Dissociative recombination and vibrational excitation of BF+ in low energy electron collisions J. Zs Mezei, F. Colboc, N. Pop, S. Ilie, K. Chakrabarti, S. Niyonzima, M. Lepers, A. Bultel, O. Dulieu, O. Motapon, et al. ### ▶ To cite this version: J. Zs Mezei, F. Colboc, N. Pop, S. Ilie, K. Chakrabarti, et al.. Dissociative recombination and vibrational excitation of BF+ in low energy electron collisions. Plasma Sources Science and Technology, 2016, 25 (5), pp.055022. 10.1088/0963-0252/25/5/055022. hal-01611223 HAL Id: hal-01611223 https://hal.science/hal-01611223 Submitted on 9 Jan 2024 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## Dissociative recombination and vibrational excitation of BF^+ in low energy electron collisions J. Zs. $Mezei^{1,2,3,4}$, F. $Colboc^1$, N. Pop^5 , S. $Ilie^{1,5}$, K. $Chakrabarti^{1,6}$, S. $Niyonzima^7$, M. $Lepers^2$, A. $Bultel^8$, O. $Dulieu^2$, O. $Motapon^9$, J. $Tennyson^{10}$, K. $Hassouni^4$, and I. F. $Schneider^{1,2}$ E-mail: janos.mezei@univ-lehavre.fr **Abstract.** The latest molecular data - potential energy curves and Rydberg-valence interactions - characterising the super-excited electronic states of BF are reviewed in order to provide the input for the study of their fragmentation dynamics. Starting from this input, the main paths and mechanisms of BF⁺ dissociative recombination and vibrational excitation are analysed. Their cross sections are computed for the first time using a method based on the multichannel quantum defect theory (MQDT), and Maxwellian rate-coefficients are calculated and displayed in ready-to-be-used format for low temperature plasma kinetics simulations. #### 1. Introduction Boron fluoride (BF₃) containing plasmas are important for applications in the field of material processing. BF₃ and Ar/BF₃ plasmas are for instance used for p-type doping in the semi-conductor industry (Torregrosa et al 2004, Matsui et al 2004). Moreover, electrical discharges generated in complex mixture of BF₃ with nitrogen containing compounds have been proposed and investigated for the deposition of boron nitride coatings (Yu & Matsumoto 2003, Yamamoto et al 2006). All these processes make use of low pressure high density plasma sources where BF₃ interacts with the free electrons of the plasma through elastic and inelastic collisions. These collisions are not only the driver for the generation of the active key-species of the process, e.g., the positive ions for the plasma immersion ion implantation (PIII) doping processes or active radicals for the deposition processes, but they also contribute and govern the discharge equilibrium and stability through ionisation, attachment and recombination processes (Agarwal & Kushner 2007, Farber & Srivastava 1984, Kim & Irikura 2000). In particular, for high density magnetised inductively coupled radio-frequency sources used in many of these processes, the surface losses are limited due to the magnetic confinement, which makes the contribution of ion recombination and mutual recombination processes to the discharge equilibrium very significant. In this context, the BF⁺ ion can represent a significant fraction of the ions produced when working at high power density discharge conditions for which BF₃ dissociation and dissociative ionisation are strongly enhanced and the plasma is dominated by BF₂ and BF fragments (Maury et al. 2016). These species can therefore significantly contribute either as an active species in the processes or in the discharge ionisation-recombination equilibrium. The investigation of the dissociative recombination of BF⁺ is therefore of importance for understanding BF₃ plasma processes. The kinetic description of all the above mentioned environments is based on the knowledge of the rate coefficients of the dominant reactions, including those between electrons and molecular ions. As for the BF⁺ ions, their abundance and their vibrational distribution are strongly affected by the dissociative recombination (DR), $$BF^{+}(v_{i}^{+}) + e^{-} \to B + F,$$ (1) and also by other competitive processes, such as inelastic collisions $(v_f^+ > v_i^+)$ and super-elastic collisions $(v_f^+ < v_i^+)$ which are also known as collisions of the second kind: $$BF^{+}(v_{i}^{+}) + e^{-} \to BF^{+}(v_{f}^{+}) + e^{-},$$ (2) where v_i^+ and v_f^+ stand for the initial and final vibrational quantum number of the target ion, and rotational structure is neglected. In the present work, we compute the DR and vibrational transition (VT) - vibrational excitation/de-excitation (VE/VdE) - cross sections and rate coefficients for the lowest three vibrational levels of the BF⁺ in its ground electronic state using the multichannel quantum defect theory (MQDT). The paper is structured as follows: Section 2 outlines the main ideas and steps of our MQDT approach. Section 3 presents the molecular data used in the calculation. The main results are given in section 4 and the paper ends by conclusions. ¹Laboratoire Ondes et Milieux Complexes CNRS-Université du Havre-Université Normandie, 76058 Le Havre, France ²Laboratoire Aimé-Cotton, CNRS—Université Paris-Sud—ENS Cachan—Université Paris-Saclay, 91405 Orsay, France ³Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary ⁴Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris 13-USPC, 93430 Villetaneuse, France ⁵Department of Fundamental of Physics for Engineers, Politehnica University of Timisoara, Bv. V. Parvan No.2, 300223 Timisoara, Romania ⁶Dept. of Mathematics, Scottish Church College, 1 & 3 Urquhart Sq., Kolkata 700 006, India ⁷Département de Physique, Faculté des Sciences, Université du Burundi, B.P. 2700 Bujumbura, Burundi ⁸CORIA CNRS-Université de Rouen-Université Normandie, F-76801 Saint-Etienne du Rouvray, France ⁹LPF, UFD Mathématiques, Informatique Appliquée et Physique Fondamentale, University of Douala, P. O. Box 24157, Douala, Cameroon ¹⁰Dept. of Physics and Astronomy, University College London, London WC1E 6BT, UK #### 2. The MQDT-type approach to DR The MQDT approach (Seaton 1983, Greene and Jungen 1985, Jungen 1996, Giusti-Suzor 1980) has been shown to be a powerful method for the evaluation of the cross sections in collisions of electrons/photons with molecular cation/neutral systems. It was applied with great success in calculating DR cross sections to several diatomic systems like H_2^+ and its isotopologues (Giusti-Suzor $et\ al\ 1983$, Schneider $et\ al\ 1991$, Takagi 1993, Tanabe $et\ al\ 1995$, Schneider $et\ al\ 1997$, Amitay $et\ al\ 1999$), O_2^+ (Guberman and Giusti-Suzor 1991, Guberman 2000), NO^+ (Sun and Nakamura 1990, Vâlcu $et\ al\ 1998$, Schneider $et\ al\ 2000a$) and triatomics like H_3^+ (Schneider $et\ al\ 2000b$, Kokoouline $et\ al\ 2001$, Kokoouline and Greene 2003), and for its competitive processes like ro-vibrational transitions in case of NO^+ (Motapon $et\ al\ 2006$), CO^+ (Mezei $et\ al\ 2015$) and H_2^+ (Ngassam $et\ al\ 2003a$, Epée Epée $et\ al\ 2015$). Recently, a global version of MQDT (Jungen 2011) has been used to describe the photoabsorption, photoionisation and photodissociation of H_2 (Mezei $et\ al\ 2012$, Mezei $et\ al\ 2014$, Sommavilla $et\ al\ 2016$), providing very good agreement with highly accurate experimental results. In the present paper, we use an MQDT-type method to study the electron-impact collision processes given by eqs. (1) and (2) which result from the quantum interference of the *direct* mechanism - the capture takes place into a dissociative state of the neutral system (BF**) - and the *indirect* one - the capture occurs via a Rydberg state of the molecule BF* which is predissociated by the BF** state. In both mechanisms the autoionization is in competition with the predissociation and leads, through the reaction (2), to *super-elastic collision* (SEC) $(v_i^+ > v_f^+ \text{ in eq. (2)})$, *elastic collision* (EC) $(v_i^+ = v_f^+)$ and *inelastic collision* (IC) $(v_i^+ < v_f^+)$. A detailed description of our theoretical approach is given in previous studies (Little *et al* 2014, Mezei *et al*. 2015). The major steps of the method only can be briefly outlined as follows: - (i) Defining the interaction matrix \mathcal{V} : - Within a quasi-diabatic representation of the BF states, the interaction matrix is based on the computed (Chakrabarti and Tennyson 2009, Chakrabarti *et al* 2011) couplings between *ionisation* channels associated to the vibrational levels v^+ of the cation and to the orbital quantum number l of the incident/Rydberg electron and *dissociation* channels d_i . - (ii) Computation of the reaction matrix K: Given H_0 the Hamiltonian of the molecular system under study in which the Rydberg-valence interaction is neglected, we adopt the second-order perturbative solution for the Lippman-Schwinger integral equation (Ngassam *et al* 2003*a*, Florescu *et al* 2003, Motapon *et al* 2006), written in operatorial form as: $$\mathcal{K} = \mathcal{V} + \mathcal{V} \frac{1}{E - H_0} \mathcal{V}. \tag{3}$$ - (iii) Diagonalization of the reaction matrix, - yields the corresponding eigenvectors and eigenvalues which are used to build the eigenchannel wavefunctions. - (iv) Frame transformation from the Born-Oppenheimer (short-range) to the close-coupling (long-range) representation, relying, for a given electronic total angular momentum quantum number Λ and a given orbital quantum number of the incident/Rydberg electron l, on the quantum defect $\mu_l^{\Lambda}(R)$ and on the eigenvectors and eigenvalues of the K-matrix. - (v) Construction of the generalised scattering matrix X, based on the frame-transformation coefficients, this matrix being organised in blocks associated to open and/or closed (o and/or c respectively) channels: $$X = \begin{pmatrix} X_{oo} & X_{oc} \\ X_{co} & X_{cc} \end{pmatrix}. \tag{4}$$ (vi) Construction of the generalised scattering matrix S, $$S = X_{oo} - X_{oc} \frac{1}{X_{cc} - \exp(-i2\pi\nu)} X_{co}.$$ (5) based on the open channels, the first term in eq. (5), but also on their mixing with the closed ones, given by the second term, the denominator being responsible for the resonant patterns in the shape of the cross section (Seaton 1983). Here the matrix $\exp(-i2\pi\nu)$ is diagonal and contains the effective quantum numbers ν_{v^+} associated to the vibrational thresholds of the closed ionisation channels. (vii) Computation of the cross-sections: For each of the relevant BF states, which are grouped by symmetry properties: electronic total angular momentum quantum number Λ , electronic spin singlet/triplet, and for a given target cation vibrational level v_i^+ and energy of the incident electron ε , the dissociative recombination and the vibrational excitation/de-excitation cross sections are computed using, respectively: $$\sigma_{\mathrm{diss}\leftarrow v_i^+}^{\mathrm{sym}} = \frac{\pi}{4\varepsilon} \rho^{\mathrm{sym}} \sum_{l,j} |S_{d_j,lv_i^+}|^2, \tag{6}$$ $$\sigma_{v_f^+ \leftarrow v_i^+}^{\text{sym}} = \frac{\pi}{4\varepsilon} \rho^{\text{sym}} \sum_{l,l'} |S_{l'v_f^+, lv_i^+} - \delta_{l'l} \delta_{v_i^+ v_f^+}|^2, \tag{7}$$ where ρ^{sym} stands for the ratio between the multiplicity of the involved electronic states of BF and that of the target, BF⁺. Figure 1. The dissociative states and electronic couplings relevant for BF^+ dissociative recombination within the major symmetries, indicated in each figure. Top panel: the potential energy curves of the dissociative BF^{**} states (colour, cf section 3), the ground state potential energy curve of BF^+ and its vibrational levels (black). Bottom panel: couplings between the valence BF^{**} dissociative states and the ionisation continua $BF^+ + e^-$. #### 3. Molecular data The molecular data necessary to model the DR are the potential energy curve (PEC) of the ground state of the ion, the PECs of the neutral valence dissociative states interacting with the ionization continua, those of the Rydberg states associated to these continua below the threshold, and all the relevant Rydberg-valence couplings. These molecular data are mostly obtained from *ab initio* R-Matrix calculations. In order to extend the PECs to small and large values of the internuclear distance R, we used the quantum chemistry molecular data of Magoulas *et al* (2013). #### 3.1. Ab initio R-Matrix calculations for the molecular states Ab initio R-matrix calculations of electron collision with the BF⁺ ion yielding the relevant molecular data were performed by three of us (Chakrabarti and Tennyson 2009, Chakrabarti $et\ al\ 2011$). The R-matrix method is a state-of-the-art quantum scattering technique which can be used to calculate the properties of bound and resonant electronic states of a molecule (Tennyson 2010). The BF⁺ target states were first obtained by performing a configuration interaction (CI) calculation. Subsequently this CI target wave function was used in an R-matrix calculation. The bound states of the BF molecule were obtained by searching for negative energy solutions using the BOUND program available within the R-Matrix code suite (Sarpal et al. 1991, Carr $et\ al\ 2012$). This also produces quantum defects of the bound states. Resonances were detected and fitted to a Briet-Wigner profile (Tennyson & Noble 1984) to obtain their energies and widths. Subsequently the electronic couplings $V_{d_j,l}$ were obtained from the resonance widths $\Gamma_{d_i,l}$ using the relation $$V_{d_j,l} = \sqrt{\frac{\Gamma_{d_j,l}}{2\pi}}.$$ (8) The calculations were repeated for 11 internuclear distances in the range $1.5 \ a_0 - 3.5 \ a_0$. While the R-matrix calculations used several partial waves l to represent the scattering, one single generic partial wave for each symmetry was considered to take in charge the total strength of the Rydberg-valence interaction in the current calculations. Dissociative curves were constructed using the resonance data above the ion PEC and their continuation as bound states below the ion PEC. #### 3.2. Modeling of the potential energy curves and electronic couplings Our earlier studies on molecular systems such as H_2 (Epée Epée $et\,al\,2015$), HD (Motapon $et\,al\,2014$), NO (Motapon $et\,al\,2006$), N_2 (Little $et\,al\,2014$) and CO (Mezei $et\,al\,2015$) revealed that accurate and complementary R-matrix and quantum chemistry calculations are needed for a reliable description of the molecular dynamics in electron/molecular cation collisions. In particular, we found that the DR cross section is extremely sensitive to the position of the PECs of the neutral dissociative states with respect to that of the target ion. Indeed, a slight change of the crossing point of the PEC of a neutral dissociative state with that of the ion ground state can lead to a significant change in the predicted DR cross section. In addition, the PECs of the dissociative states must also go to the correct asymptotic limits for large values of the internuclear distance R. In order to fulfil these accuracy criteria, we smoothly matched the PECs corresponding to R-matrix resonances, situated above the ion PEC, to branches of adiabatic PECs coming from previous quantum chemistry calculations (Magoulas $et\ al\ 2013$). Some of these latter PECs allowed us to complete the relevant diabatic landscape. More specifically, since for the states having $^1\Sigma^+$ and $^1\Pi$ symmetry the avoided crossings involved always two adiabatic states only, the adiabatic PECs can be a transformed into (quasi-)diabatic PECs using a 2×2 rotation matrix (Roos $et\ al\ 2009$). Meanwhile, far from the avoided crossing, we assumed that the adiabatic and diabatic potential curves are identical. This assumption forces the rotational angle to be a function Figure 2. DR cross section for the direct (dashed lines) and the total (direct and indirect) processes (continuous lines) for each symmetry, with the ion initially in $v_i^+=0$, that varies steeply from 0 to $\pi/2$, chosen in the present case a tangent hyperbolic function. In this way we were able to extract the diabatic PECs for the dissociative states with singlet symmetries relevant for DR. The electronic couplings provided by the R-matrix theory (Chakrabarti *et al* 2011) for the triplet states are at least one or even two orders of magnitude smaller then those of the singlet ones, so they are omitted in the present calculation. The data on the PECs are limitted to internuclear distances with $R \leq 8$ a₀. We completed the diabatic PECs by adding a long-range tail of $D - \sum_n C_n/R^n$ type (Stone 1996, Lepers and Dulieu 2011) for larger values of R, where D is the dissociation limit as given in the (NIST Atomic Spectra Database 2016). For the ground state of BF⁺, the leading term C_3/R^3 of the multipolar expansion comes from the interaction between the charge of B⁺ and the quadrupole moment of fluorine in its ground state $^2P^o(M_L=0)$, with M_L the azimuthal quantum number of F with respect to the internuclear axis. The corresponding coefficient $C_3=Q=0.731$ a.u. (Medved *et al* 2000) gives rise to a repulsive interaction, which is balanced by the next term C_4/R^4 of the multipolar expansion, due to the polarisation of the electronic cloud of F by the ion B^+ . The coefficient is given by $C_4=-\alpha_{zz}/2=-1.72$ a.u., where $\alpha_{zz}=3.43$ a.u. (Medved *et al* 2000) is the static dipole polarisability of the ground state $^2P^o(M_L=0)$ of fluorine. As for the states of the BF, the C_n coefficients are calculated as fitting parameters to ensure a smooth connection with the existing part of the PECs. The top panel of Figure 1 shows the PEC of the ion ground state - together with its vibrational structure - and the PECs of the DR-relevant dissociative states obtained using the procedure outlined above and taken into account in the present MQDT calculation. The electronic couplings of these latter states with the ionization continua, computed from the R-Matrix-produced autoionization widths followed by Gaussian-type extrapolations to small and large internuclear distances, are shown in the bottom panel of the same figure. #### 4. Results and discussion #### 4.1. Evaluation of the cross section using the MQDT approach Using the set of molecular data (PECs, electronic couplings and quantum defects) determined as described in the previous section, we performed a series of MQDT calculations of cross sections for DR and competitive processes, assuming BF⁺ to be initially in its electronic ground state X $^2\Sigma^+$ and on one of its lowest vibrational levels $v_i^+=0,1$ and 2. We have considered that the reactive processes take place via BF-states of total symmetry of $^1\Delta$, $^1\Pi$, $^1\Sigma^+$ - see Figure 1 - and we neglected rotational and spin-orbit effects. We consider incident electron energies from 0.01~meV up to 5~eV - the dissociation energy of BF⁺ X $^2\Sigma^+$ electronic state - and all the 30 vibrational levels of the ion are included in the calculations. At very low energy, all the excited levels are associated with closed ionisation channels, as defined in section 2, responsible for temporary resonant capture into Rydberg states. As the energy increases, more and more ionisation channels open, which results in autoionization, leading to competitive processes, such as IC and SEC, and decreasing the flux of DR. The direct electronic couplings between ionisation and dissociation channels - mentioned in paragraph (i) of section 2 - were extracted from the autoionization widths (see eq. (8)) of the valence states calculated by Chakrabarti and Tennyson (2009). Figure 3. Total DR cross sections for different initial vibrational levels of the ion, for all of the symmetries considered. Black continuous lines are for DR from $v_i^+ = 0$, while the red dotted and green dashed lines are for DR from $v_i^+ = 1$ and 2, respectively. For each dissociation channel available, we considered interaction with the most relevant series of Rydberg states including only one partial wave for each symmetry. By examining the magnitude of the valence-Rydberg couplings (shown in the bottom panel of figure 1) and the positions of the crossing points between the dissociative states correlating to the $B(2p^1)+F(2p^5)$ atomic limits with the ionic ground state - blue and black curves in the first figure of the upper panel of the same figure - at low collision energies (up to 1 eV) one may predict that the major part of the total cross section comes from the $^1\Delta$ symmetry (solid black line in figure 2), while the $^1\Sigma$ and $^1\Pi$ symmetries (solid green and red lines in the same figure) only make a minor contribution to the cross section. The importance of these latter two symmetries is revealed at higher collision energies, when the crossing of the first dissociative state with the molecular ion becomes favorable. At collision energies about 1 eV, the $^1\Sigma^+$ states give a larger contribution to the DR cross section than the $^1\Delta$ symmetry, which in turn is exceeded by the $^1\Pi$ symmetry at about 2 eV. Moreover, one can notice that at higher collision energies, around 3.5 eV, when all the dissociative states are open, the DR cross section shows a sharp revival and, at 5 eV, the resonance structures disappear since all the ionization channels are open, and consequently the direct process only drives the DR. Figure 2 shows the importance of the *indirect* process for the DR of vibrationally relaxed BF⁺ at low energies. Within the $^1\Delta$ symmetry, the entrance ionization channel associated with the $v_i^+=0$ state is strongly coupled to the dissociation continuum (see Figure 1), allowing the direct process to dominate. The indirect process diminishes the cross section - destructive interferences with the direct one - due to stronger coupling between closed channels associated with highly-excited vibrational levels - $v^+=12-16$ - and the dissociative ones. Within the $^{1}\Pi$ symmetry one finds the opposite. The direct process gives only a minor contribution to the DR cross section, due to the poor Franck-Condon overlap between the vibrational wave function of the initial state of the ion and the dissociative neutral states. However, the much stronger couplings between some closed ionisation channels - $v^{+}=8-10$ - and the dissociative states significantly increases the total cross section through the indirect mechanism (Pop $et\ al\ 2012$, Schneider $et\ al\ 2012$) resulting into constructive quantum interferences. Finally, for the states with $^{1}\Sigma^{+}$ symmetry, the indirect process plays a relatively minor role, the magnitude of the total cross section being given mainly by the direct process. The indirect process is responsible for resonant structures which are a consequences of both constructive and destructive interference. For a given initial vibrational level of BF⁺, the total DR cross section is obtained by summing over the partial cross sections of the three symmetries contributing to the process - $^{1}\Delta$, $^{1}\Pi$ and $^{1}\Sigma^{+}$ - given in eq, (6). The results of the calculations performed for the lowest three vibrational levels of the ground electronic state of the ion are shown in Figure 3. #### 4.2. Reaction rate coefficients for DR and its competitive processes Besides the dissociative recombination cross sections presented in Figure 3, we use eq. (7) to calculate the vibrational excitation (VE) and de-excitation (VdE) cross sections for the same vibrational levels of the target. Since many of the features of the VE and VdE cross sections either are similar to, or may be understood with the same reasoning as those of DR, we do not display them here. Instead, we present in this section their Maxwell rate coefficients for a broad range of electronic temperatures, in Figure 4. DR and state-to-state VE and VdE Maxwell rate coefficients of BF⁺ in its ground electronic state, v_i^+ standing for the initial vibrational quantum number of the target ion. Curves of the same color show the rate coefficients for the vibrational (de-)excitations corresponding to the same $|\Delta v| = |v_f^+ - v_i^+|$; $v_f^+ > v_i^+$ for the VE and $v_f^+ < v_i^+$ for the VdE global rate coefficients. The final vibrational quantum numbers of the ion are indicated for these processes. comparison with those of the DR. All these data are relevant for cold non-equilibrium plasmas. Figure 4 shows the total DR and vibrational transition - VE and VdE - rate coefficients for the three lowest vibrational levels of the ion. The DR rate for $v_i^+=0$ shows different behaviour to those for the $v_i^+=1$ and 2 states. It has a maximum at an electron temperature T_e of about 400 K, while the rates for the other two states are monotonically decreasing with T_e , reaching nearly the same magnitude at higher temperatures. This behaviour for $v_i^+=0$ comes from the strong resonant peaks just below 0.01 eV, see Figure 2 and black curve in Figure 3. For other recently studied molecular systems, N_2 (Little *et al* 2014) and CO (Mezei *et al*. 2015), the DR clearly dominates the electron-ion collisions. However, for BF the calculated VdE rate coefficients are larger than the DR-ones, and VE rate coefficients exceed the DR-ones at high T_e by almost an order of magnitude. Thus, one can conclude that in the case of the BF⁺ containing plasma, the internal vibrational energy is much more important for energy-exchange via VE and VdE, than the kinetic energy release via the exothermic DR. To facilitate the use of our rate coefficients (Figure 4) in modeling calculations, we fit them using modified Arrhenius-type formulas. The calculated DR rate coefficients for v=0,1,2 are given by : $$k_{BF^+,v}^{DR}(T_e) = A_v T_e^{\alpha_v} \exp\left[-\sum_{i=1}^7 \frac{B_v(i)}{i \cdot T_e^i}\right]$$ (9) over the electron temperature range $100 \text{ K} < \text{T}_e < 3000 \text{ K}$. The parameters A_v , α_v , and $B_v(i)$ are listed in table 1. The corresponding formula for the vibrational transitions (VE and VdE) has the form: $$k_{BF^{+},v'\to v''}^{DR}(T_{e}) = A_{v'\to v''} T_{e}^{\alpha_{v'\to v''}} \exp\left[-\sum_{i=1}^{7} \frac{B_{v'\to v''}(i)}{i \cdot T_{e}^{i}}\right]$$ (10) over the electron temperature range $T_{min} < T_e < 3000$ K. The parameters T_{min} , $A_{v' \to v''}$, $\alpha_{v' \to v''}$, and $B_{v' \to v''}(i)$ for i = 1, 2, ..., 7 are given in tables 2-4. **Table 1.** Parameters used in equation (9) to represent the DR rate coefficient of BF⁺. Powers of 10 are given in square brackets. | v | A_v | α_v | $B_v(1)$ | $B_v(2)$ | $B_v(3)$ | $B_v(4)$ | $B_v(5)$ | $B_v(6)$ | $B_v(7)$ | |---|------------------|-----------------|-----------------|-----------------|-----------------|------------------|---------------------------|------------------|------------------| | 0 | 0.703050632[-5] | -0.108298227[1] | -0.363984388[2] | 0.68522753[6] | -0.341534791[9] | 0.86262362[11] | -0.117919938[14] | 0.821543800[15] | -0.229194862[17] | | 1 | 0.205402433[-11] | 0.557133316[0] | -0.185580405[4] | 0.110399946[7] | -0.316387400[9] | 0.531242790[11] | $\hbox{-}0.525109108[13]$ | 0.283203635[15] | -0.643843159[16] | | 2 | 0.144845145[-5] | -0.806777388[0] | 0.285629778[4] | -0.322036339[7] | 0.160926033[10] | -0.409338097[12] | 0.558087964[14] | -0.388815002[16] | 0.108682270[18] | **Table 2.** Parameters used in equation (10) to represent the VE rate coefficient of BF $^+$ (v=0). Powers of 10 are given in square brackets. | $v' \rightarrow v''$ | $T_{min}(K)$ | $A_{v' \to v''}$ | $\alpha_{v' \to v''}$ | $B_{v' \to v''}(1)$ | $B_{v' \to v''}(2)$ | $B_{v' \to v''}(3)$ | $B_{v' \to v''}(4)$ | $B_{v' \to v''}(5)$ | $B_{v' \to v''}(6)$ | $B_{v' \to v''}(7)$ | |----------------------|--------------|------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------------|---------------------|---------------------| | $0 \rightarrow 1$ | 100 | 0.262533924[-5] | -0.547999875[0] | 0.214096395[4] | 0.639318590[6] | -0.338435157[9] | 0.871079196[11] | -0.119891991[14] | 0.844485990[15] | -0.238785179[17] | | $0 \rightarrow 2$ | 250 | 0.173038633[-11] | 0.899303013[0] | -0.154506863[4] | 0.103113831[8] | -0.802809891[10] | 0.345037537[13] | -0.831154448[15] | 0.104995341[18] | -0.541063017[19] | | $0 \rightarrow 3$ | 350 | 0.228322632[-19] | 0.298753871[1] | 0.362608159[4] | -0.187052923[8] | 0.462415666[11] | -0.437428769[14] | 0.208086587[17] | -0.496004570[19] | 0.471734143[21] | | $0 \rightarrow 4$ | 500 | 0.117098647[13] | -0.484209878[1] | 0.440674967[5] | -0.535140469[8] | -0.648699676[9] | 0.669344086[14] | -0.628654524[17] | 0.237907644[20] | -0.333577789[22] | | $0 \rightarrow 5$ | 700 | 0.409903965[-3] | -0.115252435[1] | 0.195259810[5] | -0.556269189[7] | 0.845592131[10] | -0.259895652[14] | 0.300647776[17] | -0.147809013[20] | 0.269130250[22] | | $0 \rightarrow 6$ | 1000 | 0.208106654[-4] | -0.886590160[0] | 0.164181737[5] | 0.130228539[8] | -0.448925166[11] | 0.652593625[14] | -0.524133410[17] | 0.227101018[20] | -0.413751683[22] | | $0 \rightarrow 7$ | 1000 | 0.191744424[-4] | -0.916885978[0] | 0.176354084[5] | 0.715839067[7] | -0.242161884[11] | 0.338962077[14] | $\hbox{-}0.251630983[17]$ | 0.964448872[19] | -0.147532452[22] | **Table 3.** Parameters used in equation (10) to represent the VE rate coefficient of BF $^+$ (v = 1). Powers of 10 are given in square brackets. | $v' \rightarrow v'$ | $'T_{min}(K)$ | $A_{v' \to v''}$ | $\alpha_{v' \to v''}$ | $B_{v' \to v''}(1)$ | $B_{v' \to v''}(2)$ | $B_{v' \to v''}(3)$ | $B_{v' \to v''}(4)$ | $B_{v' \to v''}(5)$ | $B_{v' \to v''}(6)$ | $B_{v' \to v''}(7)$ | |---------------------|---------------|------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | $1 \rightarrow 0$ | 100 | 0.452471923[-4] | -0.870739533[0] | 0.482355385[3] | -0.159745070[6] | 0.206190286[8] | -0.357598119[9] | -0.236882495[12] | 0.278880714[14] | -0.100143557[16] | | $1 \rightarrow 2$ | 100 | 0.206894707[-4] | -0.534102059[0] | 0.240138665[4] | 0.240026523[6] | -0.118750781[9] | 0.294642142[11] | -0.398661667[13] | 0.277400105[15] | -0.775646365[16] | | $1 \rightarrow 3$ | 500 | 0.132913428[3] | -0.796311915[0] | 0.528489192[4] | -0.227298093[6] | 0.992018062[8] | -0.246177290[11] | 0.334949142[13] | -0.234694329[15] | 0.661421602[16] | | $1 \rightarrow 4$ | 1000 | 0.618690809[-3] | -0.105997410[1] | 0.102015058[5] | -0.102556918[8] | 0.227295645[11] | -0.322366448[14] | 0.285015517[17] | -0.142527673[20] | 0.306796130[22] | | $1 \rightarrow 5$ | 1000 | 0.195393605[-5] | -0.554467702[0] | 0.874898467[4] | 0.410394065[7] | -0.950355092[10] | 0.129851249[14] | -0.110278414[17] | 0.546465683[19] | -0.120534084[22] | | $1 \rightarrow 6$ | 1500 | 0.144480570[27] | -0.772731693[1] | 0.121808074[6] | -0.696758177[9] | 0.243696228[13] | -0.508560332[16] | 0.633554530[19] | -0.436110956[22] | 0.127890210[25] | **Table 4.** Parameters used in equation (10) to represent the VE rate coefficient of BF $^+$ (v=2). Powers of 10 are given in square brackets. | $v' \rightarrow v'$ | $T_{min}(K)$ | $A_{v' \to v''}$ | $\alpha_{v' \to v''}$ | $B_{v' \to v''}(1)$ | $B_{v' \to v''}(2)$ | $B_{v' \to v''}(3)$ | $B_{v' \to v''}(4)$ | $B_{v' \to v''}(5)$ | $B_{v' \to v''}(6)$ | $B_{v' \to v''}(7)$ | |---------------------|--------------|------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | $2 \rightarrow 0$ | 100 | 0.206905711[-4] | -0.534094193[0] | -0.522292591[2] | 0.239747229[6] | -0.118624395[9] | 0.294301198[11] | 0.235044551[13] | 0.277059236[15] | -0.774678282[16] | | $2 \rightarrow 1$ | 100 | 0.281749676[-3] | -0.939661066[0] | 0.573963533[3] | -0.266713211[6] | 0.925188414[8] | -0.195045354[11] | -0.831154448[15] | -0.149951574[15] | 0.392910054[16] | | $2 \rightarrow 3$ | 200 | 0.677540315[-6] | -0.180526927[0] | 0.165713437[4] | 0.786441694[6] | -0.355111141[9] | 0.865145438[11] | -0.110403668[14] | 0.586781113[15] | -0.159145807[16] | | $2 \rightarrow 4$ | 500 | 0.312513647[-2] | -0.113354017[1] | 0.791543066[4] | -0.692210036[7] | 0.883457770[10] | -0.684463255[13] | 0.319179702[16] | -0.822026586[18] | 0.896873812[20] | | $2 \rightarrow 5$ | 1000 | 0.641993202[-3] | -0.101279417[1] | 0.931521134[4] | -0.338959607[7] | 0.140747992[10] | 0.325809186[13] | -0.558558120[16] | 0.350923558[19] | -0.820376383[21] | #### 5. Conclusion This paper presents a theoretical study of the dissociative recombination of BF^+ and of its competitive processes - vibrational excitation and de-excitation - over a broad range of electron energies - up to about 5 eV - and considering all the relevant dissociative states within different symmetries. Our MQDT dynamical approach is relying on molecular data calculated by the *ab initio* R-matrix method, completed by quantum chemical results. The computed Maxwell rate coefficients are relevant for the kinetic modelling of molecule based cold non-equilibrium plasmas, in the context of complete lack of other theoretical or experimental data on these processes for this cation. The present calculations complete our very recent studies of the DR performed on N_2^+ (Little *et al* 2014) and on CO⁺ (Mezei *et al*. 2015) based on fully *ab initio* potential energy curves and couplings computed with the R-matrix method (Tennyson 2010), since BF⁺ is isoelectronic with these two molecular systems. We note that while there is no experimental data available for the processes considered here for BF⁺, our previous calculation on N_2^+ and CO⁺ gave good agreement with the available measurements. #### Acknowledgments The authors acknowledge support from the International Atomic Energy Agency (IAEA, Vienna) via the Coordinated Research Project "Light Element Atom, Molecule and Radical Behaviour in the Divertor and Edge Plasma Regions", from the French Agence Nationale de la Recherche via the projects "SUMOSTAI" (No. ANR-09-BLAN-020901) and "HYDRIDES" (No. ANR-12-BS05-0011-01), from the IFRAF-Triangle de la Physique via the project "SpecoRyd", and from the Centre National de la Recherche Scientifique via the programs "Physique et Chimie du Milieu Interstellaire", and the PEPS projects "Physique théorique et ses interfaces", TheMS and TPCECAM. They also acknowledge generous financial support from Région Haute-Normandie via the CPER "THETE" project, and the GRR Electronique, Energie et Matriaux, from the "Fédération de Recherche Energie, Propulsion, Environnement", and from the LabEx EMC³, via the project PicoLIBS (No. ANR-12-BS05-0011-01). KC thanks the Institut des Sciences de l'Ingénierie et des Systèmes (INSIS) of CNRS for a research grant in 2013, and the Laboratoire Ondes et Matériaux Complexes (LOMC) of Le Havre University for hospitality. SI, NP and IFS acknowledge EU for financial support via the ERASMUS convention between Le Havre University and Politehnica University of Timisoara. #### References Agarwal A and Kushner M 2007 J. App. Phys, 101 063305 Amitay Z, Baer A, Dahan M, Levin J, Vager Z, Zajfman D, Knoll L, Lange M, Schwalm D, Wester R, Wolf A, Schneider I F, and Suzor-Weiner A 1999 *Phys. Rev. A* 60 3769 Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Masin Z, Plummer M and Tennyson J 2012 Eur. Phys. J. D66 58 Chakrabarti K and Tennyson J 2009 J. Phys. B: At. Mol. Opt. Phys. 42 105204 Chakrabarti K, Schneider I F and Tennyson J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 055203 Epée Epée M D, Mezei J Zs, Motapon O, Pop N and Schneider I F 2015 MNRAS 455 276 Farber M and Srivastava R D 1984 J. Chem. Phys. 81 241-244 Florescu A I, Ngassam V, Schneider IF, and Suzor-Weiner A 2003, J. Phys. B 36 1205 Giusti-Suzor A 1980 J. Phys. B: At. Mol. Phys. 13 3867 Giusti-Suzor A, Bardsley J. N and Derkits C 1983 Phys. Rev. A 28 682-691 Greene C H and Jungen C 1985 Adv. At. Mol. Phys. 21 51 Guberman S L 2000 in M Larsson, J B A Mitchell and I F Schneider, eds., Dissociative Recombination: Theory, Experiment and Applications IV, World Scientific Singapore p. 111 Guberman S L and Giusti-Suzor A 1991 J. Chem. Phys. 95 2602 Jungen C 1996, ed., Molecular Applications of Quantum Defect Theory, Institute of Physics Publishing Bristol Jungen Ch 2011, "Elements of quantum defect theory", in *Handbook of High Resolution Spectroscopy*, edited by Quack M and Merkt F, Wiley, Chichester, New York Jungen C and Atabek O 1977 J. Chem. Phys. 66 5584 Kim Y-K and Irikura K 2000 AIP Conf. Proc. 543 220-241 Kokoouline V, Greene C H and Esry B D 2001 Nature 412 891 Kokoouline V and Greene C H 2003 Phys. Rev. A 68 012703 B R 2007 Mol. Phys. 105 1625 Lepers M and Dulieu O 2011 Eur. Phys. J. D 65 113 Little D A, Chakrabarti K, Mezei J Zs, Schneider I F & Tennyson J 2014 Phys. Rev. A 90 052705 Ilias Magoulas I, Kalemos A and Mavridis A 2013 J. Chem. Phys. 138 104312 Matsui T, Kondo M and Matsuda A 2004 Journal of Non-crystalline Solids 338 646-650 Maury M, Torregrosa F, Borvon G and Hassouni K 2016 To be submitted to Plasma Chemistry and Plasma Processing Medved M, Fowler P W, and Hutson J M 2000 Mol. Phys. 98 453 Mezei J Zs, Schneider I F, Roueff E and Jungen Ch 2012 Phys. Rev. A 85 043411 Mezei J Zs, Schneider I F, Glass-Maujean M and Jungen Ch 2012 J. Chem. Phys. 141 064305 Mezei J Zs, Backodissa-Kiminou R B, Tudorache D E, Morel V, Chakrabarti K, Motapon O, Dulieu O, Robert J, Tchang-Brillet W-Ü L, Bultel A, Urbain X, Tennyson J, Hassouni K and Schneider I F 2015 *Plasma Sources Sci. Technol.* **24** 035005 Motapon O, Fifririg M, Florescu A, Waffeu Tamo F O, Crumeyrolle O, Varin-Bréant G, Bultel A, Vervisch P, Tennyson J and Schneider I F 2006 *Plasma Sources Sci. Technol.* **15** 23 Motapon O, Pop N, Argoubi F, Mezei J Zs, Epee Epee M D, Faure A, Telmini M, Tennyson J and Schneider I F 2014 Phys Rev. A 90 012706 Ngassam V, Motapon O, Florescu A, Pichl L, Schneider I F and Suzor-Weiner A 2003a Phys. Rev. A 68 032704 Ngassam V, Florescu A, Pichl L, Schneider I F, Motapon O, and Suzor-Weiner A 2003b Eur. Phys. J. D 26 165 Kramida O, Ralchenko Yu, Reader J, and NIST ASD Team 2015 NIST Atomic Spectra Database (ver. 5.3), National Institute of Standards and Technology, Gaithersburg, MD., http://physics.nist.gov/asd Pop N, Lique F and Schneider I F 2012 AIP Conf. Proc. 1472 162 Schneider I F, Pop N and Jungen Ch 2012 Phys. Rev. A 86 062706 Roos J B, Orel A E and Larson Å 2009 *Phys. Rev. A* **79** 062510 Sarpal B K, Branchett S E, Tennyson J & Morgan L A 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3685-3699. Schneider I F, Strömholm C, Carata L, Urbain X, Larsson M and Suzor-Weiner A 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2687 Schneider I F, Dulieu O and Giusti-Suzor A 1991 J. Phys. B: At. Mol. Phys. 24 L289 Schneider I F, Rabadan, L I, Carata L, Tennyson J, Andersen A H an Suzor-Weiner A 2000a J. Phys. B: At. Mol. Opt. Phys. 33 4849 Schneider I F, Orel A E and Suzor-Weiner A 2000b Phys. Rev. Lett. 85 3785 Seaton M J 1983 Rept. Prog. Phys. 46 167 Sidis V and Lefebvre-Brion H 1971 J. Phys. B 4 1040 Sommavilla M, Merkt F, Mezei J Zs and Jungen Ch 2016 J. Chem. Phys. 144 084303 Stone A J 1996 The Theory of Intermolecular Forces, New York: Oxford University Press Sun H and Nakamura H 1990 J. Chem. Phys. 93 6491 Takagi H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4815 Tanabe T, Katayama I, Kamegaya H, Chida K, Arakaki Y, Watanabe T, Yoshizawa M, Saito M, Haruyama Y, Hosono K, Hatanaka K, Honma T, Noda K, Ohtani S and Takagi H 1995 *Phys. Rev. Lett.* **75** 1066 Tennyson J and Noble C J 1984 Comput. Phys. Commun. 33 421-424 Tennyson J 2010 Phys. Rep. 491 29-76. Torregrosa F, Laviron C, Faik H, Barakel D, Milesi F and Baccaccia S 2004 Surface & Coatings Technology 186 93-98 Vâlcu B, Schneider I F, Raoult M, Strömholm C, Larsson M and Suzor-Weiner A 1998 European Physical Journal D 171 Yamamoto H, Matsumoto S, Okada K, Yu J and Hirakuri K 2006 Diamond and Related Materials 15 1357-1361 Yu J and Matsumoto S 2003 Diamond and Related Materials 12 1903-1907