
HAL Id: hal-01611001
https://hal.science/hal-01611001

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of isothermal and cyclic oxidation on the
apparent interfacial toughness in thermal barrier coating

systems
Y. Liu, Vanessa Vidal, Sabine Le Roux, Fabien Blas, Florence Ansart,

Philippe Lours

To cite this version:
Y. Liu, Vanessa Vidal, Sabine Le Roux, Fabien Blas, Florence Ansart, et al.. Influence of isothermal
and cyclic oxidation on the apparent interfacial toughness in thermal barrier coating systems. Journal
of the European Ceramic Society, 2015, 35 (15), p. 4269-4275. �10.1016/j.jeurceramsoc.2015.07.018�.
�hal-01611001�

https://hal.science/hal-01611001
https://hal.archives-ouvertes.fr


 
  

Open Archive TOULOUSE Archive Ouverte (OATAO) 

This is  an  author-deposited version  published  in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 19801

To link to this article : DOI:10.1016/j.jeurceramsoc.2015.07.018 
URL : http://dx.doi.org/10.1016/j.jeurceramsoc.2015.07.018 

To cite this version : Liu, Yinghui  and Vidal, Vanessa  and Roux,

Sabine Le  and Blas, Fabien  and Ansart, Florence  and Lours,

Philippe  Influence  of  isothermal  and  cyclic  oxidation  on  the
apparent  interfacial  toughness  in  thermal  barrier  coating  systems.
(2015) Journal of the European Ceramic Society, vol. 35 (n° 15). pp.
4269-4275. ISSN 0955-2219 

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.jeurceramsoc.2015.07.018
mailto:staff-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/223471410
http://www.idref.fr/077050525
http://www.idref.fr/225463148
http://www.idref.fr/199498474
http://www.idref.fr/103785779
http://www.idref.fr/082118965


Influence of isothermal and cyclic oxidation on the apparent
interfacial toughness in thermal barrier coating systems

Y. Liua,b, V. Vidala,∗, S. Le Rouxa, F. Blasa,b, F. Ansartb, P. Loursa

a Université de Toulouse; CNRS, Mines Albi, INSA, UPS, ISAE; ICA (Institut Clement Ader); Campus Jarlard, F-81013 Albi, France
b CIRIMAT, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route
de Narbonne, 31062 Toulouse, Cedex 09, France

Keywords:
TBC systems
Oxidation
Interfacial indentation
EB-PVD
Spallation
Cracking

a b s t r a c t

In thermal barrier coatings (TBCs), the toughness relative to the interface lying either between the bond
coat (BC) and the Thermal Grown Oxide (TGO) or between the TGO and the yttria stabilized zirconia
topcoat (TP) is a critical parameter regarding TBCs durability. In this paper, the influence of aging condi-
tions on the apparent interfacial toughness in Electron Beam-Physical Vapor Deposition (EB-PVD) TBCs
is investigated using a specifically dedicated approach based on Interfacial Vickers Indentation (IVI), cou-
pled with Scanning Electron Microscopy (SEM) observations to create interfacial cracks and measure the
extent of crack propagation, respectively.

1. Introduction

Thermal barrier coatings (TBCs) are typically used in key indus-
trial components operating at elevated temperature under severe
conditions such as gas turbines or aero-engines, to effectively pro-
tect and isolate the superalloy metal parts, for instance turbine
blades, against high temperature gases. Even though TBCs allow
drastic improvement of component performance and efficiency
[1,2], thermal strains and stresses resulting from transient thermal
gradients developed during in-service exposure limit the durabil-
ity of the multi-material system. TBCs exhibit complex structure
and morphology consisting of three successive layers, deposited or
formed on the superalloy substrate (Fig. 1), i.e. (i) the bond coat
standing as a mechanical bond between the substrate and the top-
coat; (ii) the Thermally Grown Oxide (TGO), an Al2O3 scale that
forms initially by pre-oxidation of the alumina-forming bond coat
then slowly grows upon thermal exposure to protect the substrate
from further high temperature oxidation and corrosion; (iii) The
ceramic topcoat (TC), made of yttria-stabilized-zirconia (YSZ), the
so-called thermal barrier coating itself whose role is mainly to insu-
late the superalloy substrate from high temperatures.

∗ Corresponding author. Fax: +33 0 5 63 49 32 42.
E-mail address: Vanessa.Vidal@mines-albi.fr (V. Vidal).

Electron Beam Physical Vapor Deposition (EB-PVD) and Air
Plasma Spray (APS) are the two major coating processes imple-
mented industrially for depositing YSZ. They generate different
morphologies and microstructures and consequently different
thermal and mechanical properties. The columnar structure, typical
of the EB-PVD deposition, shows an optimal thermal-mechanical
accommodation of cyclic stress resulting in high lateral strength.
However, elongated (high aspect ratio) inter-columnar spaces
roughly normal to the TBC, assist thermal flux conduction and pen-
etration through the top-coat, which detrimentally increases the
thermal conductivity of the system which can reach 1.6 W/m·K. APS
TBCs are characterized by a lamellar structure, intrinsically much
more efficient in terms of thermal insulation (conductivity as low as
0.8 W/m·K) but less resistant to in-plane cyclic mechanical loading.

Regardless of the coating process, TBCs can suffer in-service
damage as a consequence of the synergetic effect related to
mechanical stress, high temperature and thermally activated
growth of interfacial alumina. Failure can either occur cohesively
within the top coat for APS TBCs or adhesively at interfaces between
successive layers in EBPVD TBCs. Degradation of such systems usu-
ally occurs through the spallation of the topcoat resulting from
severe delamination either at the BC/TGO or the TGO/TC interface.
The resistance to spallation is intimately related to the capacity of
interfaces of the complex TBC system to sustain crack initiation and
propagation, which can be evaluated by measuring the interfacial
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Fig. 1. SEM micrographs in cross-section of an EB-PVD TBC specimen.

toughness. Several methods have been proposed to achieve interfa-
cial fracture toughness measurement for various substrate/coating
systems, including “four point bending test” [3], “barb test” [4],
“buckling test” [5], “micro-bending test” [6] and various inden-
tation techniques [7–11]. This paper proposes to implement the
Vickers hardness technique to estimate the interfacial toughness
in EB-PVD TBCs as well as its evolution upon various isothermal
and cyclic aging conditions. As a matter of fact, aging may provoke
microstructural changes and residual stress development prone
to enhance crack initiation and propagation. A tentative correla-
tion between the conditions of aging, the induced microstructural
changes and the concomitant evolution of toughness, necessary to
understand and predict the durability of TBC systems, is detailed.

2. Materials and testing conditions

TBC systems processed by EB-PVD (150 �m thick), are pro-
vided by SNECMA-SAFRAN. Topcoats and bond-coats are industrial
standards, respectively made of yttria stabilised zirconia (namely
ZrO2-8 wt.% Y2O3) and �-(Ni,Pt)Al. Substrates are AM1 single crys-
tal Ni-base superalloy disks, with a diameter of 25 mm and a
thickness of 2 mm. All specimens are initially pre-oxidised to pro-
mote the growth of a thin protective Al2O3 scale. Samples are cut,
polished and subsequently aged using various oxidation conditions
prior to interfacial indentation. In addition to the as-deposited con-
dition, two series of results are analyzed separately. The first series
is relative to isothermal oxidation, following 100 h exposure at
1050 ◦C, 1100 ◦C and 1150 ◦C respectively. As the exposure time
is kept constant, the influence of the oxidation temperature can be
specifically analysed. The second series, performed at a given tem-
perature, (1100 ◦C) is dedicated to compare isothermal and cyclic
oxidation behavior. Here again, the hot time at 1100 ◦C (i.e., 100 h),
is the same for both tests. Fig. 1 shows the typical cross-sectional
microstructure of an initial as-deposited EB-PVD TBC. Note that,
after aging, a slight additional grinding is often required to prepare
thoroughly the surface for interfacial indentation.

3. Interfacial indentation test

Various types of interfacial or surface indentation tests exist.
They are performed either on the top surface of specimens, normal
to the coating [12], or on cross-section, either within the substrate
close to the interface [13] or at the interface between the substrate
and the coating [9]. The latter, further developed in [14], employs a
pyramidal Vickers indenter and can be applied for a large range of

Fig. 2. Schematic representation of the intercept graphical method to determine the
critical load required to generate interfacial crack [Ln(a) and Ln(b) are, respectively,
plotted versus Ln(P)].

coating thicknesses (greater than ∼100 �m). Typically, it is specif-
ically used for investigating adhesion of TBC systems [7,8,14,15].
The principle of interfacial indentation is to accurately align one
diagonal of the Vickers pyramid with the interface between the
substrate and the coating while loading the system to hopefully
generate the local delamination of the coating. In this case, result-
ing from the application of a high enough indentation force, an
induced crack with roughly semi-circular shape instantaneously
propagates. For a given aging condition, each indentation force P
greater than a critical force Pc that must be estimated, generates a
crack with radius a and an indent imprint with radius b. Pc and cor-
relatively the critical crack length ac can not be determined using
straightforward measurements but graphically correspond to the
coordinates of the intercept between the apparent hardness line
Ln(b)–Ln(P) showing the evolution of the imprint size versus the
indentation force (master curve), and the Ln(a)–Ln(P) line giving
the evolution of the crack size versus the indentation force (Fig. 2).
The apparent interfacial toughness (Kca) is calculated as a function
of the critical values according to the following relationship:

Kca = 0.015
Pc
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where B and T stand, respectively, for the bondcoat and the topcoat.
In standard TBC systems, the thickness of the TGO is generally

low, typically ranging from 0.7 �m (after initial pre-oxidation) to
7 �m (after long term exposure at high temperature), and is in any
case much lower than the imprint of the indent resulting from the
force range used for coating delamination purpose (Fig. 3). As a
consequence, the influence of the TGO in terms of mechanistic issue
is deliberately neglected [7]. However, it will be shown later that
the thickness of the TGO has an influence on the location of the
crack initiation and subsequently the propagation path.

4. Determination of Young’s modulus and hardness

Young modulus E and hardness H strongly depend on the
chemical composition and the process-induced microstructure of
materials. In multi-materials such as TBCs, those mechanical char-
acteristics change as composition changes throughout the entire
thickness of the multi-layered system. If the nature of the single
crystal substrate is essentially not affected by the overall deposition
process, the morphology and microstructure of the top coat and to
a lesser extent of the bond coat are strongly related to processing



Fig. 3. SEM micrograph of indented samples oxidised 100 h at 1150 ◦C (a) inden-
tation charge 0.981 N (corresponding to 100 g); (b) indentation charge 2943 N
(corresponding to 300 g).

which in turn affects the mechanical properties. Strictly speak-
ing, the mechanical response of the system to interfacial loading
should depend on the elastic and plastic properties of all materi-
als involved including that of the thermally grown oxide. However,
a measurement of E and H of the growing oxide is not possible by
means of standard micro and nano-indentation. The model detailed
in [14] requires the knowledge of these characteristic parameters
for the substrate and the coating. Accordingly, the TGO is assumed
to play the role of a (three-dimensional) interface, thickening as
temperature exposure increases and promoting, when loaded, spal-
lation along the (two-dimensional) interface it shares with either
the topcoat or the bond coat. Young modulus of the top coat ET and
hardness of both the bond coat HB and the topcoat HT are measured
using the nano-indentation technique, implementing a Berkovich
indenter. Details of the method can be found in [16]. Basically, con-
sidering the indentation force applied, hardness is evaluated by a
simple and direct measurement of the indent imprint dimensions.
Young’s modulus is calculated by analyzing the purely elastic recov-
ery of the plot relating the evolution of the applied force versus the
in-depth displacement. For statistical reasons, hardness and Young
modulus have been measured on 10 different locations within the

Fig. 4. Determination of critical loads to initiate interface cracking by Vickers inden-
tation where a and b are plotted versus P using logarithmic scale.

bond coat and top coat respectively. Average values, experimentally
determined, are given below:

• EB = 133 GPa
• ET = 70 GPa
• HB = 5.15 GPa
• HT = 4.14 GPa

5. Results and discussion

Typical examples of interfacial indentation results are given in
Fig. 3. The indent imprint alone (Fig. 3a) or the indent imprint
plus the induced crack (Fig. 3b) are shown for cases where
the critical force to provoke crack formation is not reached or
exceeded,respectively.

Fig. 4 gathers all data collected from experiments on as-
deposited and isothermally oxidised TBCs. The linear relationship
between Ln(P) and Ln(b), plotting the so-called master curve of
apparent hardness, with a slope close to 0.5 is in good agreement
with the general standard formula relating the Vickers hardness
(HV) of bulk materials to the ratio between the applied load P and
the square of the indent diagonal length b2. For a given oxidation
temperature, the variation of the length a of the indentation-
induced crack versus the applied load P also fits a single regression
line on a Log–Log scale which can serve (as indicated in Section
3) to evaluate the critical load Pc necessary to initiate interfacial
detachment. Note that for aged specimens, the critical force Pc (cor-
responding to the abscissa of the intercept between the master
curve and Ln(P) vs Ln(a) plot) decreases as the oxidation temper-
ature increases, thus indicating a thermally activated degradation
of the interface. As a comparison, the as-deposited TBC can sustain
much higher load prior to suffer interfacial debonding. Quantita-
tively, the critical force is respectively 0.3 N for 100 h oxidation at
1150 ◦C, 0.8 N for 100 h oxidation at 1100 ◦C, 2 N for 100 h oxidation
at 1050 ◦C and about one order of magnitude higher (up to 16 N)
for the as-deposited non oxidized TBC.

Using Eq. (1) and according to the values of E and H reported
in Section 4, the apparent interfacial toughness is calculated and
detailed in Fig. 5 for all investigated cases. Of course, correla-
tively to the thermally activated decrease of the critical force
discussed above, toughness also decreases as the oxidation tem-
perature increases. Besides, it was shown elsewhere [7] that for
a given oxidation temperature, the interfacial degradation was
similarly time-dependent too. This unambiguously shows that the
propensity of the coating to detach from the substrate results from
complex solid-state diffusion processes that impair the mechan-



Fig. 5. Variation of interfacial toughness as a function of aging temperature.

ical strength of the interface through the formation of interfacial
voids, local or extended rumpling or growth of oxide excrescences.
As to compare to reference values taken from literature, the cal-
culated interfacial toughness expressed in MPa.m0.5 are converted
into energy release rate G expressed in J.m−2. It comes that the
as-deposited TBC exhibits a energy release rate G of 72.7 J.m−2,
satisfactorily similar to that measured for EB-PVD TBCs by Eberl
et al. (57.3 ± 21.5 J.m−2) using a flexural test [6], and to a lesser
extent by Sniezewski et al. (45 J.m−2) using interfacial indentation
[17]. Generally speaking, values obtained from our experiments are
consistent with results, reported in the literature, obtained using
various experimental means including interfacial indentation, flex-
ural test.

Beyond the mechanistic approach, the fractographic analysis
gives interesting information on the mechanisms of crack initia-
tion and further propagation, which can both vary depending on
the aging conditions. Indeed, the enhancement of thermal activa-
tion as the oxidation temperature is raised results in the growth of
a thicker alumina scale at the interface between the bond coat and
the top coat. For as-deposited TBCs and TBCs aged at 1050 ◦C, (i.e.,
for thin Al2O3 oxide scales, respectively 0.5 �m and 1.8 �m), cracks
propagate preferentially along the interface between the TGO and
the top coat. Conversely for TBC aged at 1100 ◦C and 1150 ◦C, with
thick Al2O3 oxide scales (3.4 �m and 5.3 �m, respectively), cracks
propagate predominantly along the TGO/bond coat interface.

This observation is consistent with results reported by Mumm
et al. [18], using wedge imprint to generate delamination. It was
shown that when the oxide thickness is lower than 2.9 �m, delam-
ination extends predominantly within the TGO and TBC, whereas
for thicknesses higher than 2.9 �m, degradation occurs along the
interface between the bond coat and the TGO. Fig. 6 proposes a com-
prehensive map of cracking, which delimitates – within a graph
plotting oxide thickness versus oxidation temperature – the two
domains of initiation and propagation, either at the BC/TGO or
the TGO/TC interfaces. These two domains consistently extend on
either side of the critical thickness value proposed by Mumm et al.
as the threshold for crack propagation at the TGO/bond coat inter-
face. Note that the diagram includes oxide thicknesses measured
for as-deposited, isothermally oxidized and cyclically oxidized
(100 “1 h” cycles at 1100 ◦C) specimens. The oxide thickness was
accurately estimated using image analysis on cross-sectional SEM
micrographs showing the TGO layer, by dividing the total area of the

layer (expressed in �m2) by the developed length of its median axis
(expressed in �m). It was evaluated on thirty contiguous micro-
graphs representing an equivalent length of 4.8 mm [19].

Mechanism of crack initiation and propagation is strongly
related to the stress level and distribution within the multi-layer
system. Apart from oxide growth stress (due to volume change dur-
ing oxide growing), the main cause of mechanical strain and stress
is the thermal expansion mismatch between layers of different
thermal expansion coefficient during cooling and thermo-cycling.
It is particularly critical upon cyclic oxidation as cumulative heating
plus cooling is prone to dramatically enhance degradation. Under
isothermal exposure, oxide growth stresses may be considered as
the predominant contribution. According to Baleix et al. [20], the
spallation at the metal/oxide interface system in a Cr2O3 forming
heat resistant cast steels, occurs through the so-called oxide buck-
ling for scale thickness equal or higher than 4 �m. In the frame
of the strain-energy model for spallation, it is shown in this case
that the interfacial fracture energy for buckling decreases from
5 J.m−2 to 2 J.m−2 as the oxide thickens from 7 �m to 9 �m. This
suggests a progressive degradation of the interface as the oxidation
mechanisms are enhanced through an extended exposure time.

Fig. 6. Map of cracking as a function of oxidation conditions based on oxide thick-
ness criterion. � and ×dots correspond to TGO thickness for isothermal (100 h) and
cyclic (1100 ◦C-100 cycles-1 h) oxidation, respectively.



Fig. 7. Cross-sectional SEM micrographs of specimens (a) as deposited, (b) aged 100 h at 1050 ◦C, (c) aged 100 h at 1100 ◦C, (d) aged 100 h at 1150 ◦C, (e) variation of interfacial
folding index as a function of aging conditions. Note that cracks locate preferentially at the TGO-topcoat interface for as-deposited specimen and specimens aged at 1050 ◦C
(relevant parameter Lsup/L) and at the bon coat/TGO interface for specimens aged at 1100 ◦C and 1150 ◦C (relevant parameter Linf/L).

Formally, buckling of oxide prior to detachment for the onset to
spallation is very comparable to the generation of cracks at the
interface between the bond coat and the TGO promoted by inden-
tation in TBCs systems. Indeed, depending on the oxide thickness
and the strength of the metal oxide interface, two different routes
for spallation are generally reported. In the case of a strong inter-
face for thin oxides, i.e., a high toughness or high fracture energy,
compressive shear cracking develops in the oxide. Consequently,
detachment of oxide particles occurs by wedge cracking. In the case
of a weak interface for thicker oxides, i.e., low toughness or fracture
energy, the oxide may detach from the metal in the form of buckles.
Evans et al. [21] showed elsewhere that the energy stored within
the TGO increases as the TGO thickens, and contributes only to the
delamination at the TGO/bond coat interface. As a consequence,
the fracture energy or toughness of the interface TGO/bond coat
may decrease as the oxidation proceeds and the oxide thickens.
Beyond a given oxide thickness threshold, namely around 3 �m for
150 �m thick EB-PVD TBCs, the toughness of the TGO/bond coat
interface becomes lower than that, essentially unchanged, of the
TGO/topcoat interface, yielding to a change in delamination loca-
tion.

In addition, as indicated in Fig. 2, the slopes of the various
lines plotted for various conditions of aging in order to determine
the critical force to initiate interfacial cracking are different. This
clearly indicates that whatever the critical force is, the possibility to
extend a crack requires more or less mechanical energy depending
on the configuration, i.e., the specific morphology of the inter-
face. To address this, a straightforward image analysis methodology
detailed in [19] is applied on SEM cross-sectional micrographs to
determine the roughness of the internal interfaces, between the
bond coat and the TGO, and the TGO and the top coat (Fig. 7).

According to this approach, a rumpling or folding index is
defined as the ratio between the developed length of the interface
and the horizontal projected length measured on 30 contiguous
micrographs corresponding to an equivalent length of 4.8 mm. This
index is a relevant indicator of the tortuosity of the interfaces. Fig. 7
gives values for both the TGO- top coat interface (upper profile),
the bond coat – TGO interface (lower profile) as well as normalised
values (obtained by dividing the values by the reference one (as-

deposited TBC)). Both isothermal aging (100 h at 1150 ◦C, 1100 ◦C
and 1050 ◦C) and cyclic aging (100 cycles of 1 h at 1100 ◦C) are inves-
tigated. Cross-sectional SEM micrographs illustrating the evolution
of the thickness and morphology of the TGO for various isothermal
oxidation temperatures are also shown in Fig. 7. Note that the inter-
facial corrugation of the as-deposted TBC is significant, both for the
upper and lower profles, which accounts directly for the rough-
ness of the initial substrate. However, the upper profile is slightly
smoother than the lower profile, suggesting a leveling effect of the
initial oxidation intrinsic to the EB-PVD deposition process. In all
cases, aging results in an enhancement of the upper profile tortu-
osity: the higher the oxidation temperature, the more pronounced
the associated folding effect. The evolution of the lower profile is
more complex to analyze. Indeed, aging at 1050 ◦C leads to a sig-
nificant decrease (about 10%) with respect to the initial value of
the as-deposited TBC. The interface between the oxide and the
bond coat becomes smoother as oxidation progresses, indicating
a total absence of interfacial folding. This observation is not con-
sistent with results presented in [22] reporting the occurence of
rumpling even under isothermal oxidation. For aging at 1100 ◦C
and 1150 ◦C, Linf/L – though remaining lower than the reference
value – is higher than at 1050 ◦C. Note that for cyclic oxidation at
1100 ◦C, the tortuosity of the bond coat/TGO interface is slightly
greater than that of the reference, as-deposited TBC and of the TBC
aged at the same temperature over the same hot time upon isother-
mal oxidation (Fig. 7). Globally speaking, the normalised folding
index indicating the propensity of the multi-materials sytem to
rumpling remains lower than 1 for the interface between the bond
coat and the TGO. This clearly indicates that oxidation over short
term exposure, either isothermal or cyclic, does not provoke any
corrugation of the interface. In contrast, the interface between the
TGO and the top coat tends to undulate as it is exposed to high tem-
perature either upon isothermal or cyclic conditions. It is however
unusual to evaluate rumpling considering the interface between
the TGO and the top coat. It is much more common to monitor
the evolution of the bond coat/TGO interface. It can be assumed
that (i) rumpling is negligible, or at least little pronounced, under
isothermal oxidation, (ii) thermal aging under 100 cycles – though
prone to generate more degradation than isothermal exposure – is



not sufficient to provoke significant rumpling. Though equivalent
in terms of hot-time, cyclic oxidation (1 h-cycle) does not degrade
further the interfacial toughness nor the tortuosity of the interface
which, taking into account the assumed severity, highly constrain-
ing effect of the cooling phases of cycles, is probably due to the low
number of cycles imposed to the TBC.

Folding effects and subsequent cracks propagation routes can be
related to the evolution of oxide thickness. Indeed, for thin oxides,
typically with thickness lower than 2.9 �m, for the as-deposited
and 1050 ◦C oxidised TBC, indentation-induced cracks initiate and
further propagate at the TGO – top coat (outer) interface which
exhibits in both cases apparent toughness higher than 3 MPa.m0.5.
This suggests a high adherence of the TGO in good agreement with
previous results commonly reported in the literature. Between the
reference, as-deposited TBC and the TBC oxidised at 1050 ◦C, a huge
difference in the folding index is however noted. It is almost 20%
higher in the second case as a consequence of a significant rough-
ening of the interface upon oxidation. Though the location of crack
initiation and propagation is the same for the two conditions; the
evolution of the indentation force versus the size of crack produced
is highly specific of each case as it is directly relative to the tor-
tuosity of the interface. Indeed the increase in force is much less
pronounced for the smoothest interface corresponding to the case
of the as-deposited non-aged TBC and reciprocally.

For oxides thicker than 2.9 �m, in the case of TBC oxidised at
1100 ◦C and 1150 ◦C, indentation-induced cracks propagate at the
bond coat/TGO (inner) interface. For the two cases, the apparent
toughness of the involved interface is lower than 2.6 MPa.m0.5.
While thickening, the alumina scale progressively looses adhesion
from the bond coat, which transfers the location of crack initia-
tion and propagation accordingly to commonly admitted models
for spallation. The folding index of this inner interface is similar in
both cases and very close to that of the outer interface of the as-
deposited TBC. This results in a similar tortuosity of the interfaces
(either inner or outer), where cracks form and extend and accounts
for the similar evolution of the “required force” versus “size of crack
produced” plots, experimentally established.

While thickening, the thermally grown oxide develops non uni-
formely as clearly shown on micrographs in Fig. 7. Preferential
growth of oxide can occur in zones, typically within intercolumnar
spaces of the EB-PVD TBC, where the oxidation kinetics is faster as
more room is available for oxide to develop. The interface profile
generated by this inhomogeneous growth shows local excresences,
clearly visible in Fig. 7c. The occurrence of such protrusions, whose
formation is thermally activated can have various consequences –
with opposite effects – on the mechanical strenght of the interface.
Indeed, an increase in interface tortuosity may contribute to a loss
of adhesion as the result of local mechanical stresses and stress con-
centration responsible for enhanced crack initiation. Once initiated
and to further degrade the system, cracks have to propagate. How-
ever, it is assumed that the presence of local excrescences acting as
mechanical pegs can limit the propagation, thus preventing from
early spallation.

6. Conclusion

The adhesion and counterpart spallation of EB-PVD TBC systems
is investigated using various approaches including isothermal and
cyclic oxidation at various temperatures and interfacial indentation
of both as-deposited and oxidized systems. This former character-
ization is dedicated to evaluate the apparent toughness shown by
the interface between the inner bond coat (�-NiPtAl) and the outer
top coat (Yttria-Stabilised Zirconia) before and after thermal aging
or cycling. For the as-deposited TBC, only short-term pre-oxidized
to promote the formation of a dense, slowly growing alumina

scale acting as diffusion barrier, the interfacial TGO is rather thin
(less than 0.5 �m). Upon aging, the TGO layer grows according to
a roughly parabolic kinetics. In all cases, two distinct interfaces
formed between the bond coat and the TGO (inner interface), and
the TGO and the top coat (outer interface), respectively, must be
considered. Driven by the growth of the TGO layer, both inter-
faces undergo morphological and roughness changes as the TGO
thickens. The tortuosity of the interfaces, observed by SEM in cross-
sections, is quantified by a folding or rumpling index estimated
using image analysis. It is shown that both the oxide thickness and
the folding index of the inner and outer interfaces, have a strong
impact on the localization of the indentation-induced crack initia-
tion, the path for propagation of crack once initiated and the ease or
difficulty for crack to propagate. The apparent toughness deduced
from interfacial indentation decreases as the 100-h isothermal-
oxidation temperature increases from 1050 ◦C to 1150 ◦C indicating
a progressive, thermally activated propensity for the degradation
of TBC systems, as obviously expected. Apparent interfacial tough-
ness controlled by interfacial roughness, TGO thickness and mostly
by the temperature and time of isothermal or cyclic oxidation is a
key parameter to address the mechanics and mechanisms of crack
initiation and propagation prior to detrimental spallation of TBC
systems. This is of course not the sole parameter entering in the
implementation of possible models to predict TBC lifetime. Fur-
ther improving the understanding of TBC behavior under severe
oxidation exposure would require considering the fine variations
of microstructural details and the evolution of the stored elastic
strain energy, within each individual layer (Ni base single crys-
tal, �-NiPtAl bond coat, Al2O3 TGO and Yttria-Stabilised-Zirconia)
and from one constitutive layer to another, as well as the substrate
geometry to get closer to real in-service conditions.
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