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ABSTRACT

This paper investigates the effect of friction on the stretching behaviour of plain-knits in the wale-wise
direction. The capstan method was carried out to measure the yarn-to-yarn coefficient of kinetic friction
between perpendicular yarns. The coefficient of kinetic friction between E-glass yarns and basalt yarns is
similar and exhibits significant normal load sensitivity. However only E-glass yarns exhibit sensitivity to
the sliding velocity. The yarn-to-yarn friction was then introduced in an existing semi-analytical model to
simulate the wale-wise stretching of plain knits. This model was used to perform a sensitivity study,
which has shown that friction significantly affects the knit behaviour both before and after jamming. The
enhanced model proved to be able to properly describe the hysteretic behaviour of plain knits in the
wale-wise direction. This allows concluding that friction at the loops crossing point is the main mech-
anism that controls the hysteretic behaviour of plain-knits, even if other mechanisms should be

accounted for to perfectly describe the actual behaviour of the knit.

1. Introduction

Increasing the production rate of complex parts is among the
main issues currently investigated to develop the use of composite
materials in mass production industries. Liquid Composite
Moulding techniques are promising ways to match these re-
quirements to process thermoset resins. These processes require
forming the reinforcement while or before placing it in the mould
and permeate it with a low viscosity resin. Textile composites are
thus widely investigated because they comprise several fibre ori-
entations in a single ply and allow an efficient preforming step.
Forming modelling (Allaoui et al., 2011) is an important issue to
predict the fibres orientation in the preform and thus control the
local permeability of the reinforcement (Heardman et al., 2001;
Dusserre et al., 2011) and the final properties of the composite
material as well (Truong et al., 2008; Dusserre et al., 2014). Knit
reinforced composites belong to the family of textile composites
and present many advantages for the manufacturing of complex
shape preforms: 3D net-shape preforms, possibly holed, can be
knitted automatically without cutting the yarns, with several types
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of fibre, various local knitting patterns and thus various local
thicknesses and properties (Leong et al., 2000; Padaki et al., 2006;
Balea et al., 2014; Dusserre and Bernhart, 2015). Forming a knit
involves a change in the stitch geometry resulting from shearing
and stretching, both mainly controlled by a yarn bending mecha-
nism (Duhovic and Bhattacharyya, 2006).

A characteristic of knits is their stretch ability (Senthilkumar and
Anbumani, 2011). Two steps mainly characterize the tensile
behaviour of technical knits in wale-wise stretching. The first one,
before jamming, involves high deformation under low load. In this
step the sliding at the loops crossing point plays an important role,
especially while stretching the knit in the wale-wise direction.
Popper (1966) assessed the role of friction in the biaxial behaviour
of knitted fabrics through a theoretical analysis and demonstrated
that its effect is very important even if the value of the coefficient of
kinetic friction is low (0.1). This effect being opposed to the sliding
direction, its contribution acts inversely during loading and
unloading steps, leading to a very pronounced hysteretic behaviour
of knitted fabrics under biaxial (Popper, 1966) and uniaxial (Matsuo
and Yamada, 2009) tension. The sensitivity to friction is exacer-
bated by the exponential form of the drive belt formula that may
apply at the loops crossing points due to yarn curvature (Popper,
1966).

The friction at the contact between two yarns depends on the
relative orientation of both yarns. Indeed, the area in contact is



Nomenclature

o Angle between the X-axis and the tangent to the yarn
at point A

I’} Angle between the X-axis and the tangent to the yarn
at point B

v Angle between the negative X-axis and the direction of
P

0, 6o, 0; Coiling angles of the yarn

0,0 Integration variables

u Tangent to normal load ratio at loop crossing point

Uk Coefficient of kinetic friction

or Fibre density

¢ Angle between the direction of R and the normal to the
yarn at point B

ab Coefficients of the friction model

d = dgy /%Nf Equivalent yarn diameter (compact hexagonal

packing)
dy Average filament diameter

n Normal load sensitivity exponent
p Velocity sensitivity exponent

s Curvilinear abscissa

X,y Coordinates

B Yarn equivalent bending stiffness
C Average length of a course

E Young's modulus of the fibre

F Tension of the yarn

Fo Dead weight

F; Force measured by the load cell

Fy Tangential component of the local contact force
F, Normal component of the local contact force

I= wag—f:l Yarn equivalent second moment of area
L Average yarn length per loop

M Moment at point C

N Number of filaments in the yarn
P Force at point A

R Contact force at point B

%4 Sliding velocity

w Average width of a wale

T Force at point C

X,

Y Coordinates

Subscript
0 Initial value
n Projection on the normal to the yarn
t Projection on the tangent to the yarn
A At point A
AB Between points A and B

A At time A

higher in the case of two parallel yarns than in the case of
perpendicular yarns because the contact is linear instead of being
punctual (Cornelissen et al., 2013). Moreover the coefficient of
friction between two parallel yarns also depends on the sliding
direction. The friction behaviour between two yarns is a macro-
scale description that embraces numerous micro-scale character-
istics of the fibres and yarns and nano-scale phenomena (Behary
et al., 2000). The value of the coefficient of friction can be experi-
mentally assessed through several methods: twisted strand
(Cornelissen et al., 2013), capstan (Cornelissen et al., 2013), Atomic
Force Microscopy and Lateral Force Microscopy (Behary et al.,
2000).

The present study contributes to understand the behaviour of
dry knitted preforms by investigating the effect of friction on the
behaviour of both E-glass and basalt knits. No value concerning the
coefficient of friction between basalt fibres are reported in the
literature. The values reported for E-glass fibres range between 0.4
and 1 for parallel contact depending on experimental method
(Cornelissen et al., 2013). For perpendicular contact, values be-
tween 0.12 and 0.2 have been reported (Behary et al., 2000)
depending on the sizing of the fibre. It was thus chosen to perform a
measurement of the coefficient of kinetic friction related to the
actual fibres of the knit studied.

This paper is devoted to extend the capabilities of an existing
semi-analytical model by accounting for friction to simulate the
hysteretic behaviour of E-glass and basalt plain knits subjected to
wale-wise stretching. The original model (Hong et al., 2002) is
based on a semi-analytical analysis of the momentum balance of a
quarter stitch. It is proposed in this paper to introduce the angle of
friction at the loops crossing point to perform an improved analysis.
The actual contribution of friction at this point is discussed and the
results of the model are analysed through a sensitivity study and a
comparison to experiment. Despite a simplified description of the
frictional behaviour, the improved model is able to reproduce
properly the hysteretic behaviour of knits subjected to wale-wise
stretching.

2. Materials and methods
2.1. Fibres

This paper investigates the effect of yarn-to-yarn friction on the
tensile behaviour of fabrics knitted with E-glass and basalt fibres.
The principal characteristics of the yarns are reported in Table 1.
Both yarns are very similar and their characteristics were chosen to
provide the same equivalent yarn diameter in order to knit fabrics
with similar loop geometry. The main difference between bothyarns
is the lower bending stiffness of basalt yarns due to a lower average
filament diameter despite a slightly higher Young's modulus.

2.2. Knitted fabrics

Plain knits were manufactured with these yarns on an industrial
two-needle beds 5-gauge flat knitting machine. Fig. 1 schematizes the
plain knit structure comprising only front stitches. In the
100 mm x 300 mm specimens tested in this study, the average width
of each of the 23 wales, W, is 4.4 mm, the average length of each of the
110 courses, C,is 2.7 mm irrespective of the fibre type, and the average
yarn length per stitch, L, is 14.1 mm for E-glass knits and 13.1 mm for
basalt knits due to the higher bending stiffness of the former.

Table 1
Characteristics of the yarns (from manufacturers datasheets).
Yarn E-glass Basalt
Fibres Owens Corning Vetrotex T30 111AX23 Basaltex BCF
Nf 1200 1672
dy(um) 16 13
pr (kg m~3) 2620 2700
E (GPa) 80 84
d (mm) 0.58 0.56
Linear density (tex) 600 600
B=EI (N mm?) 0.31 0.20
Sizing Silane based Silane based




Wale direction

Course direction

Fig. 1. Schematic diagram of a plain knit.

2.3. Tensile tests

Monotonic and cyclic tensile tests were carried out in the wale-
wise direction at a constant crosshead displacement rate of
50 mmmin~! on an INSTRON 5800R electromechanical testing
machine fitted out with a 30 kN-load cell. At each extremity of the
specimen, 50 mm of knit were clamped into pneumatic grips fitted
out with a rubber lining. The testing area is thus 200 mm long. The
cyclic tests were performed with three cycles comprising a loading
step up to a change in length of 60%, followed by an unloading step
up to a change in length of 10%.

2.4. Friction factor measurement

A variation of the capstan method (Blau, 2008) was carried out
to measure the coefficient of kinetic friction between two
perpendicular yarns. The method chosen consists in measuring the
load at each extremity of a wire that slides on two cylinders, as

Fixed yarns

Dead weight

explained in Fig. 2. Two 10 mm-diameter cylinders, radially drilled,
were covered with 16 coils of a yarn parallel to their axis, allowing a
whole covering of the cylinder surface (cf. inset in Fig. 2). The cyl-
inders are then placed horizontally on an INSTRON 5800R elec-
tromechanical testing machine fitted out with a 500 N-load cell.
The load Fp was applied at the lower extremity of the yarn thanks to
a dead weight, whereas the upper extremity was linked to the load
cell in order to measure the load F; during both ascending and
descending steps of the crosshead.

F; and Fp are related by the drive belt formula, equation (1),
where ; and 6y are the coiling angles corresponding to each cyl-
inder. The cylinders were located in such a way that 6; = 6y = 7/2,
allowing to assess the coefficient of kinetic friction uy.

T explu(th + ) (1)
0

When the crosshead goes up, the load F; (10 N) is higher than Fy
(6.31 N) due to friction effect, equation (1). When the crosshead
goes down, the roles of F; and Fp in equation (1) are inverted (the
sign of the coiling angles is negative) and F; is lower (4 N). It is
noteworthy that the coefficient of static friction factor measured by
this method is similar to the coefficient of kinetic friction since no
load peak occurred just before the sliding, irrespective of the
testing conditions. The values of the coefficient of kinetic friction
determined through equation (1) considering the average values of
F; during the ascent and descent of the crosshead are reported in
Table 2 for sliding velocities ranging between 0.2 and 10 mm s~}
and for a dead weight of 6.31 and 12.62 N. The coefficient of kinetic
friction ranges between 0.14 and 0.18 irrespective of the fibre type.
This is consistent with the values reported in Behary et al. (2000)
for E-glass fibres, between 0.12 and 0.2 depending on the size. It
is noteworthy that the value of F; is sufficiently stable on each
identification range to consider the average value. The maximal
standard derivation is 0.13 for a sliding velocity of 10 mm s, with
an average value of F; respectively of 10.7 N and 9.94 N for E-glass
and basalt fibres (Fp = 6.31 N).

The experimental results processed using equation (1) show
that the coefficient of kinetic friction decreases when the load F;
increases (increase of Fp or ascent compared to descent) for both
basalt and E-Glass yarns. Moreover, the coefficient of kinetic fric-
tion obtained with E-Glass fibres exhibits a slight dependence to
the sliding velocity whereas this trend is not emphasised for basalt

w Moving yarn

10 mm

Fig. 2. Setup used to carry out the capstan method.



Table 2
Coefficient of kinetic friction determined through equation (1).

Sliding velocity V E-Glass fibres Basalt fibres

(mms)

02 1 10 0.2 1 10

Fp=631N  Ascent 0156 0.162 0172 0144 0.144 0.145
Descent 0.167 0174 0181 0.152 0155 0.148

Fo=1262N Ascent 0152 N/A N/A NA NA NA

Descent  0.157 NJ/A N/A N/A N/A N/A

fibres. Even if both technical datasheets (Table 1) mention a silane
based sizing agent, this matter of fact may result from a difference
in the sizing process (Behary et al., 2000; Baltina et al., 2007).

As verified by many authors (Gupta, 1992), the coefficient of
friction between fibres depends on the normal force at the contact
between both yarns. This dependence can be described by the
Howell's equation (Howell and Mazur, 1953), equation (2), a power
law that relates the tangential, F;, to the normal, F,, component of
the reaction load.

Fr = aF,'} (2)

Introducing equation (2) in the well-known reasoning that leads
to the drive belt formula (equation (1)) provides the differential
equation (3), that relates the tension in the yarn, F, at an angular
position ¢ and its variation, dF, along an angular element df. For the
sake of simplicity, equation (3) is simplified to equation (4) allow-
ing a numerical finite differences integration (the error on the final
result has be checked to be less than 0.2%).

dF\ "sin"d?
_ on,pn ar 2
dF = 2"aF (1 +2F) cos (3)
sinnd?
dF = 2"aF"——= (4)
cos%

This improved drive belt formula simulates the capstan test and
accounts for the normal load dependence. For each sliding velocity,
the experimental data recorded during ascent and descent steps
were analysed to identify the values of parameters a and n. This
improved analysis shows that the dependence of friction to the
normal load describes perfectly the change of F; for both ascent and
descent of the crosshead irrespective of the dead weight Fy. Indeed,
the average normal load is a function of both tensions at each
strand of the yarn, Fp and F;, and is thus higher during the ascent of
the crosshead since F; is higher than during the descent while Fy
remains the same. Moreover the parameter n does not change
significantly with the sliding velocity and an average value was
considered. For E-Glass fibres, the parameter a proved to be sen-
sitive to the sliding velocity and the experimental data are perfectly
fitted by a power law (a = bVP). Finally, the coefficient of kinetic
friction was supposed to be a function of the normal load and the
sliding velocity, equation (5).

n—1
Mk = bVPF n (5)
Table 3
Parameters of equation (5) identified for E-glass and basalt fibres.
b (s mm~P N~™+1) p n
E-Glass yarn 0.159 0.0246 0.948
Basalt yarn 0.137 0 0.909

The final values of each parameter for both E-Glass and basalt
yarns have been identified by a Newton—Raphson optimisation
technique and are reported in Table 3. To validate the results of
this identification, the experimental load F; measured for each
testing condition was compared in Fig. 3 to the trend predicted
through equations (4)—(5). Irrespective of the dead weight and
sliding velocity, this comparison shows that the model perfectly
fits the experimental data for both ascent and descent of the
crosshead.

3. Calculations

The present study introduces friction in the plane model pro-
posed by Hong (Hong et al., 2002) and used by some other authors
(Dusserre et al., 2014; de Aratjo et al., 2003; Abel et al., 2012). This
model, based on the elastica theory, considers the yarn as a curved
cylindrical elastic homogeneous rod with a loop shape. The
description of the model in this section uses the same notations as
in the original model (Hong et al., 2002). The yarn is assumed to
behave as a Euler—Bernoulli beam, its bending stiffness, B, is
assumed to be constant and uniform and its value is calculated as
the sum of the bending stiffness of each filament. This is obviously a
very strong assumption with regard to the actual bending behav-
iour of a yarn (Syerko et al., 2012; Cornelissen and Akkerman,
2009), but the curvature change is not so large during stretching
because the initial state considered is not the straight yarn,
allowing a linearization of the behaviour.

3.1. Geometrical relations

The model considers a first set of four equations obtained from
geometrical considerations, equation (6). These equations are
exactly the same as in the original model.

R

4
C_y. 9a(s ™
2 B 25'”( 2) 6)

~—=Sp+S
2~ SaB +SBC

3.2. Momentum balance

3.2.1. Momentum balance of a quarter stitch

The static equilibrium of the quarter stitch leads to a set of
equations that relates the horizontal force T and the moment M
acting at point C, and the reaction force R acting at point B to the
force P acting at point A. The set of equations (7) expresses the
different loads acting on the quarter stitch as functions of the forces
R and P and of the angles $, v and ¢. Here, the friction is not
neglected and the force R is not assumed perpendicular to the yarn
at point B. The friction angle ¢ is introduced (Fig. 4) and will be used
to account for friction in the model, cf. Section 3.3. It is noteworthy
that the problem with friction can be formulated exactly in the
same way as the problem without friction, except the parameter k/,,
which includes the friction angle and replaces the parameter k; of
the original model.
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Fig. 3. Comparison of the values of the load F; measured and simulated with equations (4) and (5): (a) E-glass yarns and (b) basalt yarns.
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Ry :Rcos(ﬁ— +¢)

N

Ry = Rsin(ﬁ —%4— ¢> = Psiny
T = —Pk; (7)

M = P(yjg + KiYsc)
ki = cosy + siny-tan(8 + ¢)

ki = cosy + siny-tang

\ 3.2.2. Momentum balance at an arbitrary point
y' AR Y The static equilibrium of a yarn segment between point A and an
arbitrary point of segment AB leads to a set of differential equations
Fig. 4. Schematic view of the loads acting on a quarter loop. that gives the values of the coordinate of the considered arbitrary



point as well as the yarn length up to this point. This set of equa-
tions is written in its integral form in equation (8) and provides the
expression of the coordinates of vector AB as well as the yarn length
between A and B.

1 B de’
8 =2\p / 2
a—y [cos2 (a ; 7) — cos? (5)}
67
, 1 B cos¢'de’
=2 \VPp / o2
a=y {cos2 (—a ; 7) — cos? (7)} 8)
67
, 1 B sing’dd’
Yas =2 \p / 2
a—y [cos2 (—a ; 7) — cos? (j)}

Xp — Xa = X)gC0Sy — Yjpsiny

Yp = X)pSiny + yygcosy

A similar analysis performed on the segment BC leads to the set
of equations (9) that provides the coordinates of vector BC as well as
the yarn length between B and C. It is noteworthy that equations (8)
and (9) are usually written under the form of complete and
incomplete elliptic integrals of the first and second kinds thanks to
variable changes. However these variable changes require consid-
ering different cases to account for the sign of the original variable.
It was thus preferred to keep the integrals under the aforemen-
tioned forms that can be computed as easily as the elliptic integrals
thanks to the trapezoidal rule.

£ = COS (u ; 7)
cos (6 ; 7)

@1p = arcsin -
6 (9)
o — B de
BE=Vap S 2
0 (k1 CoSB + 2e7c0s“p1p + Ky cosé‘)
@B
X B cosfdo
B=Vap T

0 (kl cosB + 2e3c0s%p1p + klcosa)

3.3. Resolution

3.3.1. Initial state

The model detailed above allows to compute the values of all
loads acting on the quarter loop, as well as the loop shape, if the
four angles «, 8, v and ¢ are known. Solving the model requires a
first initialisation state to compute the initial shape of the quarter
loop. The angles «, § and v are not easily accessed through exper-
imental observations and it is preferred to find their initial values
thanks to an inverse method to match the average dimensions of a
loop. Indeed the average yarn length, course length and wale width
are standard characteristics of a knit. These data are sufficient in the
initial model, but due to the introduction of friction, another datum

is mandatory to initialize the model. It is here proposed to arbi-
trarily set the friction angle at a value comprised between —¢max
and @max. This choice was motivated by the difficulty to measure a
relevant data sensitive to the friction angle. The effect of the friction
angle initial value on the results of the model will be discussed
further. The optimization reported in this paper was performed
with the Matlab® function fminsearch based on the Nelder—Mead
simplex derivative-free method (Nelder and Mead, 1965).

3.3.2. Successive steps of a stretching cycle

Once the model initialized, a quasi-static tensile cycle can be
simulated as successive equilibrium states. For each equilibrium
state, the inverse method is solved and imposes the relevant data
for each step of the cycle. The main issue to obtain relevant results
remains the choice of the four parameters whose value must be
imposed during each step of the cycle. The parameters chosen for
each step of the cycle in this study are compiled in Table 4 and Fig. 5
depicts an example of the model results showing the different steps
and the corresponding behaviour considering the assumption
explained further. A first linear part corresponds to the adherence,
followed by a second linear part with a much smaller slope during
sliding, up to jamming characterized by an exponential curve. The
unloading is similar to the loading but with a higher slope of the
exponential curve leading to a pronounced hysteretic behaviour
before sliding. Finally a linear part with a low slope describes the
sliding step up to a state at rest characterized by an irreversible
deformation.

The first parameter imposed is the yarn length per stitch, L,
whose value is known and constant all along the cycle since the
yarn is assumed to be inextensible. The value of the stitch width, W,
is known for the knit at rest and can be set to the value 4d during
the jamming steps. The value of the yarn length between the points
B and C can be kept constant during the static friction steps. One of
the parameter of the problem must be incremented at each time to
impose a wale-wise stretching. This is achieved with the parame-
ters C and ¢. The initial value of the course height, Cy, is known and
its value can be incremented during the sliding and jamming steps,
as in the original model. The initial value of the angle ¢ is taken
arbitrarily, and the parameter can be incremented during the static
friction steps up to its maximal or minimal value respectively
during the loading and unloading steps. During the sliding steps,
the value of ¢ is kept constant.

For most of the steps, the fourth parameter to impose is chosen
more arbitrarily. Some experimental observation suggested that
the angle § remains constant during the static friction step of the

Table 4
Parameters imposed during each step of a tensile cycle.
Step Parameters
I Spc T Rn C w L ¢
Initialisation A SF Co Wo Lo ¢o
Loading A-B SF SBC A Rna L 2z
B-C S Rs Lo ¢max
D ] A 44 Lo dma
Unloading D-E SF Bp Sscp L &
E-F S T kY] Lo —max
Loading F-B SF SBC F RiF L 2z
B-C S Ry Lo ¢max
c-D ] F 4 Lo ¢ma

SF: static friction; S: sliding; J: jamming.
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Fig. 5. Computed tensile behaviour during a loading—unloading cycle.

unloading. Despite a lack of physical interpretation, this assump-
tion proved to provide relevant results whereas the other param-
eters tested were not satisfactory. During the sliding steps it was
first assumed that the tangential component of the reaction load at
point B could be considered as constant. Moreover, during these
steps, the angle ¢ is also constant. Thus the normal component of R
is also constant. As it didn't make sense to impose the tangential
component of R during the static friction, where the friction
contribution increases, it was chosen to impose its normal
component, R,, during both static friction and sliding steps of the
loading. This assumption was not considered during the unloading
because it was not compatible with the choice of § for the static
friction step. It was thus arbitrarily chosen to consider the original
assumption of Hong (Hong et al., 2002) that proposed to keep
constant the force T at point C.

It is noteworthy that some of these assumptions include an
arbitrary part. There is maybe no physical reason to assume that a
parameter remains constant during one of these steps. However
they provide the most physically reasonable results and it was not
the scope of the paper to understand in detail their physical sense.

3.4. Apparent coefficient of kinetic friction

The aforementioned model accounts for friction by introducing
a constant ratio, u, between the normal and tangential component
of the reaction force R at point B, through the angle ¢ (u = tan ¢). It
was shown in the previous section that the value of the coefficient
of kinetic friction depends on the value of the normal contact load
and also on the sliding velocity for E-glass fibres. However these
data are not well known and change along with the stretching of
the knit.

For the sake of simplicity, the previous model was implemented
only to account for a constant coefficient of kinetic friction, corre-
sponding to average values of normal load and sliding velocity. The
average values were assessed from the analytical results obtained
by Balea (2011) using the original model without friction. During
the first step of the stretching, the sliding velocity at the loop
crossing point B is about 0.5 mm s~! for a crosshead displacement
rate of 50 mm min !, and the normal load is about 1 N. According to
equation (5) and Table 3, the average value of the coefficient of

kinetic friction uy will be set to 0.156 for the contact between E-
glass yarns and a value of 0.137 for the contact between basalt
yarns.

Furthermore the contact between both quarter stitches can be
assimilated to a yarn coiled perpendicularly around the other yarn
according to an angle . Thus, even for a constant coefficient of
static friction, the drive belt formula, equation (1), implies that the
ratio between normal and tangential contact loads, y, also depends
on the coiling angle, # (equation (10)). Obviously this angle also
changes during the stretching of the knit. The minimal value of this
angle was assessed from experimental observations of the unloa-
ded knit (Fig. 6a and b). The maximal value of § was assessed
through a plane geometrical model of the jammed knit (Fig. 6¢c and
equation (11)). For E-glass knits, the coiling angle § ranges between
72° and 149°, whereas it ranges between 66° and 147° for basalt
knits. This implies a value of u ranging between 0.06 and 0.6 from
the beginning of the stretching test to the jamming point. It is
noteworthy that this effect is much more important than those of
sliding velocity and normal load. In the following section, the ratio
w will be assumed to be constant and set to the value corresponding
to the average coiling angle, respectively 110° and 106° for E-glass
and basalt knits, i.e. respectively u = 0.20 and u = 0.17.

_Rt_e“k"—l 0
E_iew“tanj (10)
€ _dsin(0—Z
L_d, 4.2 ) (11)
4 2 cos( —g)

4. Results and discussion
4.1. Monotonic stretching

The model detailed in the previous section was first used to
perform a sensitivity study on the effect of friction on the mono-
tonic stretching behaviour of a plain-knit in the wale-wise
direction.



Fig. 6. Assessment of the minimal coiling angle from unloaded knit observation of (a) basalt and (b) E-glass knits, and maximal coiling angle (c) from geometrical modelling.

4.1.1. Effect of the coefficient of kinetic friction the behaviour is linear before jamming and that the value of the

Fig. 7 displays the results provided by the model for different coefficient of friction mainly affects the exponential behaviour after
values of the coefficient of kinetic friction, assuming that the initial jamming. Indeed, the force per wale computed at a change in
state corresponds to the sliding limit (¢9 = ¢max). Fig. 7a shows that length of 0.45 with a coefficient of kinetic friction of 0.2 is 20%
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Fig. 7. Effect of the coefficient of friction on the stretching behaviour for ¢g = dmax: (a) full-scale behaviour (b) behaviour before jamming.
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Fig. 8. Effect of the initial value of angle ¢ on the stretching behaviour at loading for u = 0.3.

higher than without friction. With a coefficient of friction of 0.4, this
value is 60% higher than without friction.

Fig. 7b details the stretching behaviour before jamming. It is
noteworthy that this part of the behaviour is not perfectly linear
and that friction increases this non-linearity. Surprisingly friction
tends to slightly decrease the stiffness before jamming: at jamming,
the force per wale is 4% lower with a coefficient of friction of 0.4
than without friction. Moreover jamming occurs slightly earlier
with friction. These both statements are explained by the tangential
component introduced at the loops crossing point that contributes
to stretch the loop more easily.

4.1.2. Effect of the initial friction angle

Fig. 8 displays the analytical results obtained with an apparent
coefficient of friction of 0.3 for different initial values of the angle
¢. The value ¢g = dpmax = arctan (u) corresponds to an initial state
at the limit of sliding in the stretching direction, the value ¢¢ = 0
corresponds to a force R perpendicular to the yarn in the initial
state, and the value ¢p = —¢max corresponds to an initial state at
the limit of sliding in the direction opposite to the stretching
direction.

At the beginning of the stretching, before sliding, a first linear
part arises and the slope is similar irrespective of the initial value of
¢. Then sliding occurs at a change in length obviously function of ¢.
The almost linear part corresponding to the sliding step is not
affected by the initial value of ¢, except its duration. The higher the
initial value of ¢ is, the higher is the change in length at jamming.
This is consistent with the more stretched state at the beginning of
sliding with a low value of ¢y. Indeed a shorter sliding distance will
be necessary to rich the limit width value.

After jamming, the exponential curve is almost only shifted
vertically and all behaviours seem to tend toward the same curve.

4.1.3. Effect of the fibre type

Fig. 9 compares the experimental monotonic stretching behav-
iour of both E-glass and basalt knits in the wale-wise direction to
the results computed using the data of Table 1 and the average
apparent coefficient of kinetic friction assessed in the previous
section. On the overall view of Fig. 9a, the behaviour at the begin-
ning of stretching seems to be properly described, but afterwards
the curve remains almost linear up to jamming contrarily to the

actual knit behaviour. This trend may be due to the simplified
assumption of the model. Indeed the ratio u is kept constant
whereas it was proved experimentally that it might strongly vary
during the test as function of normal load, sliding velocity and
overall coiling angle. Moreover, the yarn diameter is also kept
constant neglecting the yarn transverse compaction that would
change the jamming point as well as the yarn bending stiffness.
Fig. 9b shows that introducing friction in the model accounts for a
phenomenon that was not described in the original model. Indeed
the initial slope curve is higher than during sliding. The improved
model reproduces qualitatively this slope change. However the
modelled behaviour is not smooth enough due to the aforemen-
tioned assumptions. Adding a sensitivity of the coefficient of kinetic
friction to the normal load would help to better model this part of
the curve.

4.2. Cyclic stretching

The results displayed in Fig. 10 show that the wale-wise
stretching behaviour of E-glass plain knit under study is highly
hysteretic, with a slope almost vertical at the beginning of the
unloading step, and a residual strain of 15% after the first cycle. The
second step is similar to the first one, but the maximal load is only
of 4 N per wale instead of 5 N per wale at the end of the first cycle.
The third cycle is very similar to the second one despite a slight
increase of the residual strain and a slight decrease of the maximal
load.

Fig. 11 shows the hysteretic behaviour obtained by simulating a
cyclic test with the model enriched by friction. This curve will be
compared qualitatively to the experimental curve of Fig. 10. The
improved model properly describes the beginning of the unloading
step even if the curve is not vertical as it is the case experimentally.
Afterwards, the transition between the adherence and the sliding
step leads to a slope discontinuity whereas the experimental curve
is smoother. Obviously the sliding step of unloading is almost linear
and parallel to the sliding curve of loading. The force per stitch
decreases until it reaches zero. The second cycle then begins. The
first step, describing adherence between both crossing loops, con-
sists to increase the value of ¢ from its value at the end of the first
cycle (—¢max during the sliding step of unloading) up to its value
during the sliding step of loading, ¢max. Due to the initial value
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Fig. 9. Comparison of experimental and computed wale-wise stretching behaviours of E-glass and basalt knits.

chosen ¢ = 0, and to the low slope of the curve during the sliding
steps, the load is higher during the second step than during the first
one. This is not the case experimentally and it may indicate that the
initial value of ¢ is maybe close to —¢@max. It could be explained by
the knit stretching during knitting. Indeed the angle ¢ in the knit at
rest would be at the sliding limit in the unloading direction.
However it probably varies significantly during the numerous

handlings of the knit before testing.

5. Conclusion

This paper reports the results of an experimental and theoretical
analysis of the effect of friction on the stretching behaviour of a
technical plain knit.

A first experimental study showed that the yarn-to-yarn coef-
ficient of kinetic friction between perpendicular E-glass fibres de-
pends on both sliding velocity and normal load. Both effects can be

perfectly described by power laws. A similar result is obtained with
basalt fibres except that friction is not sensitive to the sliding ve-
locity in the investigated range.

Then a theoretical analysis of the friction between two
perpendicular yarns was performed to include its contribution in
an existing semi-analytical model describing the wale-wise
stretching behaviour of technical knits. This model was used to
perform a sensitivity study that showed the effect of the coefficient
of kinetic friction and of the initial friction angle on the stretching
behaviour of the knit. The former only influences the behaviour
after jamming of the knit whereas the latter mainly influences the
behaviour before jamming. A comparison of the computed results
with experimental data shows that introducing friction improves
the ability of the model to describe the physical phenomena
occurring during monotonic stretching, but the transition between
the different steps is too sudden to reproduce the smooth experi-

mental curves.
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Fig. 11. Modelled hysteretic stretching behaviour during two consecutive loading—unloading cycles for ¢y = 0 and u = 0.2.

A simulation of a cyclic stretching thanks to this model proved
that sliding with friction at the loops crossing point is the main
mechanism that involves the hysteretic behaviour of a plain knit in
the wale-wise direction. However the modelled behaviour is not
so smooth as the actual one. The sensitivity of friction to normal
load and coiling angle may contribute to this difference as well as
friction inside the yarn, yarn transverse compaction and shear
stresses.

More accurate results could be obtained by introducing a yarn
transverse deformation through a link between the yarn diameter
and the contact load at point B, as proposed in Balea (2011) and
Dusserre and Bernhart (2015). Coupling the yarn transverse
compaction with the present friction model, possibly improved by
accounting for the friction sensitivity to normal load, sliding ve-
locity and coiling angle, may provide hysteretic stretching curves
similar to the experimental ones.
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