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ABsTraCT. We discuss a question which appears in [Séminaire de Géométrie Al-
gébrique du Bous Marie- Théorie des topos et cohomologie étale des schémas, Ex-
posé XII, Remarks 6.13] concerning proper base change. In particular, we propose

a solution in a particular non-affine case.

1 INTRODUCTION

The question we would like to answer is the following one?:

Question 1. Let (X, Xy) be an henselian couple (in the sense of Definition 1).
Is it true that (i) and (i) in |2, Exposé XII, Proposition 6.5] hold with L =P

and for every n?

This question appears in [2, Exposé XII, Remarks 6.13].
We can restate it as follows:

Question 2. Let (X, Xy) be an henselian couple. Is it true that

a. the base change functor induces an equivalence between the category of

étale coverings of X and the category of étale coverings of Xo?

b. for any torsion étale sheaf F and for any integer n, the morphism
H"(X,Z) — H" (X0, Z|x,)

s an isomorphism?

Ithe content of this note was obtained before the author started to receive the above

mentioned scholarship, but it was organized in the present manuscript afterwards.

2for the notation and the exact definition of the objects that are involved we refer to the

original source.



Remark 1. 1. When X is proper and finitely presented over an henselian
ring (A,m) and Xo = X X gpec(a) Spec(A/m), we know that the answer to
Question 1 is affirmative. This is the proper base change theorem in étale
cohomology.

2. The case (X, Xo) = (Spec(A), Spec(A/I))3, for (A, I) an henselian pair
was studied an solved by R. Elkik in [4] and by O. Gabber in [5].

We propose a solution in the following situation:

(1) Let X be proper over a noetherian affine scheme Spec(A) and Xy =
X X gpec(a) Spec(A/I) for some ideal I C A.

We will see that, under these assumptions, (X, Xy) is an henselian couple for
which Question 1 has a positive answer. To achieve this, we will first generalize
[1, Theorem 3.1] to the following form:

Theorem 1. Let (A,I) be an henselian pair. Let S = Spec(A) and let f :
X — S be a proper finitely presented morphism. Let Xg = X Xg Sy, where
So = Spec(A/I). Then

Ety(X) — Et;(Xo)

Zw— 7 Xg S()
s an equivalence of categories.

Here Et;(W) denotes the category of finite étale schemes over W. The key
tools for the proof are Artin’s approximation theory and [12, Tag 0AH5], which
combined with [1, Corollary 1.8] yields the following theorem

Theorem 2. Let (A,I) be an henselian pair with A noetherian. Let A be
the I-adic completion of A and assume that one of the following hypothesis is
satisfied:

1. A—Aisa reqular ring map;
2. Ais a G-ring;
3. (A, I) is the henselization* of a pair (B,J), where B is a noetherian G-
Ting.
Let F be a functor which is locally of finite presentation®

A-algebras — Sets

Given any € € F(A) and any N € N, there exists an element & € F(A) such
that .
£=¢& mod IV
i.e. € and & have the same image in F(AJIN) = Z(A/IV)
3

an affine henselian couple is the same thing as an henselian pair. See Remark 7.
4here the henselization is the left adjoint to the inclusion functor Henselian Pairs—s Pairs
5see [1, Definition 1.5]



Remark 2. In Theorem 2 we have that 3. = 2. = 1. See [12, Tag 0AH5|.

Remark 3. Theorem 1, joined with [5, Corollary 1|, gives us a positive answer
to Question 1 when (X, Xg) is proper and finitely presented over an henselian
pair. Moreover, we will see how we can always reduce to this case from situation

(t)-

2 PROOF OF THEOREM 1

This proof is an adaption of the one given in the local case by Artin (see [1, The-
orem 3.1]). This generalization is possible thanks to Popescu’s characterization
of regular morphisms between noetherian rings, which provides us Theorem 2
as a corollary.

First we reduce to the case where A is the henselization of a finitely presented
Z-algebra. in order to do this, we need the following two preliminary lemmas.

Lemma 1. Let S = Spec(A) and let g : X — S be a proper morphism of finite
presentation. Then the functor

F . A-Algebras — Sets
B — {finite étale coverings of Spec(B) x g X }/isomorphism
18 locally of finite presentation.
Proof. See the beginning of the proof of [1, Theorem 3.1]. O

Lemma 2. Let S = Spec(A) and let g : X — S be a proper morphism of finite
presentation. Let Z1 — X and Zy — X be two finite étale covers of X. Then
the functor

4 : A-algebras — Sets

B — Homx x ;spece(B) (21 X5 Spec(B), Zy x s Spec(B))
18 locally of finite presentation.

Proof. The lemma is a straightforward consequence of [7, Theorem 8.8.2.(1)]. O

Let (A,I) be an henselian pair and write A as a direct limit lim A;, where
each A; is a subalgebra of A that is finitely generated over Z. Let (A%, (INA;)")

be the henselization of (A;,(I N A;)) for each i. Then by [11, Chapter XI,

Proposition 2] liﬁ}(A?, (I N A;)") is an henselian pair. It is easy to see that
(A1) = lim(A}, (11 A)")

Write S; = Spec(Al) for every index i. Then

52@51-



By [7, Thereom 8.8.2. (ii)] we know that X comes from a finitely presented
scheme X;, for some index g, i.e. X = X, xg, S. Moreover, by [7, Theorem
8.10.5], we can assume that X;, is also proper over S;,. As the functor

F AZ) — Algebras — Sets

B +— {finite étale coverings of Spec(B) xg, Xi,}/isomorphism

is locally of finite presentation, we have that
F(4) = lin 7 (A7)

Therefore, every finite étale cover of X comes from a finite étale cover of X; =
S; X 5;, Xig for a suitable index 1.

Remark 4. All schemes X;, XS, Si and X = X, X8, S are quasi-compact
and quasi-separated, as they are proper over affine schemes.

Let Z — X and W — X be two finite étale covers of X. Then we can
assume without loss of generality that they come from two finite étale covers
Ziy = Xiy, Wiy, = Xj,. Then by Lemma 2 we see that

ligHomXi(Zi,Wi) = Homx(Z,W)

It is then clear that we can reduce the proof of Theorem 1 to the case where
(A, I) is the henselization of a pair (B, J), where B is finitely generated over Z.
In particular, B is a G-ring and Theorem 2 holds.

Lemma 3. The functor in Theorem 1 is essentially surjective.

Proof. Consider a finite étale morphism X} — Xj. Label A the completion of
A with respect to the ideal I and let S = Spec(A), X = X xg 5. Notice that
A is a complete separated ring by Krull’s theorem (see [3, Theorem 10.17]). By
[8, Theorem 18.3.4], we have that the functor

Et;(X) — Et;(Xo)
Zw— 7 Xg SO

is an equivalence of categories. Then there exists some [X’ — X] € .Z(A)
such that .
X’ X g So = X(/)

By Theorem 2 we get that there exists some finite étale morphism X' — X
which is congruent modulo I to X’ — X, i.e.

X’ XssogXé

It remains only to show that the functor in Theorem 1 is fully faithful.



Lemma 4. The functor in Theorem 1 is fully faithful.

Proof. Let X’ and X" be two finite étale schemes over X and let ¢ € Homx (X', X").
The morphism ¢ corresponds uniquely to its graph I'y, : X’ — X' x x X", which
is an open immersion as both X’ and X" are of finite type over X and as X" is
étale over X (see |9, Corollaire 3.4]). Also notice that I'y is a closed immersion
(see [10, Exercise 3.3.10]). If we assume that X’ is connected and nonempty, ¢
corresponds uniquely to a connected component of X’ x x X" of degree one over
X’. The degree of such a component can be measured at any point of X’. We
conclude therefore by applying the next lemma to a component of X' x x X”'. [

Lemma 5. X is nonempty and connected if and only if the same is true for
Xo.

Proof. We are given the following cartesian square

Xo—> X

Sop — S

If X is connected and nonempty, then f(X) C S is a nonempty closed subset
of S (as f is proper). Let J be an ideal of A that identifies f(X). Let f(z) =
p € V(J) be a closed point of S. As I is contained in the Jacobson radical of
A, the prime ideal p lies in Sy. Then

So —— S

In particuar, X is nonempty. Furthermore, as this argument can be used for any
connected component of X, if X is disconnected then also X is disconnected.

Conversely, assume that Xy is disconnected. Label Cy a nonempty connected
component of Xy. As the scheme X is quasi-compact, Cy is open and closed in
Xo. Therefore, Cy — X is a finite étale morphism. By Lemma 3, there exists
a finite étale morphism C' — X which induces Cy — Xo. As Cj is connected
and nonempty, the same is true for C'. The morphism C — X is therefore of
degree 1 at every point of C. As it is also finite and étale, it is both an open and
a closed immersion, i.e. C' is a connected component of X. If C = X, we would
get Cy = Xy, a contradiction. Then X is disconnected. Finally, it is clear that
if X is nonempty, X is nonempty too. U



Theorem 1 follows immediately from Lemma 3 and Lemma 4.

3 HENSELIAN COUPLES

Recall that an henselian pair (A4, I) is a ring A together with an ideal I C such
that

1. I is contained in the Jacobson ideal of A;

2. for every finite A algebra B, there is a bijection between the set of idem-
potent elements of B and the set of idempotent elements of B®4 A/I.

For more details, see [11].
Let (A,I) be an henselian pair. Then for every finite morphism Spec(B) =
X — Spec(A), we have a bijection

Id(B) = Of(X) = Of(Xo) = Id(B/IB)  where Xg = X Xgpec(a) Spec(A/I)

Here Of(Z) denotes the set of subsets of Z which are both open and closed.
This fact suggests the following definition (see [8, Définition 18.5.5]), which is
meant to generalize the notion of henselian pair to the non-affine setting.

Definition 1. Let X be a scheme and let Xy be a closed subscheme. We say
that (X, Xo) 4s an henselian couple if for every finite morphism Y — X we
have a bijection

Of(Y) = 0f(Yo)
where Yo =Y X x Xp.

Remark 5. If X is locally noetherian, it is a consequence of [6, Proposition
6.1.4] and [6, Corollaire 6.1.9] that connected sets in Of(X) (resp. Of(Xo)) are
in bijection with Mo(X) (resp. p(Xo)), the set of connected components of X
(resp. Xo).

Remark 6. It is a consequence of [6, Corollary 5.1.8] that (X, Xy) is an
henselian couple if and only if (Xyed, (Xo)red) 18 an henselian couple as well.

Remark 7. It is immediate to observe that if (A, I) is a pair and (Spec(A), Spec(A/I))
is an henselian couple, then I is contained in the Jacobson radical of A. In fact,
if m C A is a mazximal ideal, then we have a bijection

Of(Spec(A/m)) = Of (Spec(A/m @4 A/T))

In particular, Spec(A/m @4 A/I) can not be the empty scheme. Therefore, as
it is a closed subscheme of Spec(A/m), we must have an equality Spec(A/m) =
Spec(A/m @4 A/I), whence I C m. Moreover, if Z — Spec(A) is a finite
morphism, then Z = Spec(B) is affine and the corresponding morphism A —
B is finite. Then we have bijections

Id(B) = Of(Spec(B)) = Of(Spec(B/IB)) = Id(B/IB)

We have just showed that an affine henselian couple is an henselian pair. The
converse was observed at the beginning of this section.



Lemma 6. Let (A,I) be an henselian pair with A noetherian and let X be a
proper A-scheme. Set S = Spec(A), So = Spec(A/I) and let Xog = X xg Sp.
Then (X, Xo) is an henselian couple.

Proof. This is a trivial consequence of Theorem 1 and [2, Exposé XII, Proposi-
tion 6.5 (1)]. O

Lemma 7. Let X be a scheme and let Xg be a closed subscheme. Let A be
a noetherian ring and assume that X is proper over Spec(A). Also assume
that Xo = X Xgpec(a) Spec(A/I) for some ideal I C A. Put J = ker(B =
Ox(X) — Ox,(Xo)). If (B,J) is an henselian pair, then (X, Xy) is an
henselian couple.

Proof. Let (A", I") be the henselization of the couple (A, I) given by [12, Tag
0A02]. Then we have the following diagram

(X’ XO)

f

(Spec(A™M), Spec(AM /TM)) 7 (Spec(A), Spec(A/I))

which induces the following diagram of pairs:

(AM M) ——— (A1)
The morphism ) is the one induced by the universal property of (A", I"). As
Homngs(Ah, B) = Homschemes(X, Spec(A"))

the homomorphism 1 identifies a unique morphism of schemes ¢ : X —
Spec(AM). Thus we get the following commutative diagram

X

o f
Spec(A) T Spec(A)
Moreover, by [12, Tag 0AGU], we get that

7Y (Spec(A/T)) = Spec(A" @4 A/I) = Spec(A/T™)



whence
X X Spec(Ah) Spec(Ah/Ih) = Xo

Therefore, the couple (X, Xp) lies over the henselian couple (Spec(A™), Spec( A" /I)).
Furthermore, A" is a noetherian ring (see [12, Tag 0AGV]). Finally, as f is a
proper morphism and + is separated, we get that ¢ is proper as well by [10,
Proposition 3.3.16]. Then we can conclude that (X, Xj) is an henselian couple
by the previous lemma. O

The previous lemma tells us that, under some appropriate hypothesis, if the
pair
(Ox(X), ker(Ox(X) — Ox,(X0)))

is henselian, then (X, X() is an henselian couple. It is natural to ask if the
converse is true, i.e. if given an henselian couple (X, Xj) the associated pair is
henselian. An answer is provided by the next lemma.

Lemma 8. Let X be a quasi-compact and quasi-separated scheme and let 4 :
Xo — X be a closed immersion such that (X, Xo) is an henselian couple.
Then (B, J) = (Ox(X), ker(Ox(X) — Ox,(X0))) is an henselian pair.

Proof. By [12, Tag 09XT], it is sufficient to show that for every étale ring map
B — C together with a B-morphism o : C — B/J, there exists a B-
morphism C — B which lifts o.

Consider the cartesian diagram

Xe=X X Spec(B) Spec(C’) — X

Spec(C) ———— Spec(B)

As Spec(C) — Spec(B) is étale and separated, the morphism X¢o — X is
étale and separated as well. Then, by [8, Proposition 18.5.4], we have a bijection

F(Xc/X) — F(XC Xx Xo/Xo)

between the sections of X — X and those of X¢ X x Xg — Xo.
Observation 1. The universal property of X¢ X x Xo tells us that

I'(Xc xx Xo/Xo) = Homx (Xo, Xc)

Observation 2. Let ¢ C Ox be the sheaf of ideals associated to Xo. Then we
have a short exact sequence of 0x-modules

0—>/—>ﬁX—>i*ﬁXo —0
Applying the global sections functor, we get an exact sequence

0— J= #(X)— Ox(X) =B — Ox,(Xo)



Hence, we have an homomorphism
B/J — Ox,(Xo)
Therefore, we get a morphism of schemes
Xo — Spec(Ox,(Xo)) — Spec(B/J)
Also notice that the diagram

Xo——> X

Spec(B/J) — Spec(B)

is commutative.
Now consider the diagram

Spec(C) — Spec(B)

Spec(B/J)

Label & : Xg — X¢ the X-morphism provided by the universal property of
Xc and let o : X — X be the corresponding X-morphism in I'(X¢/X).
Consider the following commutative diagram
idx
- )

X Xe X

~N ]

Spec(C) —> Spec(B)
Y T

Spec(B/J)




and the corresponding commutative diagram in Rings:

idp

B/J

It is then clear that v is the B-morphism we were looking for. This concludes
the proof of the lemma. O

Corollary 1. Let (X, Xo) be an henselian couple. Assume that X is proper
over a noetherian ring A and that Xo = X Xgpec(a) Spec(A/I) for some ideal
I C A. Then (X, Xy) is proper over an henselian pair.

Proof. As X is proper over Spec(A), it is a quasi-compact and quasi-separated
scheme. Hence, by Lemma 8, (0x (X), ker(Ox(X) — Ox,(Xo))) is an henselian
pair. Therefore, by the same construction described in Lemma 7, we get that
(X, Xy) is proper over (A", I"). O

Corollary 2. Let (X,Xo) be a couple and assume that X is proper over a
noetherian ring A and that Xo = X X gpec(a) Spec(A/I) for some ideal I C A.
Then (X, Xg) is an henselian couple if and only if (Ox(X),ker(Ox(X) —
Ox,(X0))) is an henselian pair.

By Remark 3 every henselian couple (X, Xy) which arises as in Lemma 6
satisfies conditions 2. and 3. in [2, Exposé XII, Proposition 6.5] with L = P and
for every n. Then, applying Corollary 1, we get the following result:

Theorem 3. Let (X, Xy) be an henselian couple. Assume that X is proper
over a noetherian ring A and that Xo = X X gpeca) Spec(A/I) for some ideal
I C A. Then conditions 2. and 3. in |2, Exp. XII, Remarks 6.13] are satisfied
with L. =P and for every n.

This gives a positive answer to Question 1 if we assume that hypothesis ()
hold.
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