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Introduction

We are interested in the resolution of the 3D exterior time-harmonic Maxwell equations. The problem consists in determining the field diffracted by an obstacle. To solve the equations posed in an unbounded domain, we introduce a fictitious boundary with an artificial boundary condition which models the infinity.

In the literature, methods based on a local transparent boundary condition are often considered. They consist in an approximation of the Sommerfeld condition. In this context, we can consider a radiation condition at a finite distance ( [START_REF] Bendali | Approximation par troncature de domaine de la solution du problème aux limites extérieur pour le système de Maxwell en régime sinusoïdal[END_REF]) or the Bayliss-Gunzburger-Turkel-like conditions ([4,1,16,28]). To obtain satisfying results, the artificial boundary should be chosen far from the boundary of the obstacle. Hence, the computational domain becomes large which increases computation and memory cost. An alternative to local transparent boundary conditions is the Perfectly Matched Layer (PML) method. It consists in replacing the artificial boundary by an absorbing layer of finite elements which vanishes the reflection. The method was introduced by Berenger and derived for the absorption of electromagnetic waves in [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF].

In our paper, we rather consider an exact condition defined by an integral representation. The chosen strategy is named "coupling of finite elements and integral representation" and is designated by the acronym CEFRI for the French designation "Couplage Eléments Finis et Représentation Intégrale". CE-FRI was initiated in [START_REF] Jami | Formulation variationnelle pour le couplage entre une méthode d'éléments finis et une représentation intégrale[END_REF] for hydrodynamic problems, and was presented and mathematically studied in the context of electromagnetism equations initially in [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]. In [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF][START_REF] Bartoli | Etude bidimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF], a careful study of the numerical behavior of the formulation is presented for 2D Helmholtz equation and 3D Maxwell's equations, based on numerous numerical tests. [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF] also includes a study of the convergence of the iterative resolution for the 2D Helmholtz equation. Such an exact condition defined by an integral representation has been successfully applied to the context of Ultra-Weak-Variational Formulation, which is an alternative to the finite elements, where the strategy was coupled to a Fast Multipole Method [START_REF] Darrigrand | Coupling of the Ultra-Weak Variational Formulation and an Integral Representation using a Fast Multipole Method in Electromagnetism[END_REF].

Like the consideration of a local transparent boundary condition, CEFRI leads to an equivalent problem posed on a reduced bounded domain delimited by the boundary of the scatterer and the artificial boundary, where the artificial boundary condition is expressed thanks to an integral representation of the unknown on this boundary. Even if integral operators are involved, no singularity occurs because the unknown on the artificial boundary is expressed using the unknown on the boundary of the scatterer. With such an approach, no a priori condition is required on the distance between the scatterer and the artificial boundary. The main difficulty consists in the elaboration of a numerical scheme for the resolution because of the integral operators which disturb the usual properties of the discrete equations. In [START_REF] Liu | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF], Jin and Liu solved the discrete system by a Jacobi method in order to avoid the inversion of the integral operators. The scheme can be interpreted as a Schwarz method with total overlap. This identification has been initially considered for the Poisson and Helmholtz exterior problems in [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF][START_REF] Ben Belgacem | Convergence bounds of GMRES with Schwarz' preconditioner for the scattering problem[END_REF]. In our paper, the interpretation is extended to the analytical exploration of the rate of convergence of the resolution strategy for Maxwell's equations. The theoretical analysis of the case of a spherical scatterer indicates that the method converges conditionally on the distance between the scatterer and the artificial boundary. Consequently, using the Jacobi scheme by Jin and Liu, the convergence may fail. However, this study of Schwarz method justifies the use of Krylov solvers and the choice of the preconditioner. We then analytically explore, in this paper, the convergence of a preconditioned GMRES for the resolution of the discrete system and prove the superlinear convergence of the method in the case of a spherical configuration. In [START_REF] Liu | A Highly Effective Preconditioner for Solving the Finite Element-Boundary Integral Matrix Equation of 3-D Scattering[END_REF], Jin and Liu also explored the use of a Krylov solver preconditioned by another formulation of the exterior problem to be solved. Their results are quite similar to ours but the preconditioner is different and consists of more components. In order to verify numerically our theoretical statements, we implemented the resolution strategies using the Finite Element library Mélina++ ( [23]) which does not provide Nédélec elements. For the numerical results, we then considered the regularized Maxwell equations but the mathematical study of convergence of Jin and Liu algorithm is done for both the classical and the regularized Maxwell equations.

In next section, we introduce the physical problem and explain the application of CEFRI. Section 2 is devoted to the Schwarz interpretation of the resolution strategy suggested in [START_REF] Liu | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF]. This consideration enables us to estimate, in Section 3, the speed of convergence of the resolution algorithm in the case of a spherical scatterer using Jin and Liu algorithm. Some test-cases illustrate the theoretical estimation. In Section 4, we investigate the convergence of a Krylov method, the GMRES, combined to the preconditioner suggested by the previous analysis. Last section provides some numerical simulations which illustrate the convergence properties of this preconditioned application of the GMRES to CEFRI.

Scattering by a perfect conductor

Let us consider Ω i a bounded scatterer in R 3 with Lipschitz-continuous boundary Γ and Ω e its unbounded complementary. We are concerned with the scattering of a time-harmonic electromagnetic wave by the perfect conductor Ω i . Our purpose is to determine the total field E = E s + E inc where E inc is the incident wave and E s is the scattered field. We then consider the following scattering problem with essential boundary condition on Γ and radiation condition at infinity:

           curl curl E -k 2 s E = 0 in Ω e , E × n e = 0 on Γ, lim R→∞ ||x||=R ||curl E s × n e -ik s E s || 2 dγ = 0, (1) 
where k s is the wavenumber and n e is the exterior unit normal. In order to use standard Lagrange finite elements for the numerical resolution, we consider an equivalent elliptic problem by adding a regularizing grad-div term in the time-harmonic Maxwell equations, as described and justified in [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]. Problem (1) is then equivalent to the following one:

                     curl curl E -t -1 ∇(div E) -k 2 s E = 0 in Ω e , E × n e = 0, t -1 div E = 0 on Γ, lim R→∞ ||x||=R ||curl E s × n e -ik s n e × (E s × n e )|| 2 dγ = 0, lim R→∞ ||x||=R | √ t -1 div E s -ik s E s • n e | 2 dγ = 0, (2) 
where the regularization term t -1 ∇(div E) allows the use of a Galerkin finite element method (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]) and the regularization parameter t -1 depends on the permittivity and the permeability of the air. The parameter t is chosen positive. The choice t = ∞ corresponds to the initial scattering problem [START_REF] Antoine | Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape[END_REF]. Many different methods have been developed to solve the time-harmonic Maxwell equations in exterior domains.

In this paper, we consider the coupling between finite elements and integral representation introduced by Hazard and Lenoir in [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]. The idea consists in defining an exact boundary condition on an artificial boundary Σ surrounding the scatterer. We reduce the initial problem to an equivalent one, defined on a bounded domain Ω delimited by Γ and Σ. The reduced problem can be stated as follows

               curl curl E -t -1 ∇(div E) -k 2 s E = 0 in Ω, E × n γ = 0, t -1 div E = 0 on Γ, T ν1 E = T ν1 (E inc -I t Γ (E)) on Σ, N ν2 E = N ν2 (E inc -I t Γ (E)) on Σ. ( 3 
)
where n γ is the exterior unit normal of the domain Ω i on Γ. The parameters ν 1 and ν 2 are complex numbers with negative imaginary part. The two operators T ν1 and N ν2 are defined by

T ν1 E = curl E × n σ + ν 1 n σ × (E × n σ ) and N ν2 E = div E + ν 2 E
• n σ with n σ the exterior unit normal of the domain Ω on Σ. The condition that involves N ν2 occurs only if t = ∞. The boundary conditions on Σ are derived from an integral representation satisfied by the scattered field and identified by the following expression [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]: for x ∈ Ω e ,

(I t Γ E)(x) = Γ G t (x, .)(curl E × n γ + t -1 n γ div E)dγ - Γ curl y G t (x, .)(E × n γ )dγ -t -1 Γ div y G t (x, .) T (E • n γ )dγ. ( 4 
)
where

G t = G ks I + 1 k 2 s
Hess(G ks -G kp ) is the outgoing Green tensor associated with the differential operator curl curl -t -1 ∇(div) -k 2 s I of the regularized Maxwell equations; I is the identity matrix in R 3 ; Hess stands for the Hessian operator; k p = √ tk s ; and G k is the fundamental solution of Helmholtz equation. Due to the essential condition on Γ, E × n γ = 0, the second term of the representation (4) vanishes such that:

(I t Γ E)(x) = Γ G t (x, .)(curl E × n γ + t -1 n γ div E)dγ -t -1 Γ div y G t (x, .) T (E • n γ )dγ. ( 5 
)
The equivalence between the problem stated on the reduced domain Ω (3) and the exterior regularized problem ( 2) is given by the following proposition (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]): Proposition 1.1 Choose ν 1 , ν 2 ∈ C with negative imaginary part, then the problems (2) and ( 3) are equivalent: Problem (2) admits at least (respectively, at most) one solution if and only if it is the same for the reduced problem (3). The following links hold:

If E is a solution to (2) then the restriction of E on Ω is a solution to (3). If E Ω is a solution to (3) then the field E defined by    E = E Ω in Ω, E = E inc -I t Γ E Ω in Ω e \Ω.
is a solution to (2).

To ensure existence and uniqueness of the solution, we introduce the following spaces: let H(curl, Ω) be the space of fields V satisfying V ∈ L 2 (Ω) 3 and curl V ∈ L 2 (Ω) 3 , and H(div, Ω) the space of fields V satisfying V ∈ L 2 (Ω) 3 and div V ∈ L 2 (Ω). We then introduce H t the Hilbert space required by our problem and defined by

H t = E ∈ H(curl, Ω) /div E ∈ L 2 (Ω), E × n γ = 0, E × n σ ∈ L 2 (Σ) 3 , t -1 E • n σ ∈ L 2 (Σ) , (6) 
if t = ∞, and

H ∞ = E ∈ H(curl, Ω), div E = 0 in Ω, E × n γ = 0, E × n σ ∈ L 2 (Σ) 3 . (7) 
The notation (., .) t denotes the natural scalar product on H t :

(E, E ) t = Ω (E • E + curl E • curl E + |t| -1 div E div E )dΩ + Σ ((E × n σ ) • (E × n σ ) + |t| -1 (E • n σ )(E • n σ ))dσ.
If E is in the space H t , then curl E × n γ + t -1 n γ div E is not defined. We therefore need to extend the definition of I t Γ E to H t by the consideration of the operator I t,R Γ E defined by (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF] for details): for all x ∈ Ω e

(I t,R Γ E)(x) = -k 2 s Ω RG t (x, .)E dΩ + Ω curl RG t (x, .)curl E dΩ + t -1 Ω div RG t (x, .) T div E dΩ -t -1 Γ div G t (x, .) T (E • n γ )dγ , (8) 
where R is a linear operator that maps every smooth function ϕ defined on Γ into a smooth function Rϕ defined on Ω that satisfies Rϕ = ϕ on Γ and Rϕ = 0 on Σ. The variational formulation of Problem (3) amounts to the equation (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]): Find E ∈ H t such that

(A t + C t )E = F t , (9) 
where the operators A t and C t : H t → H t are defined by

(A t E, E ) t = Ω (curl E • curl E + t -1 div E div E -k 2 s E • E ) dΩ + Σ (ν 1 (n σ × E) • (n σ × E ) + t -1 ν 2 (n σ • E)(n σ • E ))dσ, (10) 
(C t E, E ) t = Σ (T ν1 I t,R Γ E) • E dσ + t -1 Σ (N ν2 I t,R Γ E)(n σ • E )dσ, (11) 
and F t is given by

(F t , E ) t = Σ ((T ν1 E inc ) • E + t -1 (N ν2 E inc )(n σ • E ))dσ. (12) 
As explained in [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF], Problem ( 9) is well posed. Moreover, the invertibility of the operator A t is equivalently obtained by giving a proof of the uniqueness of the solution of the following problem:

         curl curl E -t -1 ∇(div E) -k 2 s E = 0 in Ω, curl E × n + ν 1 n × (E × n) = 0 on ∂Ω, div E + ν 2 E • n = 0 on ∂Ω, ( 13 
)
where n is the outward unit normal vector on the boundary ∂Ω, outgoing from Ω. This means that n = n σ on Σ and n = n e = -n γ on Γ. By a variational formulation, Green's formula, and the boundary conditions on ∂Ω, one can check that

Ω (curl E •curl E +t -1 div E div E +k 2 s E •E )dΩ+ν 1 ∂Ω (n×E)•(n×E )dσ +t -1 ν 2 ∂Ω (n•E)(n•E )dσ = 0.
Then, choosing E = E, we get n × E = 0 and n • E = 0 on ∂Ω. Considering again the boundary conditions: curl E × n = 0, div E = 0 on ∂Ω combined to the integral representation of the field solving the first equation of Problem (13) inside a bounded domain ( [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]), leads to E = 0 in Ω and proves the property:

Property 1.2
The operator A t defined by the expression (10) is invertible.

Remark 1.3 If t = ∞, generally H t ⊂ H 1 (Ω) 3 [17].
If Ω is a Lipschitz domain with no re-entrant corners, then H t ∩ H 1 (Ω) 3 is dense on H t [START_REF] Costabel | A coercive bilinear form for Maxwell's equations[END_REF]. Thus, we can discretize (9) using Lagrange finite elements. But if the domain has re-entrant corners or edges, H t ∩ H 1 (Ω) 3 is a closed proper subspace of H t ( [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF]). Therefore, H t has no dense subspace included in H 1 (Ω) 3 . In this case, the discretization by Lagrange finite elements of the regularized Maxwell equations leads to a solution that does not converge to the physical solution ( [START_REF] Costabel | Maxwell and Lamé eigenvalues on polyhedra[END_REF]). In fact in this latter configuration, we can use a weighted regularization method ( [START_REF] Costabel | Weighted regularization of Maxwell equations: computations in curvilinear polygons, Numerical mathematics and advanced applications[END_REF][START_REF] Costabel | Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements[END_REF]).

For the numerical resolution of Problem (2), we restrict ourselves to the case of obstacles without geometrical singularities and such that Ω has no re-entrant corners.

Remark 1. [START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF] The solution E ∈ H t of Problem (9) satisfies curl curl E -t -1 ∇(div E) ∈ L 2 (Ω) 3 . Hence, the quantity curl E × n γ + t -1 n γ div E is defined in H 1/2 (Γ) 3 by means of Green's formula. For such a solution E, the integral representation ( 5) is then as valid as the integral representation [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF].

In the case of the classical Maxwell equations, the weak form of the problem obtained by the application of CEFRI can be derived in a similar way. We just give below the equivalent resulting problem and its variational formulation. By the application of CEFRI, Problem (1) is equivalent to the following problem defined on the bounded domain Ω:

         curl curl E -k 2 s E = 0 in Ω, E × n γ = 0 on Γ, T ν1 E = T ν1 (E inc -I ∞ Γ E) on Σ, (14) 
where I ∞ Γ is defined in [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF] with t = ∞. The variational formulation of Problem ( 14) can be written as:

Find E ∈ H ∞ (A ∞ + C ∞ )E = F ∞ , (15) 
The Hilbert space H ∞ is given by ( 6) for t = ∞. The operators A ∞ , C ∞ and F ∞ are respectively defined in ( 10), ( 11) and ( 12) taking t = ∞.

Schwarz method interpretation

In this section, we first present a resolution strategy for the regularized Maxwell equations. Then, the case of the classical Maxwell equations is briefly considered.

To solve System (9), Jin and Liu [START_REF] Liu | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF] suggested to consider C t , the term containing the integral representation, in the right hand side. An application of the fixed point algorithm leads to finding

E n+1 such that                curl curl E n+1 -t -1 ∇(div E n+1 ) -k 2 s E n+1 = 0 in Ω, E n+1 × n γ = 0, t -1 div E n+1 = 0 on Γ, T ν1 E n+1 = T ν1 (E inc -I t Γ E n ) on Σ, N ν2 E n+1 = N ν2 (E inc -I t Γ E n ) on Σ. (16) 
In this paper, we focus on an original mathematical justification of convergence of the algorithm expressed by Jin and Liu. We interpret the algorithm based on ( 16) as a Schwarz method. This interpretation has been initially considered for Poisson and Helmholtz problems in [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF][START_REF] Ben Belgacem | Convergence bounds of GMRES with Schwarz' preconditioner for the scattering problem[END_REF]. The strategy is designated as Total Overlapping Schwarz Method. Indeed the overlapping area is the total domain Ω. We hereby extend this work to the case of Maxwell's equations: it consists in replacing equivalently the problem ( 16) by the two following subproblems. The first one is a transmission problem in R 3 :

                           curl curl E 2n+1 -t -1 ∇(div E 2n+1 ) -k 2 s E 2n+1 = 0 in Ω i ∪ Ω e , n γ × [E 2n+1 ] = 0, n γ × [curl E 2n+1 ] = -n γ × curl E 2n on Γ, [t -1 div E 2n+1 ] = 0, n γ • [t -1 E 2n+1 ] = -n γ • t -1 E 2n on Γ, lim R→∞ ||x||=R ||curl E s 2n+1 × n e -ik s n e × (E s 2n+1 × n e )|| 2 dγ = 0, lim R→∞ ||x||=R | √ t -1 div E s 2n+1 -ik s E s 2n+1 • n e | 2 dγ = 0. ( 17 
)
The second one consists in finding E 2n+2 such that

               curl curl E 2n+2 -t -1 ∇(div E 2n+2 ) -k 2 s E 2n+2 = 0 in Ω, E 2n+2 × n γ = 0, t -1 div E 2n+2 = 0 on Γ, T ν1 E 2n+2 = T ν1 E 2n+1 on Σ, N ν2 E 2n+2 = N ν2 E 2n+1 on Σ. ( 18 
)
The solution E 2n+1 of ( 17) has an explicit expression given by an integral representation. By inserting this representation in the right-hand side of the second and third boundary conditions of [START_REF] Gmati | Comments on the GMRES Convergence for preconditioned systems[END_REF] we effectively obtain the solution of [START_REF] Djellouli | Finite element solution of two-dimensional acoustic scattering problems using arbitrarily shaped convex artificial boundaries[END_REF]. At the iteration n, Schwarz algorithm (Jin and Liu's scheme) is defined by

A t E n+1 = -C t E n + F t . (19) 
Numerically, we use the scheme suggested by Jin and Liu and do not use Subproblems ( 17) and [START_REF] Gmati | Comments on the GMRES Convergence for preconditioned systems[END_REF]. The intermediate problems ( 17) and ( 18) are used for theoretical justifications. This allows us to derive convergence estimations that cannot be derived directly from System [START_REF] Djellouli | Finite element solution of two-dimensional acoustic scattering problems using arbitrarily shaped convex artificial boundaries[END_REF]. Since the operator A t is invertible, Equation ( 19) is equivalent to

E n+1 = -A -1 t C t E n + A -1 t F t . (20) 
Both iterative schemes [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF] and ( 20) converge if and only if the spectral radius of A t -1 C t is strictly lower than one. This statement shows A t as a natural preconditioning of Schwarz method. In the sequel, we designate A t as Schwarz preconditioner.

In the case of the classical Maxwell equations, an equivalent strategy can be applied and consists in the consideration of the two following subproblems: The first one consists in finding E 2n+1 such that

                     curl curlE 2n+1 -k 2 s E 2n+1 = 0 in Ω i ∪ Ω e , n γ × [E 2n+1 ] = 0 on Γ, n γ × [curlE 2n+1 ] = -n γ × curlE 2n on Γ, lim R→∞ ||x||=R ||curlE s 2n+1 × n e -ik s E s 2n+1 || 2 dγ = 0. ( 21 
)
The other one consists in the following problem: Find E 2n+2 such that

             curl curlE 2n+2 -k 2 s E 2n+2 = 0 in Ω, E 2n+2 × n γ = 0 on Γ, T ν1 E 2n+2 = T ν1 E 2n+1 on Σ. (22) 
Then, at the iteration n, Schwarz algorithm for the classical Maxwell equations is defined by

A ∞ E n+1 = -C ∞ E n + F ∞ . (23) 
Since the operator A ∞ is invertible, then

E n+1 = -A -1 ∞ C ∞ E n + A -1 ∞ F ∞ . (24) 
The same statement as for the regularized equations occurs by replacing A t and C t with A ∞ and C ∞ .

Analytical estimation of the convergence for a spherical scatterer

In this section, we investigate an analytical characterization of the convergence of Schwarz method in a spherical configuration where the scatterer Ω i is a perfectly conducting ball. The analysis is first presented for the regularized Maxwell equations. Then, using the same approach, we give the corresponding results for the classical Maxwell's equations. The calculation was initially done for the classical Maxwell equations in a way which was not applicable to the regularized equations. At the end of the section, we also reproduce the proof of the rate of convergence in the case of the classical equations in the initial way, which leads to the same convergence estimates.

As a first step, we introduce specific functions based on the Bessel and Hankel functions J l (r) = j l (r) + rj l (r) and H l (r) = h l (r) + rh l (r) where j l (resp. h l ) is the spherical Bessel function (resp. spherical Hankel function of the first kind) of degree l. The following derivation also uses the spherical harmonics Y m l , m = -l, ..., l, of order l > 0.

The special functions of the spherical configuration offer specific properties ( [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]), with x = x/|x|: Proposition 3.1 Let us consider the regularized Maxwell equation

curl curl E -t -1 ∇(div E) -k 2 s E = 0. ( 25 
)
Let Y m l , m = -l, ..., l, be the spherical harmonics of order l > 0. The functions

M lm (x) = curl {x j l (k s |x|)Y m l (x)} , M lm = 1 ik s curl M lm , M lm (x) = 1 k p ∇(j l (k s |x|)Y m l (x))
are solutions of (25) in R 3 and the functions

N lm (x) = curl {x h l (k s |x|)Y m l (x)} , N lm = 1 ik s curl N lm , N lm (x) = 1 k p ∇(h l (k s |x|)Y m l (x))
are radiating solutions of (25) in R 3 \ {0} .

Remark 3.2 For the classical Maxwell equations, a similar result occurs, involving only M lm , N lm , M lm and N lm ( [START_REF] Nédélec | Acoustic and electromagnetic equations -Integral representations for harmonic problems[END_REF]). For the regularized Maxwell equations, the result is based on some work by Morse and Feshbach ([26]) and M lm and N lm contribute to the irrotational part of the field.

Proposition 3.3 If Y m l
denote the spherical harmonics of order l > 0 and m = -l, ..., l, then the tangential fields on the unit sphere S

U lm = 1 l(l + 1) ∇ S Y m l and V lm = n × U lm
are called vector spherical harmonics of order l. The notation ∇ S denotes the surface gradient on the unit sphere S and n is the outward unit normal to S. The fields U lm and V lm , l=1,2,3,..., form a complete orthonormal system in the Hilbert space

T 2 (S) = a : S → C 3 such that a ∈ L 2 (S) 3 , a.n = 0
of square integrable tangential fields on S equipped with the usual L 2 inner product.

In this analytical investigation, we consider the scatterer to be a ball of radius R * , we suppose that the artificial boundary Σ is a sphere concentric to Γ with radius R > R * and we perform the proof in the case where ν 1 = ν 2 = -ik s .

Characterization of the convergence for the regularized equations

The exact solution of the regularized exterior Maxwell problem can be written thanks to the functions introduced in Propositions 3.1-3.3 (see for example [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]):

E = ∞ l=1 l m=-l α lm N lm + β lm N lm + γ lm N lm + E inc .
The error occuring on the field E using Schwarz method is denoted by (w n ) n and defined by the following expression:

w 2n+1 =    E 2n+1 -E in Ω e , E 2n+1
in Ω i ,

and

w 2n+2 = E 2n+2 -E in Ω,
where E 2n+1 and E 2n+2 are respectively solutions to [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF] and [START_REF] Gmati | Comments on the GMRES Convergence for preconditioned systems[END_REF]. Then, the error on the field E can be written in terms of M lm , N lm , M lm , N lm , M lm and N lm :

w 2n+1 =            ∞ l=1 l m=-l a 2n+1 lm M lm + a 2n+1 lm M lm + a 2n+1 lm M lm , |x| ≤ R * , ∞ l=1 l m=-l b 2n+1 lm N lm + b 2n+1 lm N lm + b 2n+1 lm N lm , |x| > R * , w 2n+2 = ∞ l=1 l m=-l c 2n+2 lm M lm + d 2n+2 lm N lm + c 2n+2 lm M lm + d 2n+2 lm N lm + c 2n+2 lm M lm + d 2n+2 lm N lm .
As a first step, we interpret the boundary conditions on Γ and on Σ. Some conditions give relations between coefficients such that the number of significant coefficients is reduced: the coefficients c 2n+2 lm , c . The previous statements lead to the following result: using the notations

H l (k s |x|) = h l (k s |x|) + k s |x|h l (k s |x|), J l (k s |x|) = j l (k s |x|) + k s |x|j l (k s |x|), α l (k s R) = J l (k s R) -ik s Rj l (k s R), β l (k s R) = H l (k s R) -ik s Rh l (k s R), H √ t l = h l (k s R) -i √ th l (k s R), J √ t l = j l (k s R) + i √ tj l (k s R), γ * l = H l (k s R * ) J l (k s R * ) , δ * l = h l (k s R * ) j l (k s R * ) ,
we have the relation

A r          d 2n+2 lm d 2n+2 lm d 2n+2 lm          = B r          d 2n lm d 2n lm d 2n lm          (26) 
where

A r =       0 β l (k s R) -γ * l α l (k s R) - i √ t (γ * l j l (k s R) -h l (k s R)) β l (k s R) -γ * l α l (k s R) 0 0 0 - √ tl(l + 1) R (h l (k s R) -γ * l j l (k s R)) k p t -H √ t l + γ * l J √ t l       and B r =         0 β l (k s R) i √ t h l (k s R) β l (k s R) 0 0 0 - √ tl(l + 1) R h l (k s R) - k p t h l (k s R) + i √ th l (k s R)         .
As a consequence, the rate of convergence of the Total Overlapping Schwarz method is given by the spectral radius of A -1 r B r . The method converges when this spectral radius is strictly lower than 1. In the case of the classical Maxwell equations, we give the asymptotic behavior of the spectral radius with respect to the degree l (see Sections 3.2 and 3.3). In the current context of the regularized equations, we just illustrate the behavior of ρ( K r ) the spectral radius of K r = A -1 r B r with respect to the geometrical, physical and regularization parameters: the thickness R -R * , wavenumber k s , wavelength λ s = 2π/k s and regularization parameter t. Figure 1 indicates for the first values of l how ρ( K r ) is behaving with respect to the thickness of the computational domain Ω when t is given equal to 1 and when k s takes three different values (2.5, 5, 10). For all these values of k s , one can observe that larger is R -R * , smaller is the spectral radius. Figure 2 indicates for the first values of l how ρ( K r ) is behaving with respect to the wavenumber k s when t is given equal to 1 and when R -R * takes different values with respect to the wavelength (λ s /5, λ s , 5λ s ). For all these values of R -R * , we can see that the quantity ρ( K r ) is rather deteriorated when the wavenumber increases. Figures 34give for the first values of l the behavior of ρ( K r ) with respect to the regularization parameter t when the wavenumber k s takes the value 5, and R -R * takes the values (λ s /5, λ s , 5λ s ). These observations advise a choice of t of order of the unity. The same behavior was observed for k s = 2.5 and k s = 10.

Rate of convergence for the classical equations

We now adapt the results of Section 3.1 to the classical Maxwell equations. In this context, thanks to Remark 3.2, the calculation does not involve M lm and N lm anymore. By the same strategy as the one in Section 3.1, the rate of convergence is given by the spectral radius of matrix A -1 c B c where the matrix A c (respectively B c ) is one diagonal 2×2 block of the matrix A r (respectively B r ) and A

-1 c B c =      1 - h l (k s R * ) j l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1 0 0 1 - H l (k s R * ) J l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1      . (27) 
For the classical equations, the Total Overlapping Schwarz method converges if the spectral radius ρ(A -1 c B c ) of A -1 c B c is strictly lower than 1. For R * = 1, the asymptotic behavior of the spherical Bessel functions leads to the asymptotic estimation: for large l,

ρ(A -1 c B c ) ∼ 1 R 2l -1 , i = 1, 2. ( 28 
)
As a consequence, there might be a finite number of modes (corresponding to some values of l) outside of the unit disk for any value of R depending on the wavenumber. Illustrations are given in Section 3.3 where the same result is obtained using a different strategy. The figures show the behavior of the eigenvalues of the iteration matrix with respect to the wavelength k s and radius R.

Rate of convergence for the classical equations -the initial derivation

Here, we propose a second strategy to calculate the rate of convergence of Schwarz method for the classical equations. This strategy was indeed the initial one but not extendible to the regularized equations.

For all n, we define Λ n = T ν1 (w 2n ). In order to estimate the convergence of the error (w 2n ) n , we study the convergence of ( Λ n ) n considering that Λ n+1 = K c Λ n with K c a map to be determined from T 2 (Σ) to T 2 (Σ), where T 2 (Σ) is defined in Proposition 3.3. The quantity Λ n can be expressed on the basis of the vector spherical harmonics as follows (again due to Proposition 3.3), using the coefficients introduced in Section 3.1:

Λ n = T ν1 (w 2n ) = ∞ l=1 l m=-l c 2n lm T ν1 (M lm ) + d 2n lm T ν1 (N lm ) + c 2n lm T ν1 ( M lm ) + d 2n lm T ν1 ( N lm ) = l,m λ 1,n lm U lm + λ 2,n lm V lm .
The relations between Λ n and Λ n+1 given by conditions on Σ and Γ induce the following statement on the components λ 1,n lm and λ 2,n lm

     λ 1,n+1 lm = τ 1,lm λ 1,n lm , λ 2,n+1 lm = τ 2,lm λ 2,n lm , where            τ 1,lm = d2n lm b 2n+1 lm + c2n lm b 2n+1 lm ik s J l (k s R) + k 2 s Rj l (k s R) ik s H l (k s R) + k 2 s Rh l (k s R) -1 , τ 2,lm = d 2n lm b 2n+1 lm + c 2n lm b 2n+1 lm J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1
.

These expressions clearly indicate that K c is linear and has a diagonal representation in the basis

{U lm , V lm , l ∈ N, m = -l, ..., l} of T 2 (Σ). The relation between (b 2n+1 lm , b 2n+1 lm ) and (d 2n+1 lm , d 2n+1 lm ) leads to            τ 1,lm = 1 - H l (k s R * ) J l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1 , τ 2,lm = 1 - h l (k s R * ) j l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1 . (29) 
The spectrum of K c consists of the eigenvalues τ 1,lm and τ 2,lm . Their explicit derivation indicates that these quantities are independent of m. Let us denote them τ 1,l and τ 2,l in the sequel. These eigenvalues define the rate of convergence of the Schwarz method. Then, the convergence of the Total Overlapping Schwarz method is ensured if |τ i,l | < 1, for all i = 1, 2, for all l ∈ N. Relations ( 27) and ( 29) are similar which indicates that the result is given by the estimation [START_REF] Tezaur | Three-dimensional finite element calculations in acoustic scattering using arbitrary shaped convex artificial boundaries[END_REF].

Let us now illustrate the eigenvalues τ 1,l and τ 2,l for different values of R. Figures 5,6 indicate how τ 1,: and τ 2,: behave with respect to the thickness of the computational domain Ω when k s takes three different values (2.5, 5, 10). Figures 7,8 indicate how τ 1,: and τ 2,: behave with respect to the wavenumber k s when R -R * takes different values with respect to the wavelength (λ s /5, λ s , 5λ s ).

Motivation of Schwarz preconditioner

Due to the observed limitations (the requirements on the thickness of the computational domain, the behavior with respect to the wavenumber), a Krylov method appears as a relevant alternative to the algorithm defined by ( 16): due to the properties of Krylov solvers demonstrated in [START_REF] Gmati | Comments on the GMRES Convergence for preconditioned systems[END_REF], the convergence of a Krylov method is ensured for the resolution of Problem (9) using A t as a preconditioner. Such a strategy consists in solving the system by a Krylov method. As a first statement, the convergence of an iterative method applied to Problem ( 30) is ensured if the spectral radius of (A -1 t C t ) is lower than 1. This condition is exactly the condition of convergence of Jin and Liu scheme considered in the previous sections. This specifies how the analysis of Schwarz algorithm suggests such a preconditioning strategy for a Krylov solver approach. However, the properties established in [START_REF] Gmati | Comments on the GMRES Convergence for preconditioned systems[END_REF] indicates that the convergence of GMRES for the resolution of Problem ( 30) is ensured even if some eigenvalues of A -1 t C t have a modulus larger than one. Hence, the Krylov method can achieve convergence even in the case of thin domain of computation Ω. In the next sections, we study theoretically and numerically the convergence of GMRES applied to Problem (9) using A t as a preconditioner. 

(I + A -1 t C t )E = A -1 t F t (30) 

Convergence analysis for GMRES

In this section, we consider the convergence of GMRES for the resolution of Problem [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF] in a spherical configuration. The idea of the proof was initially introduced by F. Ben Belgacem et al [START_REF] Ben Belgacem | Convergence bounds of GMRES with Schwarz' preconditioner for the scattering problem[END_REF] for Helmholtz problem: The authors proved the superlinear convergence of GMRES using results of spectral theory. The equation ( 30) is posed on the domain Ω. We hereby answer the question by considering an intermediate equivalent problem which involves an equation posed on Σ. The rate of convergence of GMRES is similar for both the intermediate equation posed on Σ and the initial problem [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF]. The difference lies only in the storage size of the Arnoldi basis of GMRES, which is justified later.

To derive the equivalent intermediate problem, we introduce Ψ defined on Σ as a new unknown:

Ψ(x) = Λ(x) + t -1 n σ λ(x) ∀ x ∈ Σ (31) 
where

Λ = T ν1 (E inc -I t,R Γ E) and λ = N ν2 (E inc -I t,R Γ E).

Problem (3) can be written as follows

               curl curl E -t -1 ∇(div E) -k 2 s E = 0 in Ω, E × n γ = 0, t -1 div E = 0 on Γ, curl E × n σ + ν 1 n σ × (E × n σ ) = Λ on Σ, div E + ν 2 E • n σ = λ on Σ. (32)
The variational formulation of Problem (32) is

A t E -D t Ψ = 0 (33)
where D t is defined by

(D t Ψ, E ) t = Σ Ψ • E dσ.
We introduce the operator B Γ which links the two unknowns Ψ and E

B Γ (Ψ) = T ν1 I t,R Γ E + t -1 (N ν2 I t,R Γ E
)n σ such that the unknown Ψ can be obtained as the solution of a problem defined on Σ

Ψ(x) + B Γ (Ψ)(x) = T ν1 E inc + t -1 (N ν2 E inc )n σ ∀ x ∈ Σ.
or equivalently

(I + B Γ )Ψ = F t on L 2 (Σ) 3 , (34) 
where F t is given by the Riesz representation theorem. Therefore, the initial problem ( 30) is equivalent to the combination of the equations (33-34). The rate of convergence of GMRES for Problem [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF] is given by the rate of convergence of GMRES for the resolution of Equation (34) which we investigate below.

Lemma 4.1 The rate of convergence of GMRES for Problem [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF] posed in Ω is given by the rate of convergence of GMRES for the resolution of Equation (34) defined on Σ.

Proof: Let W n+1 (resp. W n+1 ) be the error on the solution E (resp. on the field Ψ) of Problem (30) (resp. (34)) at iteration n + 1 of the GMRES method. Then, the error W n+1 satisfies the following system on W

               curl curl W -t -1 ∇(div W ) -k 2 s W = 0 in Ω, W × n γ = 0, t -1 div W = 0 on Γ, T ν1 W = Λ on Σ, N ν2 W = λ on Σ. (35) when Λ = -T ν1 I t,R Γ W n and λ = -N ν2 I t,R Γ W n . If B Ω denotes A -1
t C t the iteration matrix of GMRES solver for Problem [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF], then at each iteration

W n+1 = B Ω W n . (36) 
The same relation holds for

W n+1 W n+1 = B Γ W n . (37) 
Now, let us consider the two linear maps

Φ : T 2 (Σ) × L 2 (Σ) → H t ( Λ, λ) → W
where W is the solution of System (35), and

Φ : T 2 (Σ) × L 2 (Σ) → L 2 (Σ) 3 ( Λ, λ) → W = Λ + t -1 n σ λ
related to Definition (31). The linear map Φ is invertible due to the well posedness of the associated problem (35) and Φ is invertible due to orthogonality arguments. These definitions lead to

W n+1 = Φ Φ-1 W n+1 (38) 
By the equations ( 36) and (38), we then have

W n+1 = ΦΦ -1 B Ω Φ Φ-1 W n . (39) 
and this holds for any first iterate W 0 . Combining (37) and (39), we can conclude that

B Γ = ΦΦ -1 B Ω Φ Φ-1 .
We deduce that the eigenvalues of B Γ are eigenvalues of B Ω .

Thanks to the previous statement, we now focus on the convergence of GMRES for Problem (34). From [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF], one can check that B Γ is a continuous operator from L 2 (Σ) 3 to H t . Moreover, the injection H t → L 2 (Ω) 3 is compact ( [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]). Thus, the injection H t → L 2 (Σ) 3 is also compact. This implies that B Γ is a compact operator on L 2 (Σ) 3 . Due to the work by I. Moret [START_REF] Moret | A note on the superlinear convergence of GMRES[END_REF], the convergence of GMRES for the resolution of Problem (34) is ensured. In the following, we precise the rate of convergence by verifying the exponential decay of each singular value γ p , p ≥ 0 of B Γ . Proposition 4.2 In the case of a spherical scatterer, with a spherical artificial boundary, there exist two positive constants c and τ such that the singular values of B Γ , γ p , p ≥ 0, satisfy the relation

0 ≤ γ p ≤ c e -τ √ p , ∀ p ≥ 0.
Proof: The proof of the proposition is performed for the case where the scatterer is a perfectly conducting ball with radius R * = 1 and the artificial boundary Σ is the sphere concentric to Γ with radius R > R * . The first step of the convergence evaluation consists in constructing an operator (B Γ ) p with rank ≤ p which approximates B Γ . The proof is based on the Courant-Weyl min-max principle [START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[END_REF] together with an expansion in term of Bessel and Hankel functions and harmonic spherical functions. We perform the proof in the case ν 1 = ν 2 = -ik s. . We recall that the Green's function associated with the 3D Helmholtz equation can be written as follows ([9]) :

G ks (x, y) = ik s ∞ l=0 l m=-l h l (k s |x|)Y m l (x)j l (k s |y|)Y m l (ŷ), (40) 
with x = x/|x| and ŷ = y/|y|. The series (40) and its term by term first derivatives with respect to x and y are absolutely and uniformly convergent on compact subsets of {(x, y) ∈ R 3 × R 3 ; |x| > |y|} (in our use of the relation, x is on Σ and y is on Γ). Moreover, if V is a given vector, the following expansion holds ( [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF])

G ks (x, y)V = i k s ∞ l=1 1 l(l + 1) l m=-l curl N lm (x) curl M lm (y) • V +ik s ∞ l=1 ik s l(l + 1) l m=-l N lm (x) M lm (y) • V + i k s ∞ l=1 l m=-l ∇(h l (k s |x|)Y m l (x)) ∇(j l (k s |y|)Y m l (ŷ)) • V . (41) 
The series (41) and its term by term derivatives in x and y are uniformly and absolutely convergent on compact subsets of {(x, y) ∈ R 3 × R 3 ; |x| > |y|} ([9], [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]). The integral representation (5) can be written as follows:

(I t Γ E)(x) = curl x curl x Γ G ks (x, y)(curl E(y) × n γ (y))dγ(y) - Γ ∇ y G kp (x, y)(E(y) • n γ (y))dγ(y).
Then, taking the formulas (40) and (41) into account, we have, for all x ∈ Ω e

(I t Γ E)(x) = curl x curl x Γ i k s ∞ l=1 1 l(l + 1) l m=-l curl N lm (x) curl M lm (y) • (curl E(y) × n γ (y))dγ(y) +curl x curl x Γ ik s ∞ l=1 1 l(l + 1) l m=-l N lm (x) M lm (y) • (curl E(y) × n γ (y))dγ(y) +ik p Γ ∞ l=0 l m=-l j l (k p |y|)Y m l (ŷ)(k p x h l (k p |x|)Y m l (x)+h l (k p |x|)
Thus, the operator B Γ can be written as follows: for all x ∈ Σ

B Γ Ψ(x) = Γ ∞ l=1 ik 3 s l(l + 1) l m=-l (N lm (x) × n σ (x)) curl M lm (y) • (curl E(y) × n γ (y))dγ(y) + Γ ∞ l=1 ik 3 s l(l + 1) l m=-l (curl N lm (x) × n σ (x)) M lm (y) • (curl E(y) × n γ (y))dγ(y) + Γ ∞ l=1 k 2 s l(l + 1) l m=-l (n σ (x) × (curl N lm (x) × n σ (x))) curl M lm (y) • (curl E(y) × n γ (y))dγ(y) + Γ ∞ l=1 k 4 s l(l + 1) l m=-l (n σ (x) × (N lm (x) × n σ (x))) M lm (y) • (curl E(y) × n γ (y))dγ(y) + Γ k 2 p t n σ (x) ∞ l=0 l m=-l j l (k p |y|)Y m l (ŷ)(i k p h l (k p |x|) + k s h l (k p |x|))Y m l (x)(E(y) • n γ (y))dγ(y).
Let p be a given integer and p * the integer part of √ p. We denote (B Γ ) p the truncation of the operator

B Γ of order p. (B Γ ) p satisfies || (B Γ -(B Γ ) p )Ψ || L 2 (Σ) 3 ≤ α 1 ∞ l=p * +1 k 3 s l(l + 1) l m=-l || n σ × N lm || L 2 (Σ) 3 || n γ × curl M lm || L 2 (Γ) 3 + α 2 ∞ l=p * +1 k 3 s l(l + 1) l m=-l || n σ × curl N lm || L 2 (Σ) 3 || n γ × M lm || L 2 (Γ) 3 + α 3 ∞ l=p * +1 k 2 s l(l + 1) l m=-l || n σ × (curl N lm × n σ )|| L 2 (Σ) 3 || n γ × curl M lm || L 2 (Γ) 3 + α 4 ∞ l=p * +1 k 4 s l(l + 1) l m=-l || n σ × (N lm × n σ ) || L 2 (Σ) 3 || n γ × M lm || L 2 (Γ) 3 + α 5 ∞ l=p * +1 k 2 p t l m=-l || (i k p h l (k p |.|) + k s h l (k p |.|))Y m l (.) || L 2 (Σ) 3 || j l (k p |.|)Y m l (.) || L 2 (Γ) 3 , (42) 
where the constants α i for i = 1, ..., 4 depend on

|| curl E || H 1/2 (Γ) 3 and α 5 depends on ||E • n|| H -1/2 (Γ) .
Thanks to the expression of the quantities involving N lm and M lm , with respect to the Bessel and Hankel functions, the approximation (42) becomes

|| (B Γ -(B Γ ) p )Ψ || L 2 (Σ) 3 ≤ α 1 ∞ l=p * +1 k 3 s l(l + 1) l m=-l l(l + 1) | h l (k s R) | R l(l + 1) | j l (k s ) + kj l (k s ) | + α 2 ∞ l=p * +1 k 3 s l(l + 1) l m=-l l(l + 1) | h l (k s R) + k s Rh l (k s R) | l(l + 1) | j l (k s ) | + α 3 ∞ l=p * +1 k 2 s l(l + 1) l m=-l l(l + 1) | h l (k s R) + k s Rh l (k s R) | l(l + 1) | j l (k s ) + k s j l (k s ) | + α 4 ∞ l=p * +1 k 4 s l(l + 1) l m=-l l(l + 1) | h l (k s R) | R l(l + 1) | j l (k s ) | + α 5 ∞ l=p * +1 k 2 p t l m=-l | ik p h l (k p R) + k s h l (k p R) | R | j l (k p ) | . (43) 
By the asymptotic behavior of the spherical Bessel and Hankel functions for large l, we have the following approximation

|| (B Γ -(B Γ ) p )Ψ || L 2 (Σ) 3 ≤ c 1 ∞ l=p * +1 l l(l + 1) k 2 s R l + c 2 ∞ l=p * +1 √ l(l + 1) 3 2 k 2 s R l+1 + c 3 ∞ l=p * +1
(l(l + 1))

3 2 k s R l+1 + c 4 ∞ l=p * +1 l(l + 1) k 3 s R l + c 5 ∞ l=p * +1 (l + 1) k s R l+1 ,
where c i depend on α i for i = 1, ..., 5 and on the constant induced by the asymptotic behavior of special functions. Thus, using the convergence properties of derivatives of geometric series, we obtain the estimation

|| (B Γ -(B Γ ) p )Ψ || L 2 (Σ) 3 ≤ α e -τ (p * +1) ≤ α e -τ √ p
where α, α and τ are positive constants and α ≈ α.

Remark 4.3 If the surface of the scatterer is not spherical, we can consider an intermediate spherical surface Γ between Γ and the artificial boundary Σ. The artificial boundary condition on Σ can be defined by an integral representation expressed with an integral over Γ. To this aim, we remark that the previous proof can be extended to the case of a transmission boundary condition on Γ.

Proposition 4.4 The application of GMRES to Problem (34) has superlinear convergence.

Proof: Considering γ p , p ≥ 0, the singular values of B Γ , denoting by r m the residual at iteration m and by µ p , p ≥ 0, the singular values of (K) -1 where

K = I + B Γ ,
since K is a bijective continuous operator with continuous inverse K -1 , the singular values µ p of K -1 are bounded and Theorem 1 of [START_REF] Moret | A note on the superlinear convergence of GMRES[END_REF] implies

|| r m || L 2 (Σ) 3 ≤ ( m p=1 γ p µ p ) || F t || L 2 (Σ) 3 .
Then, by Proposition 4.2

γ p ≤ α p τ ∀p ≥ 1, α ≥ 0. Thus, || r m || L 2 (Σ) 3 ≤ β αm m! τ
, where β is a positive constant which depends on || F t || L 2 (Σ) 3 . The approximation of m! by Stirling's formula gives the following expression

|| r m || 1 m L 2 (Σ) 3 ≤ c m τ ∀m ≥ 0. Therefore, lim m→∞ || r m || 1 m
L 2 (Σ) 3 = 0 . This justifies that we have a superlinear convergence of the GMRES method.

Numerical results

This section is dedicated to the numerical resolution of Problem [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF]. To this aim, we use the GMRES preconditioned by the Schwarz preconditioner introduced in previous sections. Considering a finite element discretization T h of the domain Ω delimited by Γ and Σ, the Hilbert space H t is approximated by V h , h > 0, defined by

V h = v h ∈ C 0 Ω 3 ; v h| K ∈ P m (K) 3 , ∀K ∈ T h ,
where P m is the set of polynomials of degree ≤ m. If N designates the total number of degrees of freedom, V h is generated by the vectorial functions w j e k , j = 1, ..., N and k = 1, 2, 3, where (e i ) i=1,...,3 is the canonical basis of R 3 and (w i ) i=1,...,N is the unidimensional Lagrange finite element basis of order m.

The numerical implementation was done using and developing new integrands in the finite element library Mélina++ ( [23]). The discretization of Problem ( 9) is motivated by this consideration. The discrete unknown E h is decomposed as follows:

E h = N j=1 E j w j with E j = E 1 j e 1 + E 2 j e 2 + E 3 j e 3 .
Choosing the test functions E h = w i e k , k = 1, ..., 3, i = 1, ..., N , the discrete system becomes ∀k ∈ {1, ..., 3}, ∀i ∈ {1, ..., N },

N j=1 3 l=1 ((A t w j e l , w i e k ) t + (C t w j e l , w i e k ) t )E l j = (F t , w i e k ) t ,
which is equivalent to (A + C)E = F , where A and C are defined blockwise by A = (A ij ) i,j=1,...,N and C = (C ij ) i,j=1,...,N , with, for all i, j ∈ {1, ..., 3}, (A ij ) kl = (A t w j e l , w i e k ) t and (C ij ) kl = (C t w j e l , w i e k ) t . The matrix C involves the integral operators and the matrix A is related to the differential operators. In order to take in consideration the essential condition in this use of the library Mélina++, we consider a penalization strategy ( [START_REF] Barrett | Finite Element Approximation of the Dirichlet Problem Using the Boundary Penalty Method[END_REF]):

ε p (n γ × curl E) + E × n γ = 0 with ε p > 0,
such that the matrix A is added to a term A εp resulting from this penalization strategy. We then consider A = A + A εp as the Schwarz preconditioner, and the system to be solved is

(I + A -1 C)E = A -1 F. (44) 
As a first step of the numerical investigation, we validate the convergence of the preconditioned CEFRI strategy by the consideration of an intermediate problem the solution of which is known:

                   curl curl E -∇(div E) -k 2 s E = 0 in Ω e , E × n γ = G 1 1 (., x 0 ) × n γ , div E = div G 1 1 (., x 0 ) on Γ, lim ρ→∞ ||x||=ρ ||curl E s × n e -ik s n e × (E s × n e )|| 2 dγ = 0, lim ρ→∞ ||x||=ρ |div E s -ik s E s • n e | 2 dγ = 0, (45) 
where G 1 1 (., x 0 ), the first component of the vector G 1 , is the solution of Problem (45) and x 0 is an artificial source point which belongs to the scatterer and is chosen equal to (0, 0, 0.01) in this test case. The scatterer is the unit ball and the artificial boundary Σ is the sphere concentric to Γ with radius R = 1.5. In this section, the stopping criterion of GMRES corresponds to a residual lower than 10 -6 .

Table 1 Error on solution and behavior of the residuals = Table 1 shows the relative error on the solution of Problem (45) for different choices of the penalization parameter ε p for a given wavenumber k s = 3 and a given mesh. E e is the exact solution of (45) and E c denotes the numerical solution obtained by the resolution of the discrete system obtained by the preconditioned CEFRI approach. When the residual criterion is fixed,

||(I + A -1 C)Ec -A -1 F|| 2 || A -1 F || 2 , case ks = 3, h = 0.3. εp ||Ec -Ee || 2 || Ee || 2 ||( A + C)(Ec -Ee)|| 2 || ( A + C)
||(I+ A -1 C)Ec-A -1 F ||2 || A -1 F ||2 ≤ 10 -6 ,
the last column shows that the number of iterations is not significantly sensitive to the penalization parameter. The weighted relative error ||( A+C)(Ec-Ee)||2

||( A+C)Ee||2

is encouraging but the relative error on the solution, ||Ec-Ee||2 ||Ee||2 , seems to be extremely deteriorated by the term A εp of the preconditioner A. In order to explain this impact of the penalization strategy, we exhibit spectral numerical properties of the preconditioner A = A + A εp . Tables 2, 3 and 4 show the largest-magnitude eigenvalue λ max , the smallestmagnitude eigenvalue λ min and the condition number cond 2 of respectively A, A εp and A. The tables clearly show the impact of the penalization strategy on the condition number of the preconditioner when ε p tends to 0. This explains the disturbance observed on the accuracy of the resolution. The value of the regularization parameter also impacts the application of the preconditioner A which is performed by a LU resolution. In table 5, we show the accuracy of the resolution by the LU solver. Finally, still for Problem (45), in Fig. 9, we plot the weighted relative error with respect to the average edgelength of the mesh, for different values of ε p . This result, combined with the prior ones, suggests the choice of ε p = 10 -4 as a good compromise.

As a second step, we apply the preconditioned CEFRI strategy to the initial problem [START_REF] Barrett | Finite Element Approximation of the Dirichlet Problem Using the Boundary Penalty Method[END_REF]. Indeed, we solve Equation [START_REF] Zerbib | Etude tridimensionnelle de la condition absorbante adaptative proposée par Liu et Jin pour la résolution des problèmes de diffraction[END_REF], the discretization of which is given by Equation (44). We consider the case of an incident plane wave with the direction (0, 0, 1) and the polarization (1, 0, 0). We choose ν 1 = ν 2 = -ik s , the regularization parameter t = 1 and the penalty parameter ε p = 10 -4 . Moreover, we consider meshes such that the average edgelength and the distance between the boundaries remains constant with respect to the wavelength. In Figure 10, we show the residuals of GMRES at every restart. The study is done for the wavenumbers k s = 1.25, k s = 2.5 and k s = 5. Through these test cases, we conclude that the asymptotic behavior of GMRES validates the theoretical study done in previous sections. 

Conclusion

This work firstly contributed to a theoretical analysis and justification of an algorithm for the resolution of the 3D exterior Maxwell problem using a combination of finite elements and integral representation. This algorithm introduced by Jin and Liu ( [START_REF] Liu | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF]) was interpreted as a Schwarz method with total overlap. In such a way, we analytically characterized the convergence of the algorithm depending on the distance between the surface of the obstacle and the artificial surface. The theoretical result reveals the finite element term of the Schwarz method as a preconditioner for Krylov solvers. A significant result derived in this paper is the superlinear convergence of the GMRES algorithm when it is preconditioned with the so called Schwarz preconditioner in the case of the scattering of a time-harmonic electromagnetic wave by a perfect conductor: the superlinear convergence were first analytically justified in the spherical configuration; then, numerical tests confirmed this behavior using and contributing to the development of the finite element library Mélina++ ( [23]).

Such results justify further investigations in the consideration of the combination of finite elements and integral representation. Next important aspects for the numerical resolution will be the use of edge elements to avoid the regularization technique and the use of fast methods such as the fast multipole method. A significant perspective would be the extension of the study to other boundary conditions like
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  The error indicated in the second line corresponds to the difference between the initial right hand side and the right hand side recalculated from the obtained solution: LU error =|| AX -b || / || b || where X is the solution of the system AX = b obtained by LU solver, and b is a given right hand side.

Table 5

 5 Error on LU resolution with respect to εp; case h = 0.3, ks = 2.1, R = 1.5.

7 LU error 3 ×

 73 10 -15 8 × 10 -14 5 × 10 -12 4 × 10 -10 8 × 10 -7 4 × 10 -3

Figure 9 .Figure 10 .

 910 Figure 9. Relative l 2 -error on solution with respect to discretization, case ks = 3

  Ee|| 2

				Residuals Iterations
	10 -2	1.35	0.05	4 × 10 -7	48
	10 -3	1.19	0.01	5 × 10 -7	44
	10 -4	5.8	0.01	2 × 10 -7	55
	10 -5	23	0.01	3 × 10 -7	43
	10 -6	75	0.01	9 × 10 -8	43

Table 2

 2 Extreme eigenvalues of matrix A, case h = 0.3, ks = 2.1, R = 1.5.14.4865 -(7.32195 × 10 -6 ) i 0.0859181 -0.087054 i 118.43854

	λmax	λ min	cond 2

Table 3

 3 Extreme eigenvalues of matrix Aε p , case h = 0.3, ks = 2.1, R = 1.5. 10 -2 8.84872 6.51797 × 10 -7 1.357 × 10 7 10 -3 88.4582 7.66253 × 10 -7 1.154 × 10 8 10 -4 884.565 -2.04043 × 10 -7 4.335 × 10 9 10 -5 8845.66 7.35942 × 10 -7 1.202 × 10 10 10 -6 88456.7 9.1692 × 10 -7 9.647 × 10 10

	εp	λmax	λ min	cond 2

Table 4

 4 Extreme eigenvalues of matrixA = A + Aε p , case h = 0.3, ks = 2.1, R = 1.5.10 -2 16.2733 -(4.46251 × 10 -6 ) i 0.111321 + 0.111321 i 103.36 10 -3 89.2469 -(1.60268 × 10 -8 ) i 0.141682 -0.123085 i 475.52 10 -4 885.346 -(1.3209 × 10 -10 ) i 0.153267 -0.135483 i 4327.96 10 -5 8846.45 -(1.1022 × 10 -12 ) i 0.154249 -0.135636 i 43069.01 10 -6 88457.5 -(1.57468 × 10 -12 ) i 0.154346 -0.135646 i 430489.5

	εp	λmax	λ min	cond 2

|x|∇ S Y m l (x))(E(y)•n γ (y))dγ(y).

transmission condition or other geometrical configurations such as geometries with singularities ( [12]).