13] -0.558558120[16] 0.350923558[19] -0.820376383[21]

5. Conclusion

This paper presents a theoretical study of the dissociative recombination of BF+ and of its competitive processes - vibrational
excitation and de-excitation - over a broad range of electron energies - up to about 5 eV - and considering all the relevant
dissociative states within different symmetries. Our MQDT dynamical approach is relying on molecular data calculated by the
ab initio R-matrix method, completed by quantum chemical results. The computed Maxwell rate coefficients are relevant for
the kinetic modelling of molecule based cold non-equilibrium plasmas, in the context of complete lack of other theoretical or
experimental data on these processes for this cation.

The present calculations complete our very recent studies of the DR performed on N+
2 (Little et al 2014) and on CO+ (Mezei

et al. 2015) based on fully ab initio potential energy curves and couplings computed with the R-matrix method (Tennyson 2010),
since BF+ is isoelectronic with these two molecular systems. We note that while there is no experimental data available for
the processes considered here for BF+, our previous calculation on N+

2 and CO+ gave good agreement with the available
measurements.
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