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Thioglycerol route to bio-based bis-cyclic carbonates: 
Poly(hydroxyurethane) preparation and post-functionalization  

Océane Lamarzelle a,b, Geoffrey Hibert a,b, Etienne Grau a,b*, Sébastien Lecommandoux a,b* and 
Henri Cramail a,b* 

The present work is dedicated to the design of novel sulfur-substituted cyclic carbonates from thioglycerol, fatty acids and 

sugar derivatives. In this methodology, a sulfur atom is inserted in β position of 5-membered ring cyclic carbonates via a 

two-step synthesis including the thiol-ene coupling of thioglycerol on fatty acid derivatives, followed by a 

transcarbonation. A similar strategy was adopted to prepare glycolipid-based cyclic carbonates in order to bring 

biodegradability to the final poly(hydroxyurethane)s. The so-formed monomers were characterized by NMR 

spectroscopies, HPLC and DSC. The enhanced reactivity of sulfur-substituted cyclic carbonate was demonstrated through 
1H NMR spectroscopy  kinetic study of a model reaction with hexylamine. Fatty acid- and glycolipid-based sulfur-

substituted bis cyclic carbonates were then polymerized with diamines in solvent using a catalyst-free process. FTIR, NMR, 

SEC, DSC and TGA were performed to investigate the PHUs chemical structure, molar masses and thermal properties. 

Finally, the so-formed PHUs were post-functionalized by sulfonation with m-CPBA in order to tune the PHU properties. The 

impact of these chemical modifications was mostly studied on the polymer solubility and thermal stability.  

Introduction 

Since the new REACH regulation was edited few years ago, 

research groups and industries were asked to replace 

hazardous chemicals and harsh reaction conditions by greener 

intermediates and processes. Polyurethane markets were 

directly affected as toxic isocyanates and phosgene were 

involved in the synthesis of such polymers. In agreement with 

the legislation and the Green Chemistry principles, Non 

Isocyanate Polyurethanes (NIPUs) have attracted interest 

within the last decades for the replacement of classical PUs.1–3 

Among the possible routes leading to isocyanate- and 

phosgene-free PU, the most studied and promising solution to 

synthesize sustainable polyurethanes is the polyaddition 

between poly(cyclic carbonate)s and polyamines leading to 

poly(hydroxyurethane)s (PHUs). Contrary to the mature 

technologies applied for classical PU synthesis,4 PHU 

preparation still requires efforts to be industrialized. Indeed, 

the polymerization rate is not enough competitive in 

comparison to the reaction time required for many industrial 

processes. The conversions are generally incomplete, leading 

to residual monomers within the materials and lessened 

properties. This feature has been attributed to the low 

reactivity of 5-membered ring cyclic carbonates towards 

amines, coming from the high stability of such compounds. To 

tackle this issue, 6-, 7- and 8-membered ring cyclic carbonates, 

displaying a higher ring strain have demonstrated a significant 

increase of the polymerization rate when their polymerizations 

with diamines were performed.5–8 Unfortunately, most of the 

cyclic carbonates with larger ring size were not easy to handle 

at the industrial level due to their low stability at room 

temperature. In order to decrease the cyclic carbonate 

stability and subsequently favor the amine addition, an 

alternative strategy consisting in the insertion of electron-

withdrawing groups nearby the 5-membered cyclic carbonate 

was carried out by several research groups.9–12 Another 

solution is the use of metal catalysts or organo-catalysts such 

as TBD, DBU or thioureas 13,14 in order to increase the carbonyl 

electrophilicity of the cyclic carbonate and/or the 

nucleophilicity of the amine.  

In agreement with a sustainable development, numerous 

research teams achieved the synthesis of green and bio-based 

plastics.15 Various studies reported the preparation of fatty 

acid-based cyclic carbonates as precursors for further PHU 

syntheses.16–21 Nonetheless, glycolipids 22,23 which result from 

the combination between sugar and fatty acids have not been 

used as starting material for cyclic carbonate and PHU 

preparations yet. Within the past few years, our group has 

been developing several generations of fatty acid-based cyclic 

carbonates starting from the synthesis of 5-membered cyclic 

carbonate obtained via epoxidation/carbonation of carbon-

carbon double bonds.16,24 The laborious preparation of 6-

membered fatty acid-based cyclic carbonates was also 

investigated.5 More recently, we designed reactive 5-

membered ring cyclic carbonates, presenting ether and ester 

functions in  position of the cycle, from glycerol and fatty acid 

derivatives. Nonetheless, ester moiety was sensitive to side 

reactions and impacted the resulting PHU molar masses and 

properties. Herein, the present work aims at designing other 

reactive cyclic carbonates by inserting a thioether function in  

position nearby the carbonate ring, taking advantage of the 

inertness of this function as well as the possibility to oxidize it 

after polymerization. Only few works already reported the 

synthesis of sulfur-based cyclic carbonates towards PHU 

syntheses.5–7,25,26 Among the reviewed carbonates, only one 

research team synthesized bis cyclic carbonates displaying a 

sulfur atom in β position nearby the carbonate by reacting a 

tosylated glycerol carbonate with several dithiols.25  

Hence, a new route towards sulfur-substituted cyclic 

carbonates has been set up via the thiol-ene coupling of 



 

 

thioglycerol (derived from glycerol) with bio-based derivatives, 

followed by a transcarbonation of the resulting diols using 

dimethyl carbonate (DMC). Following this strategy various 

fatty acid- and glycolipid-based cyclic carbonates were 

synthesized in order to tune the properties taking for instance, 

advantage of the biodegradability of glycolipids. Indeed, sugar-

based polymers were shown to be biodegradable due to the 

occurrence of ester linkages within the backbone.27,28 After 

kinetic investigations on model compound aminolysis, a large 

range of PHUs was synthesized from the prepared bis cyclic 

carbonates and commercial diamines. Structural and thermal 

properties were examined by 1D and 2D NMR techniques, SEC, 

TGA and DSC. Taking advantage of the sulfur content within 

the PHU backbones, thioether sulfonation was finally carried 

out on two PHU in order to study the effect of sulfur oxidation 

state on material properties. 

Cyclic carbonate synthesis 

Two families of sulfur-substituted bis-cyclic carbonates have 

been design from (i) fatty acid derivatives and (ii) from 

trehalose and fatty acid methyl esters. The first family involves 

a prior dimerization of fatty acid derivatives before processing 

to the thiol-ene coupling with thioglycerol. However, due to 

the presence of numerous hydroxyl functions onto the 

trehalose, the formation of glycolipid-based cyclic carbonate 

by transcarbonation with DMC was conducted prior to the 

transesterification between sugar and fatty acid derivative. 

The synthesis of fatty acid-based cyclic carbonates was first 

carried out following a three-step synthesis described in 

Scheme 1. In order to design bifunctional monomers with 

tunable properties, undecenoic and oleic acid derivatives were 

first coupled via transesterification or etherification depending 

on the central building block desired. Thus, Und(ester)-diene 

was synthesized by transesterification between methyl-10-

undecenoate and 10-undecen-1-ol with TBD as catalyst. 

Besides, Und(ether)-diene and Oleyl(ether)-diene were 

prepared by etherification of respectively 1-bromo-10-

undecene with 10-undecen-1-ol and oleyl methanesulfonate 

with oleyl alcohol.(Scheme 1, ESI Figure 8). 

Scheme 1 – Strategy for the synthesis of fatty acid-based cyclic carbonates 
(here Und(ether)-bCC). 

 

 

Figure 1 - Stacked 1H NMR spectra of (1) Und(ether)-diene in CDCl3 (2) 
Und(ether)-tetraol in DMSO and (3) Und(ether)-bCC in CDCl3 (* impurities or 
solvent traces). 

 

The conversions were followed by proton NMR with the 

disappearance of the protons nearby the alcohol as well as the 

bromo or mesyl functions. All the synthesized dienes were 

obtained pure after flash chromatography. Thiol-ene coupling 

was then conducted on the so-formed dienes with 2 eq. of 

thioglycerol in a UV reactor (365 nm) using DMPA as 

photoinitiator. The conversion of dienes was followed by 1H 

NMR spectroscopy with the disappearance of the 

characteristic protons from the external and internal double 

bonds at respectively 4.96-5.73 ppm and 5.33 ppm (Figure 1). 

The terminal unsaturated Und(ether)-diene and Und(ester)-

diene were completely converted into their corresponding 

tetraols after 1h with 0.5 mol.% of DMPA, and yielded at 99% 

after a washing procedure. Besides, the isomerization product 

resulting from the Markovnikov addition was detected by 1H 

NMR for Und(ether)-tetraol with the characteristic CH3 

doublet below 1 ppm (Figure 1). 

With regard to the internal unsaturated Oleyl(ether)-diene, 

90% conversion into the corresponding tetraol was reached 

after 48h with higher amount of DMPA (1.5 mol.%). 

Noteworthy, Meier and coll.29 and Li and coll.30 have already 

used this strategy for a AB2-type monomer synthesis from 

thioglycerol and methyl undecenoate that was used in self-

polycondensation to give linear or hyperbranched polymers.  

Lastly, the tetraol carbonation was performed in DMC as 

reactive solvent using K2CO3 as catalyst. This transcarbonation 

strategy using linear carbonates to produce cyclic carbonate 

moieties has been extensively employed.31–33 However, to the 

best of our knowledge, this is the first time that a cyclic 

carbonate, originated from thioglycerol, was synthesized using 

the transcarbonation pathway. The appearance of the 

multiplet at 4.8 ppm and the triplets around 4.2-4.5 ppm 

confirmed the cyclic carbonate formation (Figure 1). The band 

obtained in FTIR measurement in the range 1795-1775 cm-1, 

corresponding to the carbonyl vibration of the cycle 

corroborated the 1H NMR results. After 4h reaction, almost full 

conversion was attained for all the fatty acid-based tetraols 

and the resulting bis-cyclic carbonates were purified. Purities, 

melting points and structure were analyzed via HPLC, DSC and 

several NMR techniques, respectively (13C NMR, 1H-1H COSY 

NMR, 1H-13C HSQC; see ESI). While bringing flexibility with 
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pendant chains to the central block, a low glass transition 

temperature of -59°C was displayed by Oleyl(ether)-bCC. 

Nonetheless, no significant difference was observed between 

Und(ether)-bCC and Und(ester)-bCC melting temperatures (Tm 

of 93 and 89°C respectively). 

The glycolipid-based bis cyclic carbonates were then prepared 

following the four-step synthesis depicted in Scheme 2. 

Contrarily to the lipidic-based ones, thiol-ene coupling of 

thioglycerol was carried out first on methyl undecenoate and 

methyl oleate due to the chemical sensitivity of sugar towards 

carbonation with DMC. According to 1H NMR spectroscopy, full 

conversions of the double bonds were reached after 

respectively 2h and 24h, the disparity coming from the 

difference in reactivity between terminal and internal double 

bonds.34 The so-formed diol esters were then purified and 

carbonated using the carbonation procedure previously 

mentioned. The carbonation was confirmed by 1H NMR 

spectroscopy with the disappearance of the peak assigned to 

the protons nearby the diol (3.7, 3.5 ppm) and the appearance 

of the peaks corresponding to the carbonate (4.9-4.2 ppm). 

The last step of this route was the chemical esterification of 

the primary alcohols of the trehalose, enabling to attach the 

lipidic-based cyclic carbonate to the sugar moiety. However, 

this reaction only proceeds on an acidic function and requires 

the hydrolysis of the methyl ester function of the so-formed 

purified lipidic carbonates. Noteworthy, the fatty acid methyl 

esters were chosen as starting reactants as no carbonate was 

obtained during the carbonation step in the presence of acidic 

moiety. This feature was explained by the reaction between 

the acidic function and K2CO3, which prevents the 

deprotonation of the hydroxyl groups and thus their 

carbonation with DMC. The intermediate hydrolysis step was 

thus performed in a water/acetone solution, using lipase B 

from Candida antarctica immobilized ion acrylic resin (also 

known as Novozyme 435) as a catalyst. The enzymatic 

hydrolysis was chosen compared to a classical way, using a 

strong base such as KOH, to prevent the opening of the cyclic 

carbonate linked to the fatty chain. After 48h stirring at 60 °C, 

the reaction mixture was filtrated to remove the enzyme and 

the acid was purified by flash chromatography to yield the 

fatty acid cyclic carbonate at 70 %. The hydrolysis was 

confirmed by means of 1H NMR spectroscopy with the 

disappearance of the methyl ester peak at 3.6 ppm. There was 

no shift or disappearance of the peaks corresponding to the  

Scheme 2 – Strategy for the synthesis of glycolipid-based cyclic carbonates 
(here Trehal-Und-bCC). 

 

 
Figure 2 - Stacked 1H NMR spectra of (1) Methyl undecenoate (2) Methyl-
Und-diol (3) Methyl-Und-CC, (4) Acid-Und-CC, and (5) Trehal-Und-bCC in 
CDCl3 (* Impurities or trace of solvents). 

 

cyclic carbonate confirming its inertness in this step (Figure 2). 

The last reaction step leading to the formation of glycolipid-

based bis cyclic carbonates is a two-step one-pot selective 

esterification of the primary alcohol developed by Grindley 
35,36 that was applied to our system. The reaction conditions 

are reported on Scheme 2 and on ESI. The coupling between 

lipidic and trehalose parts was confirmed by the shift of the 

peaks of the protons nearby the primary alcool of trehalose: 

from 3.48 and 3.55 to 4.28 and 4.02 ppm and from 3.65 to 

3.89 ppm, respectively (Figure 2). Purities, melting points and 

structure of the so-formed and purified cyclic carbonates were 

analyzed via HPLC, DSC and several NMR techniques 

respectively (13C NMR, 1H-1H COSY NMR, 1H-13C HSQC; see ESI). 

Using thioglycerol route, 5 different fully bio-based bis-cyclic 

carbonates were synthesized with high purity. To the best of 

our knowledge, this is the first time that the synthesis of bio-

based cyclic carbonates with a sulfur atom in β position nearby 

the cycle was conducted using thiol-ene ‘click’ chemistry.  

Kinetic measurements 

As reported in the literature,9–12 the insertion of an 

heteroatom nearby a 5-membered ring cyclic carbonate 

confers to the latter a higher reactivity towards aminolysis. 

Nonetheless, this feature has not been investigated when a 

thioether function is placed nearby a cyclic carbonate. In order 

to quantify the thioether effect on cyclic carbonate aminolysis, 

a kinetic study of a model reaction was achieved. Hence, a 

sulfur-substituted mono-cyclic carbonate (Dec-CC-S) was  

 

Scheme 3 – Model reaction of Dec-CC-S aminolysis with hexylamine in 
DMSO-d6 (1 mol.L-1) at 50°C. 
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Figure 3 - Kinetic of the model reactions of several cyclic carbonates with 
hexylamine followed by 1H NMR spectroscopy. (50°C, 1 mol.L-1 in DMSO-d6, 
ratio 1:1). 

 

synthesized via the thiol-ene coupling of thioglycerol and 1-

decene followed by carbonation with DMC (ESI). Dec-CC-S was 

then reacted with hexylamine in DMSO-d6 and the model 

reaction was monitored in situ by 1H NMR for 2 days at 50°C. 

Trichlorobenzene (TCB) was injected in the NMR tube as 

external reference (Scheme 3). 

The cyclic carbonate conversions were calculated following the 

disappearance of the multiplet at 4.8 ppm and were reported 

on a graph showing the conversion of Dec-CC-S as a function of 

time (Figure 3). Sulfur-substituted cyclic carbonate was 

compared to trimethylene carbonate (TMC) and to an 

aliphatic-substituted cyclic carbonate (Dec-5CC), known to be 

respectively highly and poorly reactive towards aminolysis. 

Kinetic results showed an improved reactivity of sulfur-based  

 

 
Table 1 - Kinetic, selectivity and DFT data for ether- and sulfur-substituted 
mono cyclic carbonates. 

cyclic carbonate towards hexylamine in comparison with Dec- 

5CC. Additionally, Dec-CC-S displayed a similar reactivity than 

UndCC-ether which is an ether-substituted cyclic carbonate 

already reported by our group 11 to be reactive towards 

aminolysis. The comparable reactivity was confirmed by the 

DFT calculations (Table 1) showing an enthalpy of 

hydroxyurethane formation ΔHf=-53.76 kJ.mol-1 close to the 

one calculated for ether-substituted 

 cyclic carbonate. The kapp were then calculated upon the 6 

first hours from the kinetic results assuming 2nd law order 

kinectics. Dec-CC-S exhibited a kapp=0.08 L.mol-1.h-1 in the same 

range than UndCC-ether kapp (0.09 L.mol-1.h-1, see Table 1). 

Additionally, as already reported in the literature,11,16 side 

reactions could occur during the aminolysis. It is known that 

primary amines can react with urethane functions leading to 

urea formation. Signals from the labile proton of urea function 

were detected by 1H NMR with the shift of the labile proton at 

6.8 ppm. The proportion between urea and urethane formed 

during the model reaction could be evaluated at 6% for the 

sulfur-substituted cyclic carbonate at 50% of conversion and 

was equivalent to the one obtained for the ether-substituted 

cyclic carbonate. 

Poly(hydroxyurethane)s synthesis and 
characterization 

The polyadditions of the sulfur-substituted bis-cyclic 

carbonates (Figure 4) with 1,10-diaminodecane (10DA), 

isophorone diamine (IPDA) and Priamine® 1075 from CRODA 

as comonomers were carried out in order to investigate the 

relation between monomer structures and 

poly(hydroxyurethane)s (PHU) properties. 

 

The polymerizations were performed in DMF at 1 mol.L-1 and 

70°C under nitrogen atmosphere without any catalyst. The 

thermoplastic PHUs obtained were further characterized by 1H 

NMR, SEC, DSC and TGA without prior quenching and 

precipitation after 7 days. All the data are reported in Table 2.  

PHUs formation was followed by 1H NMR with the 

disappearance of the signals in -position nearby the cycle in 

the ranges 4.2-4.6 ppm, and with the presence of the 

characteristic protons nearby the nitrogen atom of the 

urethane linkage at 2.98 ppm (Figure 5 and ESI Figure 10). The 

conversions were determined after 24h and 7 days of 

polymerization in order to confirm that polyadditions occur 

within the first hours of reaction as demonstrated in previous 

works.11 The carbonate consumption was also confirmed by 

FTIR spectroscopy with the disappearance of the carbonate 

band at 1800 cm-1 and the appearance of bands at 1680 and 

1530 cm-1, which correspond respectively to C=O and NH 

vibrations of the urethane function.  

Generally, the calculated carbonate conversions from 1H NMR 

spectroscopy were found not total (around 93%) and similar 

after 24h or 7 days of polymerization. Besides, the trehalose-

based cyclic carbonates displayed lower conversions, around  

Kinetic and selectivity * 
 UndCC-ether Dec-CC-S 

Ratio urethane:urea 97:3 94:6 
kapp (L.mol-1.h-1) 0.09 0.08 

DFT Calculations 
-X -OMe -SMe 

Bond lengh (Å) 
 
 

1.358 1.359 

Bond lengh (Å) 
 
 

1.363 1.362 

Hf (kJ.mol-1) 

 
 

-27.36 -26.19 

Hf (kJ.mol-1) 
 
 

-55.90 -53.76 

*: Determined after 50% of CC conversion 



 

 

 

Figure 4- Panel of monomers used for the preparation of 
poly(hydroxyurethane)s 

 

80-90% (PHU 7 and 9), in comparison with the fatty acid-based 

ones (PHU 1 and 5). This feature could be interpreted by 

binding of the trehalose moieties present in PHU 7 and 9 with 

solvent and monomers via weak interactions, limiting the 

monomer diffusion inside the polymerization system. 

Additionally, the lowest conversion of 73% was exhibited by 

PHU 10, resulting from the polymerization between a 

trehalose-based cyclic carbonates and the less reactive IPDA. 

 

As discussed in the kinetic part, side reactions could occur 

during the polymerization to form urea moieties that were 

identified by proton NMR with the shift of the labile proton at 

6.8 ppm. The proportion between urea and urethane formed 

during the polymerization could be evaluated and were similar 

(2-11%) than in previous model reaction. It is also known that 

primary amines could react with ester functions to form amide 

linkages. However, amide functions characterized by the labile 

proton at 7.6 ppm were not detected for ester-containing 

polymers. 

SEC of the PHUs was performed in DMF (LiBr, PS standards) 

except for Priamine-based PHUs where THF (PS standards) was 

used. Molar masses ranging from 2800 to 14900 g.mol-1 (Ɖ: 

1.67-3.7) in DMF and from 6300 to 11700 g.mol-1 (Ɖ: 2.05- 

2.15) in THF were obtained after 7 days of polymerization. As 

shown on the SEC traces in Figure 6, PHU 7 and 8 synthesized 

from the Trehal-Und-bCC exhibit higher molar masses than 

PHU 9 and 10 obtained from the polymerization of Trehal-

Oleyl-bCC, probably due to the lower reactivity of the oleic 

acid-based cyclic carbonate. Besides, particularly low PHUs 

molar masses around 3000 g.mol-1 were obtained for both 

cyclic carbonate polymerizations when IPDA was used as  

 

 

Figure 5- Stacked 1H NMR spectra of (1) Trehal-Und-bCC and (2) PHU 7 in 
DMSO. (* residual monomers/chain ends/impurities) 

 

comonomer. This feature could be related to the steric 

hindrance of the cyclic diamine and to the presence of one 

secondary amine function, preventing the efficient cyclic 

carbonate aminolysis. 

 

Afterwards, the thermal properties of the synthesized PHUs 

were determined by DSC and TGA and were correlated to their 

chemical structures. A large panel of thermal behavior was 

obtained with Tg ranging in between -34 and 56°C depending 

on the polymerized monomers. Amorphous PHUs were 

obtained with Oleyl(ether)-bCC as monomer due to the long 

alkyl dangling group imparted by the oleic part. Contrarily, 

PHU 8 and 10 displayed Tg values of respectively 36°C and 56°C 

conferred by the rigid and cyclic IPDA. In a general trend, 

glycolipid-based PHUs exhibited higher Tg than the fatty acid-

based ones as the bicyclic trehalose moieties conferred also 

rigidity to the resulting materials (Figure 7). Some fatty-acid-

based PHUs were semi-  crystalline, thanks to the well-defined 

monomer structure with ether or ester linkages on the 

backbone that could form crystalline clusters by hydrogen 

bonding with pendant hydroxyl groups and urethane carbonyl 

moieties. However, in the case of PHU 1 and PHU 5, several 

melting peaks appeared revealing different crystallization 

modes or a possible segregation between soft and hard 

segments (Figure 7). Surprisingly, glycolipid-based PHUs were 

all amorphous materials. Indeed, as reported by Gross and co-

workers,37 glycolipid monomers are able to bring crystallinity 

to polymers by sugar/sugar and lipid/lipid stackings. However, 

hydroxyurethane moieties within the PHU backbone can 

create weak interactions with hydroxyl functions of the 

trehalose and consequently hinder the formation of the 

above-mentioned stackings. This hypothesis still needs further 

investigations.  
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Table 2 - Characterization of PHUs obtained from synthesized sulfur-substituted bis-cyclic carbonates and diamines. 

 

1: Determined at the end of the polymerization (7 days); SEC DMF (LiBr, PS Std);*: determined by SEC THF (PS Std); 2: Determined using the relations (E), (E’) 
and (E’’) (see ESI). 3: Conversions determined by 1H NMR spectroscopy;  a: Determined by DSC at 10°C.min-1 from the second cycle. ; b: Determined by TGA at 

10°C.min-1 under nitrogen.;  nd : non-determined because of insolubility issues or shift overlaping.  

 

 
Figure 6- SEC chromatograms of PHU 7 to 10 (DMF, LiBr, PS standards, RI 
detector). 

 

 

With regard to PHU thermal stability, 5 w.% loss degradation 

temperatures in the range 240 to 286°C were measured and 

were homogeneous to literature results.1 PHU 4 made from 

monomers with aliphatic pendant chains exhibited the highest 

resistance to temperature with a Td5% of 286°C. Besides, the 

Figure 7 indicates that glycolipid-based polymers degrade 

faster than lipidic-based ones, displaying lower Td5%. 

Nonetheless, residual carbon content ranging in between 10 

and 20 % was observed after 500 °C and was attributed to the 

degradation mode of trehalose.  

 

Thioether post-functionalization 

Taking advantage of the sulfur atoms contained in PHU 

backbones, a post-functionalization by selective oxidation of 

the thioether groups to sulfones was performed on PHU 5 and  

 

 

Figure 7 - DSC second heating cycles (10°C/min) of PHU 1, 3, 5, 7 and 9 and 
corresponding TGA traces from 160 to 550 °C (after an isothermal procedure 
of 15 min at 160°C to remove the residual DMF). 

 

PHU 7, in order to tune the final properties and to 

subsequently broaden applications.  

The sulfonation (or sulfoxidation) of polymeric materials has 

already been described on linear fatty acid-based polymers 
38,39 but has never been attempted on PHUs. In these studies, 

the thioether oxidation was reported to impact water 

solubility of the post-functionalized polymers as well as their 

thermal stability and crystallinity. As an example, Cadiz and 

coworkers 39 post-functionalized a fully bio-based triblock 

copolymer derived from PLA and castor oil derivatives that 

exhibited enhanced thermal stability and lower cristallinity.  

Hence, the sulfonation was carried out on PHU 5 (�̅�n =14900 

g.mol-1, Ɖ =1.86) and PHU 7 (�̅�n =10000 g.mol-1, Ɖ =3.7) 

prepared by polyaddition of respectively Und(ester)-bCC and 

Trehal-Und-bCC with 10DA as comonomer. The post-

functionalized PHU 5-sulfone and PHU 7-sulfone were  
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PHU Bis-CC Diamine 
Conversion 
24h/7d (%)3 

Ratio Urea 
/Amide/ 

Urethane1,2 

�̅�𝐧 (g.mol-1) 
[Ɖ]1 

Tg 
(°C)a 

Tm 
(°C)a 

Td5% 
(°C)b 

1 Und(ether)-
bCC 

10DA 93/99 11/0/89 10900 [1.79] nd 46/84/97 273 

2 Priamine nd/93.5 nd 8200 [2.15]* nd 50 268 

3 Oleyl(ether)-
bCC 

10DA nd nd 11900 [1.67] -29 - 262 

4 Priamine 90.5/92.5 nd 11700 [2.23]* -34 - 286 

5 Und(ester)-
bCC 

10DA 97.5/100 10/0/90 14900 [1.86] -8 72 258 

6 Priamine 92.5/97.5 nd 6300 [2.05]* -26 33 258 

7 Trehal-Und-
bCC 

10DA nd/92 8/nd/92 10000 [3.7] 34 - 262 

8 IPDA nd/86 9/nd/91 3000 [3.4] 36 - 253 

9 Trehal-Oleyl-
bCC 

10DA nd/80 2/nd/98 3200 [1.9] 16 - 246 

10 IPDA nd/73 7/nd/93 2800 [1.9] 56 - 240 



 

 

 

 Scheme 4 - Experimental procedure for PHU 5 sulfonation 

 
 
Table 3 - Characterization of PHU 5 and PHU 7, before and after sulfonation. 

*UV detector used for SEC in DMF 
 

 

 

Figure 8- Stacked 1H NMR spectra of (1) PHU 5 and (2) PHU 5-sulfone in 
DMSO-d6. (* residual monomers/chain ends). 

 

analyzed either by NMR, DSC and TGA and the results are 

reported in Table 3.  

The oxidation of PHU 5 into PHU 5-sulfone was carried out in 

DCM at room temperature in the presence of 3 eq. of mCPBA 

per sulfur atom. To avoid staying at the first oxidation state of 

the sulfur atom (sulfoxide), the mixture reaction was left 24h 

(Scheme 4). After a filtration and a washing procedure (see 

ESI), a yield of 60% was achieved. The polymer turned from a 

clear yellow to a white powder after thioether oxidation. 

Due to insolubility in DCM, the sulfonation of PHU 7 was 

conducted in DMF keeping the same reaction conditions. The 

polymer was then purified by dialysis in water, enabling its 

precipitation as well as the removal of DMF, mCPBA and its 

acidic form. Interestingly, both sulfones were obtained as  

 

 

Figure 9- SEC traces of PHU 5 and PHU 7 before and after sulfonation (DMF, 
LiBr, PS standards, RI detector). 

 

white powders, highlighting the whitening power of PHU 

sulfonation. 

FTIR confirmed the formation of sulfones with the presence of 

two bands of absorption at 1127 cm-1 and 1387 cm-1. 

Moreover, no new band in between 1030 and 1070 cm-1 

characterizing sulfoxides was detected. Thanks to 1H, 13C NMR 

and 2D NMR (COSY, HSQC), the sulfonation was confirmed and 

fine chemical structures of PHU 5-sulfone and PHU 7-sulfone 

were elucidated and compared with unfunctionalized PHU 

(Figure 8 and ESI Figure 12).  

All the signals initially present nearby the sulfur atom in PHU 5 

(Spectra (1), Figure 8, 1’ to 3’, 1’’ to 3’’ and 4) were shifted 

downfield of the 1H NMR spectra due to the electronic effects 

imparted by the sulfone. More specifically, the sulfonation was 

confirmed by the downfield signals of the protons adjacent to 

the sulfur atom (3’, 3’’ and 4) to 3.5-2.75 ppm. The same 

proton shifts were observed on PHU 7-sulfone (ESI Figure 12). 

Mn values of the post-functionalized PHUs were measured by 

SEC in DMF (LiBr, PS standards). Regarding the fatty acid-based 

PHU 5-sulfone, molar mass was evaluated at 2900 g.mol-1 and 

was decreased by a factor 5 in comparison to PHU 5. The 

dispersity was also noticed to be lowered, from 1.86 to 1.43, 

after thioether oxidation.  

In a preliminary study, we tried to solubilize both sulfonated 

polymers in water, taking advantage of the high hydrogen 

bonding ability of the sulfone moiety. Nevertheless, they could 

not be solubilized in water because of the high amount of 

hydrophobic segments within the polymer backbone.  

The SEC traces before and after post-functionalization are 

presented in Figure 9 and clearly display a significant loss of 

molar mass with the appearance of oligomers at higher 

retention times. Several parameters could be taken in 

consideration to explain such results. The depolymerization of 

PHU 5-sulfone could have occurred but this statement was not 

taken into account. Indeed, we carried out the reaction 

between mcpba and fatty acid-based PHU that do not contain 

thioether functions during 24h. No change in chemical 

structure (NMR spectrum) and molar masses (SEC traces) was 

detected before and after reaction, disqualifying the 

hypothesis of polymer chain cleavage. Secondly, the chemical 

modifications on a polymer can impact the shape of the 

polymer random coil, inducing a change of its hydrodynamic 

volume and of its subsequent apparent molar mass. But the 

most probable fact is a lack of solubility of PHU 5-sulfone in  

12 14 16 18 20 22 24 26 28

Time (min)

 PHU 7

 PHU 7-sulfone

PHU bCC 
�̅�𝐧 (g.mol-1) 

[Ɖ]1 
Tg 

(°C)a 
Tf 

(°C)a 
Td5% 
(°C)b 

PHU 5 
Und(ester)-

bCC 

14900 [1.86] -8 72 258 

PHU 5-
sulfone 

2900 [1.43] 4 92 213 

PHU 7  
Trehal-Und-

bCC 

10000 [3.7] 34 - 262 

PHU 7 -
sulfone 

10900 [3.8] 52 - 219 



 

 

 

Figure 10 -  DSC second heating cycles (10°C/min) of PHU 5 and PHU 7, 
before and after sulfonation, and corresponding TGA traces from 160 to 550 
°C (after an isothermal procedure of 15 min at 160°C to remove the residual 
DMF). 
 

 
 

DMF due to the presence of sulfone moieties along the 

backbone as it has already been observed in the literature for 

other polymers.39 Indeed, the longest functionalized polymer 

chains were not solubilized in DMF and therefore not 

analyzed. As a consequence, the SEC trace only shows the 

soluble fraction present in the filtered SEC solution. Contrarily, 

PHU 7 displayed similar dispersities and molar masses around 

10000 g.mol-1 before and after post-functionalization due to a 

higher solubility in DMF. 

 

Thermal properties of the post-functionalized PHUs were 

investigated by DSC and TGA and the results are reported in 

Table 3. With regard to PHU 5, the oxidized homologue was 

semi-crystalline, but showed higher glass transition and 

melting temperatures of respectively 4°C and 92°C. 

Equivalently, the sulfonation of PHU 7 improved the material 

rigidity as indicated by the increase of the Tg from 34 to 52°C. 

However, the thermal decomposition at 5 wt.% loss was 

decreased by approximately 40°C in both cases. These results 

were in contrast to what has been previously reported in the 

literature regarding fatty acid-based polysulfones.38,39 

Conclusion 

In conclusion, sulfur-substituted (β position) 5-membered 

cyclic carbonates were successfully synthesized via thiol-ene 

coupling of thioglycerol and fatty acid-based derivatives 

obtained from castor and sunflower oils. Trehalose was also 

used as a building block for the design of glycolipid-based 

cyclic carbonates. In model reaction with hexylamine, sulfur-

substituted monomer displayed an enhanced reactivity 

towards aminolysis than aliphatic-substituted 5-membered 

cyclic carbonates, confirming the importance of thioether 

moieties within the structure. The designed monomers were 

then successfully polymerized leading to PHUs with molar 

masses up to 14900 g.mol-1. Depending on the monomer 

structure employed, PHU properties could be tuned with Tg in 

the range -34 to -56°C and Td5% in between 240 and 286°C. 

To go further, two sulfur-based PHU were post-functionalized 

by sulfonation taking advantage of the thioethers within the 

polymer backbone. Such a modification was shown to increase 

the glass transition temperatures of the polymers as well as 

the melting temperature. However, polymer solubility was not 

radically impacted by the post-functionalization as it could be 

expected. To follow the same line, preparation of sulfonium 

salts from the thioether-containing PHUs would be an 

interesting way to tune properties. 

Finally, this study has demonstrated the possibility of inserting 

a sulfur atom in β position nearby the cyclic carbonate moiety 

via a simple thiol-ene reaction, taking advantage of the higher 

reactivity of such carbonates as well as the possibility of post-

functionalizing the resulting polymers via thioether functions. 

Further investigations on self-assembly, biodegradability and 

biocompatibility of the afore-described systems would be 

necessary to confirm their potential application in 

pharmaceutical and biomedical fields. 
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Experimental and Supporting Information 

 

Materials and Methods 

Materials 

Sodium hydroxide (NaOH, pellet), sodium hydride (NaH, 60% in oil), potassium carbonate 

(K2CO3, 98%), tetrabutylammonium bromide (TBABr, 99%), hexylamine (99%), dimethyl 

carbonate (DMC, 99%), 1,2,4-trichlorobenzene (TCB, 99%), 1,5,7-triazabicyclodec-5-ene (TBD, 

98%), 2,2-bis(hydroxymethyl)propionic acid (DMPA, 98%), ammonium chloride (99.5 %), 

sodium sulfate (Na2SO3, magnesium sulfate (MgSO4), sodium carbonate (NaHCO3), 1-

thioglycerol (>99%), 1-decene (94%), meta-chloroperbenzoic acid (mCPBA, 77%), O-

(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) (97%), N,N-

Diisopropylethylamine (DIPEA) (99%), and Candida Antarctica Lipase B (CALB, polymer-bound) 

were obtained from Sigma-Aldrich. 1-bromo-10-undecene (96%), was purchased from Alfa 

Aesar. Pyridine (>99%), 10-undecen-1-ol (>98%), methyl 10-undecenoate (>96.0%), 1,10-

decanediamine (10DA, >98%),  1,3-dioxane-2-one (trimethylene carbonate, TMC, >98%) and 

1,10-diaminodecane (10DA, >97%) were supplied by TCI, Europe. Priamine® 1075 was kindly 

supplied by CRODA. Oleyl alcohol (99.9%), oleyl methanesulfonate (>99%) and methyl oleate 

(99%) were purchased from Nu-Check-Prep. Anhydrous trehalose (99%) was purchased from Fisher 

 

Methods 

1
H and 

13
C-NMR spectra were recorded on Bruker Avance 400 spectrometer (400.20 MHz or 

400.33 MHz and 100.63 MHz for 
1
H and 

13
C, respectively) by using CDCl3 as a solvent at room 
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temperature, except otherwise mentioned. Two-dimensional analyses comprising 
1
H-

1
H COSY 

(COrrelation SpectroscopY) and 
1
H-

13
C HSQC (Heteronuclear Single Quantum Spectroscopy) 

were also performed. Infrared spectra (FTIR-ATR) were obtained on a Bruker-Tensor 27 

spectrometer, equipped with a diamond crystal, using the attenuated total reflection mode. The 

spectra were acquired using 16 scans at a resolution of 4 wavenumbers. The High-Performance 

Liquid Chromatography (HPLC) was performed at the ITERG using a Shimadzu instrument 

fitted with an Agilent PLgel 5µm MIXED-D column (300 mm, 7.5 mm diameter) and 

compounds were detected by a RID detector at 40°C. The samples were diluted in THF at 10 

mg.L
-1

 and filtered before injection in the column. The analyses were performed with THF as 

eluent at 40°C. Size exclusion chromatography (SEC) analyses of PHUs were performed in DMF 

(25°C) on a PL-GPC 50 plus Integrated GPC from Polymer laboratories-Varian with a series of 

three columns from Polymer Laboratories (PLgel: PLgel 5µm Guard (guard column 7.5 mm ID x 

5.0 cm L); PLgel 5µm MIXED-D (7.5 mm ID x 30.0 cm L) and PLgel 5µm MIXED-D (7.5 mm 

ID x 30.0 cm L)). SEC were also performed in THF (25°C) on a PL GPC50 and with four TSK 

columns: HXL-L (guard column), G4000HXL (particles of 5 mm, pore size of 200A, and 

exclusion limit of 400000 g/mol), G3000HXL (particles of 5 mm, pore size of 75A, and 

exclusion limit of 60000 g/mol), G2000HXL (particles of 5 mm, pore size of 20 A, and exclusion 

limit of 10000 g/mol) at an elution rate of 1 mL/min. In both cases, the elution times of the 

filtered samples were monitored using UV and RI detectors and SEC were calibrated using 

polystyrene standards. Differential scanning calorimetry (DSC) thermograms were measured 

using a DSC Q100 apparatus from TA instruments. For each sample, two cycles from -50 to 160 

°C at 10 °C.min-1 (additional isotherm of 15 min at 160°C at the end of the first cycle to remove 

the residual DMF) were performed and then the glass transition and melting temperatures were 

calculated from the second heating run. Thermogravimetric analyses (TGA) were performed on 

TGA-Q50 system from TA instruments at a heating rate of 10 °C.min
-1

 under nitrogen 

atmosphere from room temperature to 600°C, with an isotherm at 160°C for 15 min to remove 

the residual DMF. DFT calculations were done using GAUSSIAN0932 with the B3PLYP hybrid 

functional and a high quality 6-311++G(d) basis set. 
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Experimental  

Und(ether)-diene synthesis: Into a round bottom flask, 2 eq. of sodium hydride (0.55 g, 22.8 

mmol) were stirred with 70 mL of DMSO under inert atmosphere. 1 eq. of 10-undecen-1-ol (1.94 

g, 11.4 mmol) was slowly added. The reaction mixture was then stirred at room temperature for 

10 min. To this, 1-bromo-10-undecene (2.66 g, 11.4 mmol) was added drop-wise. After 16h, 

DMSO was removed under reduced pressure and excess sodium hydride was deactivated by 

aqueous solution of ammonium chloride. DCM (50 mL) was added and the organic layer was 

washed with saturated NaHCO3 3 times and with water. The organic layer was dried over 

anhydrous magnesium sulphate, filtered and reconcentrated. Conversion: 100%. The crude 

product was purified by flash column chromatography using a mixture of cyclohexane-ethyl 

acetate (100:0 to 80:20) as eluent and obtained as a white powder. Yield: 36%. Purity by GC: 

100%. 
1
H NMR (CDCl3, 25°C, 400 MHz), δ (ppm): 5.73 (m, 2H), 4.96 (m, 4H), 3.36 (t, 4H), 

1.94 (q, 4H), 1.49 (m, 4H), 1.20-1.27 (m, 24H). 

 

 

Oleyl(ether)-diene synthesis: Into a round bottom flask, 2 eq. of sodium hydride (0.89 g, 37.2 

mmol) were stirred with 70 mL of DMSO under inert atmosphere. 1 eq. of oleyl alcohol (5 g, 

18.6 mmol) was slowly added. The reaction mixture was then stirred at room temperature for 10 

min. To this, oleyl methanesulfonate (6.45 g, 18.6 mmol) was added drop-wise. After 16h, 

DMSO was removed under reduced pressure and excess sodium hydride was deactivated by 

aqueous solution of ammonium chloride. DCM (50 mL) was added and the organic layer was 

washed with saturated NaHCO3 3 times and with water. The organic layer was dried over 

anhydrous magnesium sulphate, filtered and reconcentrated. Conversion: 100%. The crude 

product was purified by flash column chromatography using a mixture of cyclohexane-ethyl 

acetate (100:0 to 70:30) as eluent and obtained as viscous transparent oil. Yield: 37%. Purity by 

GC: 100%. 
1
H NMR (CDCl3, 25°C, 400 MHz), δ (ppm): 5.33 (m, 4H), 3.39 (t, 4H), 1.99 (m, 

8H), 1.54 (m, 4H), 1.30 (m, 44H), 0.86 (t, 6H). 
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Und(ester)-diene synthesis: 1 eq. of methyl 10-undecenoate (17.47 g, 88 mmol), 1 eq. of 10-

undecen-1-ol (15 g, 88 mmol) and 0.05 eq. of TBD were stirred under nitrogen flow 4h at 120°C, 

2h at 160°C then 1h under vacuum at 160°C. Conversion: 90%. The product was purified using 

flash column chromatography (eluent: cyclohexane-ethyl acetate, 80:20) and obtained as a white 

powder. Yield: 83%. Purity by GC: 100%. 
1
H NMR (CDCl3, 25°C, 400 MHz), δ (ppm): 5.81 (m, 

2H), 4.97 (m, 4H), 4.07 (t, 2H), 2.28 (t, 2H), 2.03 (q, 4H), 1.64 (m, 4H), 1.38-1.29 (m, 24H).
 

 

 General procedure for thiol-ene coupling: Dimerized bis-unsaturated fatty acids were reacted 

with thioglycerol in DCM using DMPA as photoinitiator. The reaction was carried out in a UV 

reactor (365 nm) for 1h, or 48h in the case of the Oleyl(ether)-tetraol synthesis. 

Dec-diol synthesis:1-decene (1 eq., 2 g, 14.3 mmol), thioglycerol (1 eq., 1.54 g, 14.3 mmol) 

were reacted  in 2 mL of DCM for 1h in a UV reactor, with 0.5 w.% of DMPA (10 mg) as 

photoinitiator. Conversion: 100%. The solvent was evaporated under reduced pressure and the 

product was obtained as a transparent oil after purification by flash chromatography (eluent: 

DCM:methanol from 100:0 to 95:5). Yield: 78%. 
1
H NMR (DMSO-d6, 25°C, 400 MHz), δ 

(ppm): 3.78 (m, 1H), 3.73 and 3.56 (q, 2H), 2.77 and 2.61 (dd, 2H), 2.53 (t, 2H), 1.58 (m, 2H), 

1.26 (m, 14H), 0.85 (t, 3H). 

 

 

Und(ether)-tetraol synthesis: Und(ether)-diene (1 eq., 2 g, 6.2  mmol), thioglycerol (2 eq., 1.34 

g, 12.4 mmol) were reacted  in 2 mL of DCM for 1h in a UV reactor, with 0.5 w.% of DMPA (10 

mg) as photoinitiator. Conversion: 100%. The heterogeneous mixture obtained was filtered and 

the resulting white powder was abundantly washed with petroleum ether. Yield: 99%. 
1
H NMR 

(DMSO, 25°C, 400 MHz), δ (ppm): 4.58 (m, 4H), 3.57 (m, 2H), 3.35 (t, 4H), 3.33 (t, 4H), 2.62 

and 2.43 (dd, 4H), 2.53 (t, 4H), 1.52-1.27 (m, 34H). 
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Oleyl(ether)-tetraol synthesis: Oleyl(ether)-diene (1 eq., 2.5 g, 4.82 mmol), thioglycerol (2 eq., 

1.04 g, 9.6 mmol) were reacted in 2 mL of DCM for 48h in a UV reactor, with 1.5 w.% of 

DMPA (38 mg) as photoinitiator. Conversion: 90%. The solvent was evaporated and the crude 

product was purified by flash column chromatography (eluent: DCM:methanol from 100:0 to 

90:10) to obtain a transparent viscous liquid. Yield: 30%. 
1
H NMR (DMSO-d6, 25°C, 400 MHz), 

δ (ppm): 4.68 (d, 2H), 4.51 (t, 2H), 3.51 (m, 2H), 3.35 (t, 4H), 3.33 (t, 4H), 2.59 (m, 2H), 2.54 

and 2.37 (dd, 4H), 1.45-1.25 (m, 60H), 0.88 (t, 6H). 

 

 

Und(ester)-tetraol synthesis: Und(ester)-diene (1 eq., 3 g, 8.9 mmol), thioglycerol (2 eq., 1.93 g, 

17.8 mmol) were reacted in 2 mL of DCM 1h in a UV reactor, with 0.5 w.% of DMPA (15 mg) 

as photoinitiator. Conversion: 100%. The heterogeneous mixture obtained was filtered and the 

resulting white powder was abundantly washed with petroleum ether. Yield: 99%. 
1
H NMR 

(CDCl3, 25°C, 400 MHz), δ (ppm): 4.07 (t, 2H), 3.78 (m, 2H), 3.75 and 3.35 (q, 4H), 2.73 and 

2.69 (dd, 4H), 2.62 (t, 4H), 2.30 (m, 6H), 1.60-1.27 (m, 34H).  

 

 

Methyl-Und-tetraol: Methyl 10-undecenoate (10 g, 50 mmol.) and 1-thioglycerol (2 eq., 10 g, 

100 mmol) were stirred during 2 h under irradiation using UV light (λ=365 nm). Then the 

reaction was quenched by turning off the UV light. Purification over silica gel flash 

chromatography was performed using DCM/MeOH 98/2 eluent. Yield: 80%. 
1
H NMR (CDCl3, 

400 MHz), δ (ppm): 3.74 (m, 2H), 3.64 (s, 3H), 3.53 (m, 1H), 2.65 (m, 2H), 2.51 (m, 2H), 2.28 (t, 

2H), 1.59-1.25 (m, 16H). 
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Methyl-Oleyl-tetraol: Methyl oleate (10 g, 33 mmol.) and 1-thioglycerol (10 eq., 36 g, 337 

mmol) were stirred under irradiation using UV light (λ=365 nm) until total conversion of the 

internal double bond. Then the reaction was quenched by turning off the UV light. Purification 

over silica gel flash chromatography was performed using DCM/MeOH 98/2 eluent. Yield: 76 %. 

1
H NMR (CDCl3, 400 MHz), δ (ppm): 3.72 (m, 2H), 3.63 (s, 3H), 3.53 (m, 1H), 2.63 (m, 3H), 

2.27 (t, 2H), 1.58-1.24 (m, 26H), 0.85 (t, 3H). 

 

 

 General procedure for carbonation: Fatty acids tetraols were dried under vacuum and were 

subsequently reacted under nitrogen atmosphere with an excess of anhydrous dimethylcarbonate 

(DMC, 15 eq.), using 3 mol.% of K2CO3 per diol as transesterification catalyst. The reaction was 

carried out for 4h at 70°C under reflux. 

Dec-CC-S synthesis: Dec-diol (1 eq., 1 g, 7 mmol), DMC (15 eq., 8.5 mL, 105 mmol), K2CO3 

(0.03 eq., 29 mg, 0.21 mmol). Conversion: 100%. DCM was added to the crude mixture and 

washed with brine three times. The organic phase was dried with magnesium sulfate and 

reconcentrated using a rotary evaporator. The product was obtained as a transparent viscous 

liquid after purification by flash column chromatography (eluent: DCM:methanol from 100:0 to 

95:5). Yield: 30%. Purity: 90.1% (HPLC). 
1
H NMR (CDCl3, 25°C, 400 MHz), δ (ppm): 4.84 (m, 

1H), 4.55 and 4.31 (t, 2H), 2.94 and 2.77 (dd, 2H), 2.59 (t, 2H), 1.58 (m, 2H), 1.37-1.26 (m, 

14H), 0.86 (t, 3H). 
13

C NMR (CDCl3, 25°C, 100 MHz), δ (ppm): 154.5 (O-C=O-O), 75.6 (CH2-

CH-CH2), 68.7 (O-CH2-CH), 34.7 (CH2-CH-CH2-S), 33.2 (S-CH2-CH2), 32-23 (CH2), 14.4 

(CH3).  

 

 

Und(ether)-bCC-S synthesis: Und(ether)-tetraol (1 eq., 1 g, 1.86 mmol), DMC (15 eq., 2.34 mL, 

28 mmol), K2CO3 (0.06 eq., 15 mg, 0.11 mmol). Conversion: 100%. DCM was added to the 

crude mixture and washed with brine three times. The organic phase was dried with magnesium 
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sulfate and reconcentrated using a rotary evaporator. The product was obtained as a white 

powder.  Yield: 88%. Purity: 95.4% (HPLC). 
1
H NMR (DMSO-d6, 25°C, 400 MHz), δ (ppm): 

4.82 (m, 2H), 4.57 and 4.27 (t, 4H), 3.37 (t, 4H), 2.91 and 2.75 (dd, 4H), 2.57 (t, 4H), 1.56-1.27 

(m, 34H). 
13

C NMR (DMSO, 25°C, 100 MHz), δ (ppm): 154.6 (O-C=O-O), 75.6 (CH2-CH-

CH2),71.2 (CH2-O-CH2), 68.8 (O-CH2-CH), 34.9 (CH-CH2-S), 33.2 (S-CH2-CH2), 30-26.1 

(CH2). Tm=93°C. 

 

 

Oleyl(ether)-bCC-S synthesis: Oleyl(ether)-tetraol (1 eq., 0.75 g, 1 mmol), DMC (15 eq., 1.26 

mL, 15 mmol), K2CO3 (0.06 eq., 8.3 mg, 0.11 mmol). Conversion: 97%. DCM was added to the 

crude mixture and washed with brine three times. The organic phase was dried with magnesium 

sulfate and reconcentrated using a rotary evaporator. The product was obtained as a viscous 

transparent liquid. Yield: 71%. Purity: 98.5% (HPLC). 
1
H NMR (CDCl3, 25°C, 400 MHz), δ 

(ppm): 4.78 (m, 2H), 4.53 and 4.28 (t, 4H), 3.38 (t, 4H), 2.90 and 2.72 (dd, 4H), 2.12 (m, 2H), 

1.60-1.26 (m, 60H), 0.87 (t, 6H). 
13

C NMR (CDCl3, 25°C, 100 MHz), δ (ppm): 154.9 (O-C=O-

O), 75.7 (CH2-CH-CH2-S), 71.4 (CH2-O-CH2), 68.5 (O-CH2-CH), 47.3 (S-CH-CH2), 32.9 (CH-

CH2-S-CH), 35-22.8 (CH2), 14.1 (CH3).Tm=nd, Tg=-59°C. 

 

 

Und(ester)-bCC-S synthesis: Und(ester)-tetraol (1 eq., 0.75 g, 1.36  mmol), DMC (15 eq., 1.71 

mL, 20.4 mmol), K2CO3 (0.06 eq., 11 mg, 0.08 mmol). Conversion: 99%. DCM was added to the 

crude mixture and washed with brine three times. The organic phase was dried with magnesium 

sulfate and reconcentrated using a rotary evaporator.  The product was obtained as a white 

powder. Yield: 90%. Purity: 88.9% (HPLC).
 1

H NMR (CDCl3, 25°C, 400 MHz), δ (ppm): 4.83 

(m, 2H), 4.75 and 4.29 (t, 4H), 4.04 (t, 2H), 2.94 and 2.79 (dd, 4H), 2.60 (t, 4H), 2.29 (t, 2H), 
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1.58-1.28 (m, 34H). 
13

C NMR (CDCl3, 25°C, 100 MHz), δ (ppm): 174.2 (CH2-C=O-O-), 154.8 

(O-C=O-O), 75.7 (CH2-CH-CH2), 68.6 (O-CH2-CH), 64.5 (O=C-O-CH2), 34.9 (CH-CH2-S), 34.7 

(CH2-C=O-O-CH2), 33.3 (S-CH2-CH2), 29.9-28.9 (CH2). Tm=89°C. 

 

 

Und(ester)-CC-S: In a flame-dried round bottom flask equipped with a reflux condenser, (3 

mol.%, 68 mg, 0.5 mmol) potassium carbonate (K2CO3) was added to a solution of Methyl-Und-

tetraol (5 g, 16.3 mmol) dissolved in dimethyl carbonate (DMC) (25 eq., 34 mL, 0.4 mol). The 

reaction mixture was stirred during 6 h under reflux. At the end of the reaction, the DMC was 

evaporated with a rotary evaporator. Purification over silica gel flash chromatography was 

performed using DCM/MeOH 98/2 eluent. 
1
H NMR (CDCl3, 400 MHz), δ (ppm): 4.83 (m, 1H), 

4.57 (m, 1H), 4.28 (m, 1H), 3.66 (s, 3H), 2.91 (m, 2H), 2.59 (t, 2H), 2.30 (t, 2H), 1.56-1.27 (m, 

16H). 

 

 

Oleyl(ester)-CC-S: In a flame-dried round bottom flask equipped with a reflux condenser, 

potassium carbonate (K2CO3 3 mol.%, 48 mg, 0.3 mmol.) was added to a solution of Methyl-

Oleyl-tetraol (5 g, 11.6 mmol.) dissolved in dimethyl carbonate (DMC 25 eq., 24 mL, 0.3 mol.). 

The reaction mixture was stirred during 6 h under reflux. At the end of the reaction, the DMC 

was evaporated with a rotary evaporator. Purification over silica gel flash chromatography was 

performed using DCM/MeOH 98/2 eluent. 
1
H NMR (DMSO-d6, 400 MHz), δ (ppm): 4.92 (m, 

1H), 4.57 (m, 1H), 4.19 (m, 1H), 3.57 (s, 3H), 2.88 (m, 2H), 2.69 (t, 2H), 2.28 (t, 2H), 1.51-1.25 

(m, 16H), 0.86 (t, 3H). 
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 General procedure for ester hydrolysis: Carbonated fatty acids methyl esters were 

hydrolyzed with lipase B from Candida Antarctica in water/acetone mixture (1:1) for 48 h at 

60°C. 

Und(acid)-CC-S: In a round bottom flask, Und(ester)-CC-S (5 g, 15 mmol.) was dissolved in a 

solution water/acetone (2:5) (2 mL/10 mL). Then, lipase B from Candida Antartica (1g, 20 wt.%) 

was added to the reaction medium. The reaction mixture was stirred during 48 h at 60°C. At the 

end of the reaction, the solvent was evaporated with a rotary evaporator. Purification over silica 

gel flash chromatography was performed using DCM/MeOH 98/2. 
1
H NMR (CDCl3, 400 MHz), 

δ (ppm): 4.83 (m, 1H), 4.57 (m, 1H), 4.28 (m, 1H), 2.91 (m, 2H), 2.59 (t, 2H), 2.30 (t, 2H), 1.56-

1.27 (m, 16H). 

 

 

Oleyl(acid)-CC-S: In a round bottom flask, Oleyl(ester)-CC-S (5 g, 11 mmol.) was dissolved in a 

solution water/acetone (2:5) (4 mL/10 mL). Then, lipase B from Candida Antartica (1g, 20 wt.%) 

was added to the reaction medium. The reaction mixture was stirred during 48 h at 60°C. At the 

end of the reaction, the solvent was evaporated with a rotary evaporator. Purification over silica 

gel flash chromatography was performed using DCM/MeOH 98/2. 
1
H NMR (DMSO-d6, 400 

MHz), δ (ppm): 4.92 (m, 1H), 4.57 (m, 1H), 4.19 (m, 1H), 2.88 (m, 2H), 2.69 (t, 2H), 2.28 (t, 

2H), 1.51-1.25 (m, 16H), 0.86 (t, 3H). 

 

 

 General procedure for trehalose diester synthesis: In an oven-dried round bottomed flask 

equipped with a magnetic stir bar, fatty acid (2.1 equiv), TBTU (2.1 equiv) and DIPEA (4 equiv) 

were dissolved in dry pyridine. The resulting mixture was stirred at room temperature for 30 min 

under a nitrogen atmosphere. A solution of trehalose (1 eq) in dry pyridine was then slowly 

injected into the reaction mixture and stirred at room temperature for 72 h. 
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Trehal-Und-bCC-S: In a flame-dried round bottom flask equipped, Und(acid)-CC-S (2.1 eq., 3.9 

g, 12 mmol.), TBTU (2.1 eq., 3.9 g, 12 mmol.) and DIPEA (2 eq., 1.9 mL, 11 mmol) were 

dissolved in dry pyridine (20 mL). The resulting mixture was stirred at room temperature for 30 

min under a nitrogen atmosphere. Then the reaction mixture was slowly injected into a solution 

of trehalose (1 eq, 5.8 mmol) in dry pyridine (20 mL) and stirring was continued at room 

temperature for 72 h. Pyridine was removed under vacuum and the resulting residue centrifuged 

in water to remove the by-products of the reaction. The precipitate was dried and purified by 

flash chromatography using an elution gradient of 5-25% methanol in EtOAc-DCM (1:1) to give 

diester of trehalose as a gummy solid. Purity: 81.1% (HPLC).
 1

H NMR (DMSO-d6, 400MHz), δ 

(ppm): 5.06 (d, 2H), 4.96 (m, 1H), 4.90 (d, 2H), 4.81 (d, 2H), 4.77 (d, 2H), 4.58 (m, 2H), 4.21 (d, 

2H), 4.20 (m, 2H), 4.04 (m, 2H), 3.88 (m, 2H), 3.54 (m, 2H), 3.25 (m, 2H), 3.11 (m, 2H), 2.90 

(m, 2H), 2.54 (t, 2H), 2.27 (t, 2H), 1.51-1.24 (m, 16H). 
13

C NMR (DMSO-d6, 100 MHz) δ (ppm): 

172.80 (-CH2-COO-CH3), 93.48 (-CH-, H1), 75.92 (-CH-O-), 72.72 (-CH-, H3), 71.44 (-CH-, 

H2), 70.08 (-CH-, H4), 69.72 (-CH-, H5), 68.50 (-CH2-O-), 63.06 (-CH-, H6), 33.79 (-S-CH2-

CH-), 33.55 (-CH2-COO-CH3), 31.85 (-CH2-CH2-S-CH2-), 29.17 - 24.48 (aliphatic -CH2-

).Tm=120°C. 

 

 

Trehal-Oleyl-CC-S: In a flame-dried round bottom flask equipped, Oleyl(acid)-CC-S (2.1 eq., 

2.5 g, 6.1 mmol.), TBTU (2.1 eq., 1.9 g, 6.1 mmol) and DIPEA (2 eq., 0.9 mL, 5.8 mmol) were 

dissolved in dry pyridine (15 mL). The resulting mixture was stirred at room temperature for 30 

min under a nitrogen atmosphere. Then the reaction mixture was slowly injected into a solution 

of trehalose (1 eq., 5.8 mmol) in dry pyridine (15 mL) and stirring was continued at room 

temperature for 72 h. Pyridine was removed under vacuum and the resulting residue centrifuged 

in water to remove the by-products of the reaction. The precipitate was dried and purified by 

flash chromatography using an elution gradient of 5-25% methanol in EtOAc-DCM (1:1) to give 

diester of trehalose as a gummy solid. Purity: 98.5% (HPLC). 
1
H NMR (DMSO-d6, 400MHz), δ 
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(ppm): 5.04 (d, 2H), 4.92 (m, 1H), 4.89 (d, 2H), 4.82 (d, 2H), 4.76 (d, 2H), 4.57 (m, 2H), 4.24 (d, 

2H), 4.19 (m, 2H), 4.03 (m, 2H), 3.88 (m, 2H), 3.54 (m, 2H), 3.25 (m, 2H), 3.12 (m, 2H), 2.88 

(m, 2H), 2.69 (t, 2H), 2.28 (t, 2H), 1.51-1.25 (m, 16H), 0.86 (t, 3H). 
13

C NMR (DMSO-d6, 100 

MHz), δ (ppm): 172.57 (-CH2-COO-CH3), 93.70 (-CH-, H1), 76.43 (-CH-O-), 72.32 (-CH-, H3), 

(-CH-, H2), 69.97 (-CH-, H4), 69.32 (-CH-, H5), 68.23 (-CH2-O-), 63.06 (-CH-, H6), 45.16 (-

CH2-CH2-S-CH2-), 33.33 (-CH2-COO-CH3), 32.46 (-S-CH2-CH-), 30.73 - 22.34 (aliphatic -CH2-

), 13.94 (-CH3). Tm=109°C. 

 

 

 General procedure for kinetic experiments: The kinetic experiments were performed in 

NMR tube at 1 mol.L
-1

 in DMSO-d6, at 50°C and with a ratio 1:1 between cyclic carbonate and 

hexylamine. All reagents were dried on molecular sieves or distilled before the reaction. 

Hexylamine was dried under CaH2 and distilled of after drying. The cyclic carbonate was directly 

dried overnight in a NMR tube caped with a septum, under vacuum. 0.5 mL of dried DMSO-d6 

and 12.5 L of TCB were added via the septum and the mixture was homogenized. The 

hexylamine (66 L, 0.5 mmol, 1 eq.) was then added just before putting the tube in the NMR 

apparatus. The reaction was monitored with 
1
H NMR spectroscopy with the disappearance of the 

cyclic carbonate protons for 24h.  

 

 General procedure for polymerizations: PHUs were prepared from Und(ether)-bCC-S, 

Und(ester)-bCC-S, Oleyl(ether)-bCC-S, Trehal-Und-bCC-S and Trehal-Oleyl-bCC-S with 1,10-

diaminodecane (10DA), isophorone diamine (IPDA) and Priamine as comonomers with a molar 

ratio 1:1. PHU syntheses were performed in DMF (1 mol.L
-1

) at 70°C into a schlenk tube under 

magnetic stirring and nitrogen atmosphere for 7 days. No catalysts were added for the 

polymerization reactions. Conversions were determined by 
1
H NMR spectroscopy after 24h and 

7 days of polymerization. 
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 General procedure for sulfonation: 1 eq. of sulphur-activated cyclic carbonate was reacted 

with 3 eq. of m-chloroperbenzoic acid (mCPBA) per sulphur atom in DCM (1 g /20 mL) during 

24h at room temperature. The reaction mixture was then cooled up at 0°C to ensure the 

precipitation in DCM of the acidic form of mCPBA that was subsequently filtrated. The resulting 

organic phase was washed 4 times with Na2SO3 saturated solution, three times with NaHCO3 

saturated solution and rinsed with deionized water in order to remove residual mCPBA. The 

organic phase was dried over magnesium sulphate and reconcentrated using rotary evaporator. 

No further purification was required. This procedure was applied to PHU post-functionalization. 

In the case of glycolipid-based PHU, the sulfonation was conducted in DMF and the purification 

was realized by dialysis in water in order to precipitate the polysulfone and to remove DMF, 

mcpba and its corresponding acidic form. 

PHU 5-sulfone: IR (cm
-1

):  3328, 2919, 2850, 1725, 1687, 1534, 1387, 1281, 1247, 1117, 1127, 

1048, 1009.  
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Supporting Information 

 

ESI Figure 1 - Stacked 
1
H NMR spectra of (1) Und(ether)-bCC-S in CDCl3 (2) Und(ester)-bCC-S in CDCl3 

and (3) Oleyl(ether)-bCC-S in CDCl3 (* impurities or solvent traces).  
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ESI Figure 2 - Stacked 
1
H NMR spectra of (1) Trehal-Und-bCC-S and (2)Trehal-Oleyl-bCC-S in DMSO-d6 

 (*) Impurities. 

 

a c

b

d

e

*

*

*

*

1 2

3
45

6

a

c
b

d

e
1 2

3
45

6

d

a

c

b

d
e

1
2 45

6
a-6

3

a
c

b
d

e
1

2 456
a-6

3

CH2

CH2

CH3

(1)

(2)



   

15 
 

 

Figure ESI 3 - Characterization of Und(ether)-bCC-S  (1)
 
HPLC (95.4% purity), (2) 

13
C NMR, (3) 

1
H-

1
H 

COSY NMR and (4) 
1
H-

13
C HSQC-NMR (Analysis performed in CDCl3). 
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Figure ESI 4 - Characterization of Oleyl(ether)-bCC-S  (1)
 
HPLC (98.5% purity), (2) 

13
C NMR, (3) 

1
H-

1
H 

COSY NMR and (4) 
1
H-

13
C HSQC-NMR (Analysis performed in CDCl3).  
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Figure ESI 5 - Characterization of Und(ester)-bCC-S  (1)
 
HPLC (88.9% purity), (2) 

13
C NMR, (3) 

1
H-

1
H 

COSY NMR and (4) 
1
H-

13
C HSQC-NMR (Analysis performed in CDCl3).  
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Figure ESI 6 - Characterization of Trehal-Und-bCC-S: (1)
 
HPLC (81.1% purity), (2) 

13
C NMR, (3) 

1
H-

1
H 

COSY NMR and (4) 
1
H-

13
C HSQC-NMR (Analysis performed in CDCl3).  
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Figure ESI 7 - Characterization of Trehal-Oleyl-bCC-S: (1)
 
HPLC (98.5% purity), (2) 

13
C NMR, (3) 

1
H-

1
H 

COSY NMR and (4) 
1
H-

13
C HSQC-NMR (Analysis performed in CDCl3).  
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ESI Figure 8 - Stacked 
1
H NMR spectra of (1) 10-undecen-1-ol, (2) 1-bromo-10-undecene and (3) Und(ether)-

diene in CDCl3 (*) Impurities. 

 

 

ESI Figure 9- Stacked 
1
H NMR spectra of intermediates of Trehal-Oleyl-bCC-S (*) Impurities. 
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−
𝑑[𝐶𝐶]

𝑑𝑡
= 𝑘𝑎𝑝𝑝[𝐶𝐶][𝐴] = 𝑘𝑎𝑝𝑝[𝐶𝐶]2  (E1) 

−
𝑑[𝐶𝐶]

[𝐶𝐶]2 = 𝑘𝑎𝑝𝑝𝑑𝑡  (E2) 

1

[𝐶𝐶]
−

1

𝐶0
= 𝑘𝑎𝑝𝑝𝛥𝑡  (E3) 

or [𝐶𝐶] = 𝐶0 − 𝐶0𝑥 = 𝐶0(1 − 𝑥)  (E4) 

𝑥

1−𝑥
= 𝑘𝑎𝑝𝑝𝐶0𝛥𝑡  (E5) 

 

ESI Formula 1 - 2
nd

 order Kinetic law formula: Time-(x/(1-x))  

 

 

% 𝑼𝒓𝒆𝒂 =  
∫ 𝑯𝒖𝒓𝒆𝒂

∫ 𝑯𝒖𝒓𝒆𝒂+∫ 𝑯𝒂𝒎𝒊𝒅𝒆+∫ 𝑯𝒖𝒓𝒆𝒕𝒉𝒂𝒏𝒆
        (E)  

% 𝑨𝒎𝒊𝒅𝒆 =  
∫ 𝑯𝒂𝒎𝒊𝒅𝒆

∫ 𝑯𝒖𝒓𝒆𝒂+∫ 𝑯𝒂𝒎𝒊𝒅𝒆+∫ 𝑯𝒖𝒓𝒆𝒕𝒉𝒂𝒏𝒆
        (E’)  

% 𝑼𝒓𝒆𝒕𝒉𝒂𝒏𝒆 =  
∫ 𝑯𝒖𝒓𝒆𝒕𝒉𝒂𝒏𝒆

∫ 𝑯𝒖𝒓𝒆𝒂+∫ 𝑯𝒂𝒎𝒊𝒅𝒆+∫ 𝑯𝒖𝒓𝒆𝒕𝒉𝒂𝒏𝒆
        (E’’)  

ESI Formula 2 - Formula used for the calculation of % of urea, amide and urethane formed during kinetic 

measurements and polymerization, using 
1
H NMR integrations of labile protons ( Hurea, Hamide and Hurethane) in 

DMSO-d6 . 
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ESI Figure 10 - Stacked 
1
H NMR spectra of (1) Und(ester)-bCC-S in CDCl3 and (2) PHU 5 in DMSO-d6. (* 

residual monomers/chain ends). 

 

 

 

 

 

ESI Figure 11 – DSC second heating cycles (10°C/min) PHU 7 to PHU 10 and corresponding TGA traces from 

160 to 600 °C (after an isothermal procedure of 15 min at 160°C to remove the residual DMF). 
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ESI Figure 12 - Stacked 
1
H NMR spectra of (1) PHU 7 and (2) PHU 7-sulfone in DMSO-d6. (* residual 

monomers/chain ends). 
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