Proper base change over henselian pairs

Massimo Pippi

To cite this version:

Massimo Pippi. Proper base change over henselian pairs. 2017. hal-01610906

HAL Id: hal-01610906
 https://hal.science/hal-01610906

Preprint submitted on 5 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Proper base change over henselian pairs

Massimo Pippi

Université Paul Sabatier
UMR 5219 du CNRS
Institut de Mathématiques de Toulouse
118 route de Narbonne
F-31062 TOULOUSE Cedex 9
E-mail address: Massimo.Pippi@math.univ-toulouse.fr
ORCID ID: 0000-0002-5660-3156
The author is supported by the NEDAG PhD grant ERC-2016-ADG-741501 ${ }^{1}$
Mathematics Subject Classification: 14F20

Abstract

We discuss a question which appears in [Séminaire de Géométrie Algébrique du Bous Marie- Théorie des topos et cohomologie étale des schémas, Exposé XII, Remarks 6.13] concerning proper base change. In particular, we propose a solution in a particular non-affine case.

1 Introduction

The question we would like to answer is the following one ${ }^{2}$:
Question 1. Let $\left(X, X_{0}\right)$ be an henselian couple (in the sense of Definition 1). Is it true that (ii) and (iii) in [2, Exposé XII, Proposition 6.5] hold with $\mathbb{L}=\mathbb{P}$ and for every n ?

This question appears in [2, Exposé XII, Remarks 6.13].
We can restate it as follows:
Question 2. Let $\left(X, X_{0}\right)$ be an henselian couple. Is it true that
a. the base change functor induces an equivalence between the category of étale coverings of X and the category of étale coverings of X_{0} ?
b. for any torsion étale sheaf \mathscr{F} and for any integer n, the morphism

$$
H^{n}(X, \mathscr{F}) \longrightarrow H^{n}\left(X_{0}, \mathscr{F}_{\mid X_{0}}\right)
$$

is an isomorphism?

[^0]Remark 1. 1. When X is proper and finitely presented over an henselian $\operatorname{ring}(A, m)$ and $X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / m)$, we know that the answer to Question 1 is affirmative. This is the proper base change theorem in étale cohomology.
2. The case $\left(X, X_{0}\right)=(\operatorname{Spec}(A), \operatorname{Spec}(A / I))^{3}$, for (A, I) an henselian pair was studied an solved by R. Elkik in [4] and by O. Gabber in [5].

We propose a solution in the following situation:
$(\dagger) \quad$ Let X be proper over a noetherian affine scheme $\operatorname{Spec}(A)$ and $X_{0}=$ $X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)$ for some ideal $I \subseteq A$.

We will see that, under these assumptions, $\left(X, X_{0}\right)$ is an henselian couple for which Question 1 has a positive answer. To achieve this, we will first generalize [1, Theorem 3.1] to the following form:

Theorem 1. Let (A, I) be an henselian pair. Let $S=\operatorname{Spec}(A)$ and let f : $X \longrightarrow S$ be a proper finitely presented morphism. Let $X_{0}=X \times_{S} S_{0}$, where $S_{0}=\operatorname{Spec}(A / I)$. Then

$$
\begin{gathered}
E^{\prime} t_{f}(X) \longrightarrow \overline{E ́ t}_{f}\left(X_{0}\right) \\
Z \mapsto Z \times_{S} S_{0}
\end{gathered}
$$

is an equivalence of categories.
Here $E t_{f}(W)$ denotes the category of finite étale schemes over W. The key tools for the proof are Artin's approximation theory and [12, Tag 0AH5], which combined with [1, Corollary 1.8] yields the following theorem
Theorem 2. Let (A, I) be an henselian pair with A noetherian. Let \hat{A} be the I-adic completion of A and assume that one of the following hypothesis is satisfied:

1. $A \longrightarrow \hat{A}$ is a regular ring map;
2. A is a G-ring;
3. (A, I) is the henselization ${ }^{4}$ of a pair (B, J), where B is a noetherian G ring.
Let \mathscr{F} be a functor which is locally of finite presentation ${ }^{5}$

$$
\text { A-algebras } \longrightarrow \text { Sets }
$$

Given any $\hat{\xi} \in \mathscr{F}(\hat{A})$ and any $N \in \mathbb{N}$, there exists an element $\xi \in \mathscr{F}(A)$ such that

$$
\xi \equiv \hat{\xi} \bmod I^{N}
$$

i.e. ξ and $\hat{\xi}$ have the same image in $\mathscr{F}\left(A / I^{N}\right) \cong \mathscr{F}\left(\hat{A} / \hat{I}^{N}\right)$

[^1]Remark 2. In Theorem 2 we have that $3 . \Rightarrow$ 2. \Rightarrow 1. See [12, Tag 0AH5].
Remark 3. Theorem 1, joined with [5, Corollary 1], gives us a positive answer to Question 1 when $\left(X, X_{0}\right)$ is proper and finitely presented over an henselian pair. Moreover, we will see how we can always reduce to this case from situation (\dagger).

2 Proof of Theorem 1

This proof is an adaption of the one given in the local case by Artin (see [1, Theorem 3.1]). This generalization is possible thanks to Popescu's characterization of regular morphisms between noetherian rings, which provides us Theorem 2 as a corollary.
First we reduce to the case where A is the henselization of a finitely presented \mathbb{Z}-algebra. in order to do this, we need the following two preliminary lemmas.

Lemma 1. Let $S=\operatorname{Spec}(A)$ and let $g: X \longrightarrow S$ be a proper morphism of finite presentation. Then the functor

$$
\mathscr{F}: \text { A-Algebras } \longrightarrow \text { Sets }
$$

$$
B \mapsto\left\{\text { finite étale coverings of } \operatorname{Spec}(B) \times_{S} X\right\} / \text { isomorphism }
$$

is locally of finite presentation.
Proof. See the beginning of the proof of [1, Theorem 3.1].
Lemma 2. Let $S=\operatorname{Spec}(A)$ and let $g: X \longrightarrow S$ be a proper morphism of finite presentation. Let $Z_{1} \rightarrow X$ and $Z_{2} \rightarrow X$ be two finite étale covers of X. Then the functor

$$
\begin{gathered}
\mathscr{G}: A \text {-algebras } \longrightarrow \text { Sets } \\
B \mapsto \operatorname{Hom}_{X \times_{S} \operatorname{Spec}(B)}\left(Z_{1} \times_{S} \operatorname{Spec}(B), Z_{2} \times_{S} \operatorname{Spec}(B)\right)
\end{gathered}
$$

is locally of finite presentation.
Proof. The lemma is a straightforward consequence of [7, Theorem 8.8.2.(i)].
Let (A, I) be an henselian pair and write A as a direct $\operatorname{limit} \underset{\rightarrow}{\lim } A_{i}$, where each A_{i} is a subalgebra of A that is finitely generated over \mathbb{Z}. Let $\left(\overrightarrow{A_{i}^{h}},\left(I \cap A_{i}\right)^{h}\right)$ be the henselization of $\left(A_{i},\left(I \cap A_{i}\right)\right)$ for each i. Then by [11, Chapter XI, Proposition 2] $\underset{\longrightarrow}{\lim }\left(A_{i}^{h},\left(I \cap A_{i}\right)^{h}\right)$ is an henselian pair. It is easy to see that

$$
(A, I)=\underset{\longrightarrow}{\lim }\left(A_{i}^{h},\left(I \cap A_{i}\right)^{h}\right)
$$

Write $S_{i}=\operatorname{Spec}\left(A_{i}^{h}\right)$ for every index i. Then

$$
S=\underset{\swarrow}{\lim } S_{i}
$$

By [7, Thereom 8.8.2. (ii)] we know that X comes from a finitely presented scheme $X_{i_{0}}$ for some index i_{0}, i.e. $X \cong X_{i_{0}} \times{ }_{S_{i_{0}}} S$. Moreover, by [7, Theorem 8.10.5], we can assume that $X_{i_{0}}$ is also proper over $S_{i_{0}}$. As the functor

$$
\mathscr{F}: A_{i_{0}}^{h}-\text { Algebras } \longrightarrow \text { Sets }
$$

$B \mapsto\left\{\right.$ finite étale coverings of $\left.\operatorname{Spec}(B) \times{ }_{S_{i_{0}}} X_{i_{0}}\right\} /$ isomorphism
is locally of finite presentation, we have that

$$
\mathscr{F}(A)=\underset{\longrightarrow}{\lim } \mathscr{F}\left(A_{i}^{h}\right)
$$

Therefore, every finite étale cover of X comes from a finite étale cover of $X_{i}=$ $S_{i} \times{ }_{S_{i}} X_{i_{0}}$ for a suitable index i.

Remark 4. All schemes $X_{i_{0}} \times{ }_{S_{i_{0}}} S_{i}$ and $X \cong X_{i_{0}} \times{ }_{S_{i_{0}}} S$ are quasi-compact and quasi-separated, as they are proper over affine schemes.

Let $Z \rightarrow X$ and $W \rightarrow X$ be two finite étale covers of X. Then we can assume without loss of generality that they come from two finite étale covers $Z_{i_{0}} \rightarrow X_{i_{0}}, W_{i_{0}} \rightarrow X_{i_{0}}$. Then by Lemma 2 we see that

$$
\underset{\longrightarrow}{\lim } \operatorname{Hom}_{X_{i}}\left(Z_{i}, W_{i}\right)=\operatorname{Hom}_{X}(Z, W)
$$

It is then clear that we can reduce the proof of Theorem 1 to the case where (A, I) is the henselization of a pair (B, J), where B is finitely generated over \mathbb{Z}. In particular, B is a G-ring and Theorem 2 holds.

Lemma 3. The functor in Theorem 1 is essentially surjective.
Proof. Consider a finite étale morphism $X_{0}^{\prime} \longrightarrow X_{0}$. Label \hat{A} the completion of A with respect to the ideal I and let $\hat{S}=\operatorname{Spec}(\hat{A}), \hat{X}=X \times_{S} \hat{S}$. Notice that \hat{A} is a complete separated ring by Krull's theorem (see [3, Theorem 10.17]). By [8, Theorem 18.3.4], we have that the functor

$$
\begin{gathered}
E t_{f}(\hat{X}) \longrightarrow \dot{E} t_{f}\left(X_{0}\right) \\
Z \mapsto Z \times_{S} S_{0}
\end{gathered}
$$

is an equivalence of categories. Then there exists some $\left[\hat{X}^{\prime} \longrightarrow \hat{X}\right] \in \mathscr{F}(\hat{A})$ such that

$$
\hat{X}^{\prime} \times_{\hat{S}} S_{0} \cong X_{0}^{\prime}
$$

By Theorem 2 we get that there exists some finite étale morphism $X^{\prime} \longrightarrow X$ which is congruent modulo I to $\hat{X}^{\prime} \longrightarrow \hat{X}$, i.e.

$$
X^{\prime} \times_{S} S_{0} \cong X_{0}^{\prime}
$$

It remains only to show that the functor in Theorem 1 is fully faithful.

Lemma 4. The functor in Theorem 1 is fully faithful.
Proof. Let X^{\prime} and $X^{\prime \prime}$ be two finite étale schemes over X and let $\phi \in \operatorname{Hom}_{X}\left(X^{\prime}, X^{\prime \prime}\right)$. The morphism ϕ corresponds uniquely to its graph $\Gamma_{\phi}: X^{\prime} \longrightarrow X^{\prime} \times_{X} X^{\prime \prime}$, which is an open immersion as both X^{\prime} and $X^{\prime \prime}$ are of finite type over X and as $X^{\prime \prime}$ is étale over X (see [9, Corollaire 3.4]). Also notice that Γ_{ϕ} is a closed immersion (see [10, Exercise 3.3.10]). If we assume that X^{\prime} is connected and nonempty, ϕ corresponds uniquely to a connected component of $X^{\prime} \times_{X} X^{\prime \prime}$ of degree one over X^{\prime}. The degree of such a component can be measured at any point of X^{\prime}. We conclude therefore by applying the next lemma to a component of $X^{\prime} \times{ }_{X} X^{\prime \prime}$.
Lemma 5. X is nonempty and connected if and only if the same is true for X_{0}.

Proof. We are given the following cartesian square

If X is connected and nonempty, then $f(X) \subseteq S$ is a nonempty closed subset of S (as f is proper). Let J be an ideal of A that identifies $f(X)$. Let $f(x)=$ $p \in V(J)$ be a closed point of S. As I is contained in the Jacobson radical of A, the prime ideal p lies in S_{0}. Then

In particuar, X_{0} is nonempty. Furthermore, as this argument can be used for any connected component of X, if X is disconnected then also X_{0} is disconnected. Conversely, assume that X_{0} is disconnected. Label C_{0} a nonempty connected component of X_{0}. As the scheme X_{0} is quasi-compact, C_{0} is open and closed in X_{0}. Therefore, $C_{0} \longrightarrow X_{0}$ is a finite étale morphism. By Lemma 3, there exists a finite étale morphism $C \longrightarrow X$ which induces $C_{0} \longrightarrow X_{0}$. As C_{0} is connected and nonempty, the same is true for C. The morphism $C \longrightarrow X$ is therefore of degree 1 at every point of C. As it is also finite and étale, it is both an open and a closed immersion, i.e. C is a connected component of X. If $C=X$, we would get $C_{0}=X_{0}$, a contradiction. Then X is disconnected. Finally, it is clear that if X_{0} is nonempty, X is nonempty too.

Theorem 1 follows immediately from Lemma 3 and Lemma 4.

3 Henselian couples

Recall that an henselian pair (A, I) is a ring A together with an ideal $I \subseteq$ such that

1. I is contained in the Jacobson ideal of A;
2. for every finite A algebra B, there is a bijection between the set of idempotent elements of B and the set of idempotent elements of $B \otimes_{A} A / I$.
For more details, see [11].
Let (A, I) be an henselian pair. Then for every finite morphism $\operatorname{Spec}(B)=$ $X \longrightarrow S p e c(A)$, we have a bijection

$$
I d(B)=O f(X)=O f\left(X_{0}\right)=I d(B / I B) \quad \text { where } X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)
$$

Here $O f(Z)$ denotes the set of subsets of Z which are both open and closed. This fact suggests the following definition (see [8, Définition 18.5.5]), which is meant to generalize the notion of henselian pair to the non-affine setting.

Definition 1. Let X be a scheme and let X_{0} be a closed subscheme. We say that $\left(X, X_{0}\right)$ is an henselian couple if for every finite morphism $Y \longrightarrow X$ we have a bijection

$$
O f(Y)=O f\left(Y_{0}\right)
$$

where $Y_{0}=Y \times_{X} X_{0}$.
Remark 5. If X is locally noetherian, it is a consequence of [6, Proposition 6.1.4] and [6, Corollaire 6.1.9] that connected sets in $O f(X)$ (resp. $O f\left(X_{0}\right)$) are in bijection with $\Pi_{0}(X)$ (resp. $\Pi_{0}\left(X_{0}\right)$), the set of connected components of X (resp. X_{0}).
Remark 6. It is a consequence of [6, Corollary 5.1.8] that (X, X_{0}) is an henselian couple if and only if $\left(X_{r e d},\left(X_{0}\right)_{r e d}\right)$ is an henselian couple as well.

Remark 7. It is immediate to observe that if (A, I) is a pair and $(\operatorname{Spec}(A), \operatorname{Spec}(A / I))$ is an henselian couple, then I is contained in the Jacobson radical of A. In fact, if $m \subseteq A$ is a maximal ideal, then we have a bijection

$$
O f(\operatorname{Spec}(A / m))=O f\left(\operatorname{Spec}\left(A / m \otimes_{A} A / I\right)\right)
$$

In particular, $\operatorname{Spec}\left(A / m \otimes_{A} A / I\right)$ can not be the empty scheme. Therefore, as it is a closed subscheme of $\operatorname{Spec}(A / m)$, we must have an equality $\operatorname{Spec}(A / m)=$ $\operatorname{Spec}\left(A / m \otimes_{A} A / I\right)$, whence $I \subseteq m$. Moreover, if $Z \longrightarrow S p e c(A)$ is a finite morphism, then $Z=\operatorname{Spec}(B)$ is affine and the corresponding morphism $A \longrightarrow$ B is finite. Then we have bijections

$$
I d(B)=O f(\operatorname{Spec}(B))=O f(\operatorname{Spec}(B / I B))=I d(B / I B)
$$

We have just showed that an affine henselian couple is an henselian pair. The converse was observed at the beginning of this section.

Lemma 6. Let (A, I) be an henselian pair with A noetherian and let X be a proper A-scheme. Set $S=S \operatorname{pec}(A), S_{0}=S p e c(A / I)$ and let $X_{0}=X \times_{S} S_{0}$. Then $\left(X, X_{0}\right)$ is an henselian couple.

Proof. This is a trivial consequence of Theorem 1 and [2, Exposé XII, Proposition 6.5 (i)].

Lemma 7. Let X be a scheme and let X_{0} be a closed subscheme. Let A be a noetherian ring and assume that X is proper over $\operatorname{Spec}(A)$. Also assume that $X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)$ for some ideal $I \subseteq A$. Put $J=\operatorname{ker}(B=$ $\left.\mathscr{O}_{X}(X) \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)\right)$. If (B, J) is an henselian pair, then $\left(X, X_{0}\right)$ is an henselian couple.

Proof. Let $\left(A^{h}, I^{h}\right)$ be the henselization of the couple (A, I) given by [12, Tag 0A02]. Then we have the following diagram

which induces the following diagram of pairs:

The morphism ψ is the one induced by the universal property of $\left(A^{h}, I^{h}\right)$. As

$$
\operatorname{Hom}_{\text {Rings }}\left(A^{h}, B\right)=\operatorname{Hom}_{\text {Schemes }}\left(X, \operatorname{Spec}\left(A^{h}\right)\right)
$$

the homomorphism ψ identifies a unique morphism of schemes $\phi: X \longrightarrow$ $\operatorname{Spec}\left(A^{h}\right)$. Thus we get the following commutative diagram

Moreover, by [12, Tag 0AGU], we get that

$$
\gamma^{-1}(\operatorname{Spec}(A / I))=\operatorname{Spec}\left(A^{h} \otimes_{A} A / I\right)=\operatorname{Spec}\left(A^{h} / I^{h}\right)
$$

whence

$$
X \times_{\operatorname{Spec}\left(A^{h}\right)} \operatorname{Spec}\left(A^{h} / I^{h}\right)=X_{0}
$$

Therefore, the couple $\left(X, X_{0}\right)$ lies over the henselian couple $\left(\operatorname{Spec}\left(A^{h}\right), \operatorname{Spec}\left(A^{h} / I^{h}\right)\right)$. Furthermore, A^{h} is a noetherian ring (see [12, Tag 0AGV]). Finally, as f is a proper morphism and γ is separated, we get that ϕ is proper as well by [10, Proposition 3.3.16]. Then we can conclude that $\left(X, X_{0}\right)$ is an henselian couple by the previous lemma.

The previous lemma tells us that, under some appropriate hypothesis, if the pair

$$
\left(\mathscr{O}_{X}(X), \operatorname{ker}\left(\mathscr{O}_{X}(X) \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)\right)\right)
$$

is henselian, then $\left(X, X_{0}\right)$ is an henselian couple. It is natural to ask if the converse is true, i.e. if given an henselian couple $\left(X, X_{0}\right)$ the associated pair is henselian. An answer is provided by the next lemma.

Lemma 8. Let X be a quasi-compact and quasi-separated scheme and let i : $X_{0} \longrightarrow X$ be a closed immersion such that $\left(X, X_{0}\right)$ is an henselian couple. Then $(B, J)=\left(\mathscr{O}_{X}(X), \operatorname{ker}\left(\mathscr{O}_{X}(X) \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)\right)\right)$ is an henselian pair.

Proof. By [12, Tag 09XI], it is sufficient to show that for every étale ring map $B \longrightarrow C$ together with a B-morphism $\sigma: C \longrightarrow B / J$, there exists a B morphism $C \longrightarrow B$ which lifts σ.
Consider the cartesian diagram

As $\operatorname{Spec}(C) \longrightarrow \operatorname{Spec}(B)$ is étale and separated, the morphism $X_{C} \longrightarrow X$ is étale and separated as well. Then, by [8, Proposition 18.5.4], we have a bijection

$$
\Gamma\left(X_{C} / X\right) \longrightarrow \Gamma\left(X_{C} \times_{X} X_{0} / X_{0}\right)
$$

between the sections of $X_{C} \longrightarrow X$ and those of $X_{C} \times_{X} X_{0} \longrightarrow X_{0}$.
Observation 1. The universal property of $X_{C} \times_{X} X_{0}$ tells us that

$$
\Gamma\left(X_{C} \times_{X} X_{0} / X_{0}\right) \cong \operatorname{Hom}_{X}\left(X_{0}, X_{C}\right)
$$

Observation 2. Let $\mathscr{J} \subseteq \mathscr{O}_{X}$ be the sheaf of ideals associated to X_{0}. Then we have a short exact sequence of \mathscr{O}_{X}-modules

$$
0 \longrightarrow \mathscr{J} \longrightarrow \mathscr{O}_{X} \longrightarrow i_{*} \mathscr{O}_{X_{0}} \longrightarrow 0
$$

Applying the global sections functor, we get an exact sequence

$$
0 \longrightarrow J=\mathscr{J}(X) \longrightarrow \mathscr{O}_{X}(X)=B \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)
$$

Hence, we have an homomorphism

$$
B / J \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)
$$

Therefore, we get a morphism of schemes

$$
X_{0} \longrightarrow \operatorname{Spec}\left(\mathscr{O}_{X_{0}}\left(X_{0}\right)\right) \longrightarrow \operatorname{Spec}(B / J)
$$

Also notice that the diagram

is commutative.
Now consider the diagram

Label $\tilde{\alpha}: X_{0} \longrightarrow X_{C}$ the X-morphism provided by the universal property of X_{C} and let $\alpha: X \longrightarrow X_{C}$ be the corresponding X-morphism in $\Gamma\left(X_{C} / X\right)$. Consider the following commutative diagram

and the corresponding commutative diagram in Rings:

It is then clear that ψ is the B-morphism we were looking for. This concludes the proof of the lemma.

Corollary 1. Let $\left(X, X_{0}\right)$ be an henselian couple. Assume that X is proper over a noetherian ring A and that $X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)$ for some ideal $I \subseteq A$. Then $\left(X, X_{0}\right)$ is proper over an henselian pair.

Proof. As X is proper over $\operatorname{Spec}(A)$, it is a quasi-compact and quasi-separated scheme. Hence, by Lemma $8,\left(\mathscr{O}_{X}(X), \operatorname{ker}\left(\mathscr{O}_{X}(X) \longrightarrow \mathscr{O}_{X_{0}}\left(X_{0}\right)\right)\right)$ is an henselian pair. Therefore, by the same construction described in Lemma 7, we get that $\left(X, X_{0}\right)$ is proper over $\left(A^{h}, I^{h}\right)$.

Corollary 2. Let $\left(X, X_{0}\right)$ be a couple and assume that X is proper over a noetherian ring A and that $X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)$ for some ideal $I \subseteq A$. Then $\left(X, X_{0}\right)$ is an henselian couple if and only if $\left(\mathscr{O}_{X}(X), \operatorname{ker}\left(\mathscr{O}_{X}(X) \longrightarrow\right.\right.$ $\left.\mathscr{O}_{X_{0}}\left(X_{0}\right)\right)$) is an henselian pair.

By Remark 3 every henselian couple (X, X_{0}) which arises as in Lemma 6 satisfies conditions 2. and 3. in [2, Exposé XII, Proposition 6.5] with $\mathbb{L}=\mathbb{P}$ and for every n. Then, applying Corollary 1 , we get the following result:

Theorem 3. Let $\left(X, X_{0}\right)$ be an henselian couple. Assume that X is proper over a noetherian ring A and that $X_{0}=X \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A / I)$ for some ideal $I \subseteq A$. Then conditions 2. and 3. in [2, Exp. XII, Remarks 6.13] are satisfied with $\mathbb{L}=\mathbb{P}$ and for every n.

This gives a positive answer to Question 1 if we assume that hypothesis (\dagger) hold.

Acknowledgments. A special thank you to Moritz Kerz. It is worthy to mention that he introduced me to the problem treated in this paper. In particular, I would like to point out that he mentioned Popescu's Theorem to me, which I did not know until then, grasping the fact that it could have been an helpful tool for my purposes. I also wish to thank him for the time he dedicated to the review of this paper.
I also wish to thank Federico Binda for the many interesting discussions I had with him and for his precious advices.

References

[1] Artin, M.F.: Approximation of algebraic structures over complete local rings Publications mathématiques de l'I.H.É.S., tome 36 p. 23-58 (1969)
[2] Artin, M.F., Grothendieck, A., Verdier, J.L.: Séminaire de Géométrie Algébrique du Bous Marie- Théorie des topos et cohomologie étale des schémas (SGA4) Institut des Hautes études Scientifiques (1963-1964)
[3] Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra, Addison-Wesley Publishing Co (1969)
[4] Elkik, R.: Solutions d'équations à coefficients dans un anneau hénselien Annales scientifiques de l'É.N.S., tome 6, p. 553-603 (1973)
[5] Gabber, O.: Affine Analog of the Proper Base Change Theorem Israel Journal of Mathematics 87, p. 325-335 (1994)
[6] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): I.Le langage de schémas Publications mathématiques de l'I.H.É.S., tome 4, p. 5-228 (1960)
[7] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV.étude locale des schémas et des morphismes de schémas, Troisième partie Publications mathématiques de l'I.H.É.S., tome 28, p. 5-255 (1966)
[8] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV.étude locale des schémas et des morphismes de schémas, Quatrième partie Publications mathématiques de l'I.H.É.S., tome 32, p. 5-361 (1967)
[9] Grothendieck, A.: Séminaire de Géométrie Algébrique du Bous MarieRevêtements étales et Groupe Fondamental (SGA1) Springer-Verlag (1971)
[10] Liu, Q.: Algebraic Geometry and Arithmetic Curves Oxford graduate text in mathematics (2002)
[11] Raynaud, M.: Anneux Locaux Henseliens, Springer-Verlag, coll. «Lecture Notes in Mathematics » (no 169) (1970)
[12] The Stack Project Authors: Stack Project, http://stacks.math.columbia.edu (2017). Accessed 03 October 2017

[^0]: ${ }^{1}$ the content of this note was obtained before the author started to receive the above mentioned scholarship, but it was organized in the present manuscript afterwards.
 ${ }^{2}$ for the notation and the exact definition of the objects that are involved we refer to the original source.

[^1]: ${ }^{3}$ an affine henselian couple is the same thing as an henselian pair. See Remark 7.
 ${ }^{4}$ here the henselization is the left adjoint to the inclusion functor Henselian Pairs \longrightarrow Pairs
 ${ }^{5}$ see [1, Definition 1.5]

