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Université Bourgogne Franche-Comté.
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Abstract

We consider a branching random walk with values in a certain set S, where
the branching mechanism is different according to whether particles (indi-
viduals) are in a certain so called trapping set A ⊂ S or not. We are then
interested, under different scenarios, in properties of either the transient ran-
dom measure describing distribution of individuals on S over time or its
asymptotic behaviour.

Keywords: Branching random walk, absorbing set, Galton Watson process.
MSC classification: 60J25, 60G22, 60K30.

1. Introduction

This paper was originally motivated by the modelling and studying of
evolution of Transposable Elements within a DNA strand. Transposable el-
ements are small DNA sequences (with negligible size) that have the ability
to change their position through a so called cut-and-paste procedure, and
also to create copies (copy-and-paste) within the genome, throughout suc-
cessive generations. One particular feature of the DNA strand is that when
a transposable element lives in the centromere, it loses its cut-and-paste and
copy-and-paste abilities, as the centromere is an inactive area. In this paper,
we have chosen to model the evolution of those transposable elements by
a particular random tree and branching random walk. Individuals of this
random tree live in a subset S of the real line. The inactive centromere area
is modelled by a subset of S within which spawned transposable elements
remain there forever.
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Mathematically, let T be a random tree. We consider in this paper a
branching random walk (V (x), x ∈ T) on a set S ⊂ R starting from a ∈ S.
Following standard notation (see e.g. [1, 9]), we let V (x) ∈ S the position
of particle x, |x| its generation, and xk ∈ T the ancestor of x at generation
k ≤ |x|. For any a ∈ S, we write Pa the law of (V (x), x ∈ T) with associated
expectation Ea, or P and E when no confusion is possible.

The originality of our model is the presence of a trapping zone A ⊂ S.
When an individual first enters this set, it is immediately frozen and does not
reproduce any more. Such an individual will be called inactive, as opposed to
an offspring in Ā which will be called active. For each generation, an active
offspring disappears with probability q ∈ (0, 1) or survives with probability
p = 1− q. Whenever it survives, it stays at the same position and can create
randomly N ∈ N children and the displacement from the originally offspring
to a child follows a random variable with distribution V , see Figure 1. We

n

n+ 1

V

n+ 2

trapping zone A

Figure 1: Evolution of branching random walk with trapping zones.

also note that this process behaves like two traditional branching random
walks with distinct point process distributions with respective displacements
distributed as 0 or V according to whether particles are in A or Ā. We will
make the following assumptions:

• generation of offsprings are independent from displacements,

• distribution V of displacements is symmetric, i.e. −V D
= V , and is light

tailed, i.e. admits exponential moments E
(
euV
)
for u in some interval

I ⊂ R that contains zero,
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• branching random walk is supercritical while in Ā, i.e.

m := p(1 + EN) > 1. (1)

We introduce the following random measures νn, ν
(1)
n , ν

(2)
n defined for any

non negative measurable function f : S −→ [0,+∞) and x ∈ T, as well as
exit time TA(x) as:

νn(f) =
∑

|x|=n f(V (x)) ,

TA(x) = min {k ≤ |x| : V (xk) ∈ A} ,
ν
(1)
n (f) =

∑
|x|=n f(V (x))1{TA(x)>n} ,

ν
(2)
n (f) =

∑
|x|=n f(V (x))1{TA(x)≤n} =

∑
|x|≤n f(V (x))1{TA(x)=|x|}.

(2)

TA(x) is the time at which individual the first ancestor of x entered the trap-
ping zone A, which is equal to +∞ if the individual is still active. Random
measure νn =

∑
|x|=n δV (x) represents the distribution of the population alive

(both active and inactive) at time n. Similarly, ν
(1)
n and ν

(2)
n represent re-

spectively distribution of active and inactive individuals in the process, so
that one in particular has

νn(f) = ν(1)n (f) + ν(2)n (f).

Letting f ≡ 1 in (2), we in particular note that

νn(1) =
∑
|x|=n

1 = #{x, |x| = n},

ν(1)n (1) =
∑
|x|=n

1{TA(x)>n} = #{x, |x| = n, x ∈ Ā},

ν(2)n (1) =
∑
|x|=n

1{TA(x)≤n} = #{x, |x| = n, x ∈ A}

are respectively the number of offspring alive, active and inactive at the nth
generation. Finally, we define the so-called Laplace exponent of the branching
random walk in Ā as

m(u) := p
[
1 + E(N)

(
EeuV

)]
for u ∈ I. Note in particular that m(u) = E

[∑
|x|=1 e

uṼ (x)
]
where (Ṽ (x), x ∈

T) is a branching random walk where particles evolve in S (without trapping
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zone), and with displacement distributed as V . Also note that m defined in
(1) verifies m = m(0).

Notation. In the following, convergence of a random measure µn towards
µ∞ on a set E such that P(E) > 0 will be denoted by

µn  
n→+∞

µ∞ on E,

meaning that for any continuous non-negative function f : S −→ [0,+∞),∫
S
f(x)µn(dx) −→

∫
S
f(x)µ∞(dx) as n→ ∞ on E.

2. Organization of the paper and main results

In this paper, quantities of interest are mainly quantities related to the
measure νn.

• Let
ψn = ψn(u, a) := Eaνn(eu·) . (3)

In Section 3, we assume the convergence of ψ̃n(A)/κ
n for some measure

ψ̃n(dy) defined on S related to the branching random walk, and for a
convenient choice of κ. We show that this convergence implies conver-
gence of ψn/κ

n for all u lying in interval I and obtain its expression
under mild assumptions. Also, the generating function of (ψn)n∈N,

ψ̂(t) = ψ̂(t, u, a) :=
∞∑
n=0

tnEa(νn(eu·)) =
∞∑
n=0

tnψn (4)

for |t| small enough such that the series converges, is studied.

• In Section 4, in the case S = Z and Ā a finite set, we show that, on
the set of survival of the branching process,

νn
νn(1)

 
n→+∞

µ∞ , (5)

for some deterministic probability measure µ∞.

• In Section 5, in the case S = Z, Ā a finite set, and V Rademacher
distributed, computations for (3), (4) and (5) are detailed and some
explicit results are given. We also get the asymptotic behaviour of the
expected number of particles in the trap zone A and its complementary
set.
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• In Section 6, in the case S = R, Ā = (−1, 1) and V Laplace distributed,
the generating function (4) is obtained in a closed form.

• Finally, in Section 7, the case where S is a torus is investigated, and
a functional equation for a 7→ ψ̂(t, u, a) in (4) is exhibited when V is
Laplace distributed.

Remark 1. Note that convergence of ψn/κ
n for all u ∈ I is equivalent to

convergence as n→ ∞ of measure E νn
κn

defined by E νn
κn
(f) = E

(∫
S
f(x)νn(dx)

κn

)
for all measurable function f : S −→ [0,+∞).

We finish this section by recalling the following result, which gives a link
between the branching random walk (Ṽ (x), x ∈ T) on S with associated
displacement V and a certain random walk {Sn, n ∈ N}, whose history can
be tracked back at least to [6].

Lemma 2 (Many to one Lemma). Let {Sn, n ∈ N} be the one dimen-
sional random walk defined by

Sn := a+
n∑
k=1

ξk, n ≥ 1, (6)

where (ξk)k∈N is i.i.d. with distribution characterized by

E(f(ξk)) =
1

m
E

∑
|x|=1

f(Ṽ (x))

 =
1

m
p [f(0) +E(N)E(f(V ))] (7)

for all measurable non negative function f : S −→ [0,+∞). Then for all
measurable non negative function φ : Sn −→ R, one has

Ea

∑
|x|=n

φ(Ṽ (x1), ..., Ṽ (xn))

 = mnE (φ(S1, ..., Sn)) (8)

where we recall that a is the starting location of the branching random walk.

With a slight abuse of notation, we will, similarly to (2), denote for any set
C ⊂ S

TC := inf{n ≥ 0, Sn /∈ C}
the exit time out of C of random walk {Sn, n ∈ N}.
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3. General results

Remembering that an element in A will stay there forever without having
further offspring, and decomposing ψn according to whether an element x is
in A, if so, when its first ancestor was in A for the first time, we have :

ψn = E

∑
|x|=n

euV (x)
1{TA(x)>n}

+ E

∑
|x|=n

euV (x)
1{TA(x)≤n}

 ,

= Eν(1)n (eu·) + Eν(2)n (eu·)

:= ψ(1)
n + ψ(2)

n (9)

We now introduce the following measure on S

ψ̃n(dy) = E

∑
|z|=n

euV (z)
1{TA(z)>n−1}∩{V (z)∈dy}

 , n ≥ 1,

with ψ̃0(dy) = euaδa(dy), so that we have

ψ(1)
n = ψ̃n(Ā) , (10)

and

ψ(2)
n =

n∑
k=0

ψ̃k(A) . (11)

Let us assume there exists κ > 0 such that the following limit exists:

ψ̃(κ)(A) := lim
n→+∞

1

κn
ψ̃n(A) . (12)

We then have

1

κn
ψ(2)
n =

1

κn

n∑
k=0

ψ̃k(A) =
∞∑
k=0

1k≤n
1

κk
1

κn−k
ψ̃n−k(A) . (13)

Remark 3. Existence of a κ such that (12) converges is not a trivial topic in
general. Nevertheless, an example is given in Section 5, where we explicit a
κ such that (12) converges for the particular case of Rademacher distribution
for the displacements.
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Proposition 4. Under Condition (12) and assumption κ > 1, we have

ψ̃(κ)(Ā) =
κ

m(u)− κ
ψ̃(κ)(A) (14)

and, if κ in addition satisfies κ < m,

ψ(κ) := lim
n→∞

1

κn
ψn =

κ

κ− 1

m(u)− 1

m(u)− κ
ψ̃(κ)(A). (15)

Proof. Using Relation (9) as well as the dominated convergence theorem
in (13), we obtain the following limit as n tends to infinity, provided that
1
κn
ψ̃n(Ā) converges to some limit ψ̃(κ)(Ā) as n→ ∞ under a suitable assump-

tion on κ which will be made precise below (namely, that κ < m):

ψ(κ) := lim
n→+∞

1

κn
ψn = ψ̃(κ)(Ā) +

∞∑
k=0

1

κk
ψ̃(κ)(A) ,

= ψ̃(κ)(Ā) +
κ

κ− 1
ψ̃(κ)(A). (16)

The above equality yields expression of limit ψ(κ) if both quantities ψ̃(κ)(Ā)
and ψ̃(κ)(Ā) are known. So, let us prove that ψ̃(κ)(Ā) indeed exists and
establish a relation between these two latter quantities. We note that we

have ψ̃n(A) + ψ̃n(Ā) = E
[∑

|z|=n e
uV (z)

1{TA(z)>n−1}

]
. Remembering that in

Ā the model evolves like a normal branching random walk, we may then use
Lemma 2 and write

E

∑
|z|=n

euV (z)
1{TA(z)>n−1}

 = mnE
[
euSn1{Sj∈Ā, j≤n−1}

]
,

= mnE
[
euξn

]
E
[
euSn−11{Sj∈Ā, j≤n−1}

]
,

= mE
[
euξn

]
E

 ∑
|z|=n−1

euV (z)
1{TA(z)>n−1}

 ,

= mE
[
euξn

]
ψ̃n−1(Ā). (17)

Let us remember that one has by Definition (7) that E
[
euξn

]
= m(u)

m
, so that

one obtains from (17) that

ψ̃n(A) + ψ̃n(Ā) = m(u)ψ̃n−1(Ā). (18)
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Let us then prove that 1
κn
ψ̃n(Ā) converges to some limit ψ̃(κ)(Ā) as n → ∞

if we suppose that κ < m(u). Dividing (18) by m(u)κn−1 yields that

ψ̃n−1(Ā)

κn−1
=

κ

m(u)

ψ̃n(Ā)

κn
+

κ

m(u)

ψ̃n(A)

κn

=
∞∑
j=1

(
κ

m(u)

)j
ψ̃n−1+j(A)

κn−1+j
, (19)

the above series converging because κ/m(u) < 1 and ψ̃n(A)
κn

converges as
n → ∞. Letting n → ∞ in (19) and using the dominated convergence
theorem yields that ψ̃(κ)(Ā) = limn→∞

1
κn
ψ̃n(Ā) exists and that (14) holds.

Note that condition κ < m(u) for all u ∈ I is in fact equivalent to κ < m.
(16) and (14) thus imply (15) after some simplification. �

To finish this subsection, the following proposition gives the expression
of the generating function of (ψn)n∈N in function of the generating function
of (ψ̃n(A))n∈N.

Proposition 5. Let ψ̂(t, A) = ψ̂(t, u, a, A) :=
∑∞

n=0 t
nψ̃n(A) the generating

function of (ψ̃n(A))n∈N, which we assume is defined for |t| small enough.
Generating function defined in (4) has the following expression

ψ̂(t) =
ψ̂(t, A)− eua

m(u)t− 1
+

1

1− t
ψ̂(t, A), t <

1

m(u)
. (20)

Proof. Let ψ̂(t, Ā) be likewise defined as ψ̂(t, A). The following is obtained
thanks to Relation (18), that yields the following relation between these two
quantities

ψ̂(t, A) + ψ̂(t, Ā) = ψ̃0(A) + ψ̃0(Ā) +m(u)tψ̂(t, Ā)

with ψ̃0(A) + ψ̃0(Ā) = eua, so that one has the following expression

ψ̂(t, Ā) =
ψ̂(t, A)− eua

m(u)t− 1
(21)

where |t| < 1/m(u). Now, similarly to (9), (10) and (11), decomposing to
when an element x in A had its first ancestor in that set for the first time,
we have

E[νn(eu·)] = ψ̃n(Ā) +
n∑
k=0

ψ̃k(A) = ψ̃n(Ā) +
n∑
k=0

ψ̃n−k(A)
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whence arrive at

ψ̂(t) =
∞∑
n=0

tnψ̃n(Ā) +
∞∑
n=0

tn

[
n∑
k=0

ψ̃n−k(A)

]

=
∞∑
n=0

tnψ̃n(Ā) +
∞∑
n=0

[
n∑
k=0

tktn−kψ̃n−k(A)

]

=
∞∑
n=0

tnψ̃n(Ā) +

[
∞∑
n=0

tn

][
∞∑
n=0

tnψ̃n(A)

]
= ψ̂(t, Ā) +

1

1− t
ψ̂(t, A)

when |t| < 1, yielding (20) thanks to (21). �

4. Almost sure behaviour of νn when S = Z

We assume in this section the branching random walk evolves on the
lattice set S = Z, i.e.

P
(
∀|x| = 1, Ṽ (x) ∈ Z

)
= 1, (22)

and that Ā –i.e. the set on which the population reproduces– is finite. We
also suppose that displacement V is not 0.

Under these assumptions, the individuals of the branching random walk
that stay in Ā reproduce according to a multitype Galton-Watson process,
with mean M matrix defined by

∀i, j ∈ Ā, Mi,j = Ei

∑
|u|=1

1{V (u)=j}

 = p [δi,j + E(N)P(V = j − i)] . (23)

More precisely, an individual at position i can be thought of as having type i.
We refer to [2, Chapter 5] for the precise definition of multitype Galton-
Watson processes.

One can check easily that M is an irreducible matrix, as distribution of
V is not δ0 and is symmetric. Let ρ(M) > 0 be the maximal eigenvalue
of M . By Perron-Frobenius theory, there exists a unique left eigenvector
b = (bj, j ∈ Ā) with positive entries, such that

∀j ∈ Ā,
∑
i∈Ā

biMi,j = ρ(M)bj ≥ 0 and
∑
j∈Ā

bj = 1. (24)
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Observe that summing the first equation in j, we have

ρ(M) =
∑
i,j∈Ā

biMi,j = p

(
1 + E(N)

∑
i∈Ā

biP(V + i ∈ Ā)

)
.

Up to the end of the section, we assume that ρ(M) > 1. Under this
assumption, the multitype Galton-Watson process of mean matrix M is su-
percritical (see e.g. [2, Chapter 5, Theorem 3.2]), meaning that the survival
event

S =
{
∀n ∈ N, ν(1)n (1) > 0

}
, (25)

on which the process conserves active individuals forever, has positive prob-
ability of occurrence. If ρ(M) ≤ 1, the process would die out almost surely
therefore there would have only a finite amount of individuals produced. We
obtain first moment estimates in a particular case in Section 5.2.

Note that ν
(1)
n (1) −→n→∞ +∞ a.s. on S. We next set

∀i ∈ Z, ai =

{
bi if i ∈ Ā,

pE(N) ρ(M)
ρ(M)−1

∑
j∈Ā bjP(V = i− j) if i ∈ A.

(26)

Observing that
∑

i∈Z ai = 1 + ρ(M)
ρ(M)−1

(p(1 + E(N))− ρ(M)), we therefore
renormalize the ai’s and set

∀i ∈ Z, āi =
ai

1 + ρ(M)
ρ(M)−1

(p(1 + E(N))− ρ(M))
. (27)

The asymptotic behaviour of νn on S is given by the following theorem.

Theorem 6. If ρ(M) > 1, we have

νn
νn(1)

 
n→+∞

∑
i∈Z

āiδi on S (28)

Moreover, under the additional assumption E(N log(1+N)) < +∞, we have

lim
n→+∞

ρ(M)−nνn(1) = W a.s. (29)

for some r.v. W which is positive on S.

To prove this result, we first study the asymptotic behaviour of ν
(1)
n .
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Lemma 7. If ρ(M) > 1, we have

ν
(1)
n

ν
(1)
n (1)

 
n→+∞

∑
i∈Ā

biδi on S (30)

Moreover, under the additional assumption E(N log(1+N)) < +∞, we have

lim
n→+∞

ρ(M)−nν(1)n (1) = W̃ a.s. (31)

with W̃ > 0 on S.

Proof. This result is a direct consequence of [7]. Indeed, we observe that

∀n ≥ 0, ∀j ∈ Ā, Zn(j) =
∑
|x|=n

1{V (x)=j} (32)

defines a multi-type Galton-Watson process {(Zn(j), j ∈ Ā), n ∈ N}, where
type j ∈ Ā here corresponds to the position of the individual. This pro-
cess is supercritical under the assumption ρ(M) > 1, so that (30) is a
consequence of [7, Theorem 2]. Now, since an individual of type i will
produce at most a number of individuals of type j distributed as N , one
has that Ei(Z1(j) log(1 + Z1(j))) ≤ E(N log(1 + N)), so that condition
E(N log(1 +N)) < +∞ implies (31) thanks to [7, Theorem 1]. �

Knowing the behaviour of the process in the active zone, we can deduce
the behaviour in the passive zone.

Corollary 8. Using the same notations as in the previous lemma, if ρ(M) >
1 then for any j ∈ Z the following limit holds

lim
n→+∞

1

ν
(1)
n (1)

∑
|u|=n

1{V (u)=j} = aj on S. (33)

Proof. For any j ∈ Z and n ≥ 0, let Zn(j) be defined as in (32). We
observe that for any i ∈ A, we have

Zn(i) =
∑
j∈Ā

n∑
k=1

Zk(j)∑
r=1

N j,i
r,k,

where N j,i
r,k is the number of children made at position i by the rth individual

alive at generation k and position j, see Figure 2. We observe that (N j,i
r,k, r ≥

11



i

i

j

j

k

k + 1

rth particle ∈ {1, ..., Zk(j)}

N
i,j
r,k children

A Ā

Figure 2: Branching random walk seen as a multitype Galton Watson process.

1, k ≥ 0) are i.i.d. random variables with mean pE(N)P(V = j − i). There-
fore, by the strong law of large numbers, we have, as

∑n
k=1 Zk(j) −→n→∞ +∞

on S,

lim
n→+∞

∑n
k=1

∑Zk(j)
r=1 N j,i

r,k∑n
k=1 Zk(j)

= pE(N)P(V = j − i) on S.

By (30), for any j ∈ Ā, we have

lim
n→+∞

Zn(j)

ν
(1)
n (1)

= bj on S.

Moreover, we observe that

lim
n→+∞

ν
(1)
n+1(1)

ν
(1)
n (1)

= ρ(M) on S,

therefore, by the Stolz-Cesàro theorem we have

lim
n→+∞

1

ν
(1)
n (1)

n∑
k=1

Zk(j) = lim
n→+∞

Zn+1(j)

ν
(1)
n+1(1)− ν

(1)
n (1)

= lim
n→+∞

Zn+1(j)

ν
(1)
n+1(1)

ν
(1)
n+1(1)

ν
(1)
n+1(1)− ν

(1)
n (1)

=
ρ(M)bj
ρ(M)− 1

on S.
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We conclude that

lim
n→+∞

Zn(i)

ν
(1)
n (1)

=
∑
j∈Ā

pE(N)P(V = j − i)
bj

ρ(M)− 1
= ai on S.

�
We conclude by observing that Theorem 6 is a direct consequence of

Lemma 7 and Corollary 8.

5. Discrete set case and Rademacher distributed displacements

We suppose in this section that S = Z, and that the complementary of
the trapping zone is of the form

Ā = {0, ..., L}

for some L ∈ N
∗, that initial position a is in {0, ..., L}, and V takes its

values in Z. We wish in this section to obtain explicit expressions of ψ̃(κ)(A),
ψ̃(κ)(Ā) (for an adequate κ), the expression of the corresponding generating
functions ψ̂(t, A) and ψ̂(t) as well as the limiting renormalized behaviour
random measure νn as n→ ∞ in the case where survival occurs with positive
probability. We recall that if the constant κ is larger than 1, we can obtain
an expression of ψκ using Formula (15).

In order to obtain ψ̃(κ)(A) and ψ̂(t, A), we have to first compute ψ̃n(A).
Let us first note that, by Lemma 2, one has

ψ̃n(A) = mnE
[
euSn1{Sj∈Ā, ∀j=1,...,n−1,Sn∈A}

]
= mnE

[
euSn1{TĀ=n}

]
(34)

where {Sn = a +
∑n

k=1 ξk, n ≥ 0} is the associated Z valued random walk
defined by (6), and where we recall that TĀ is the exit time of this random
walk out of Ā. It is thus clear ψ̃n(A) is available if and only if the distribution
of TĀ jointly to the position of the random walk STĀ on exiting this set is
known. This joint distributions are in general not available, which is why we
will restrict here to the case where displacements are Rademacher distributed,
i.e.

V ∼ 1

2
δ−1 +

1

2
δ+1,

13



in which case one might consider that S = {−1, ..., L+1}, A = {−1, L+1},
m(u) = p(1 +EN cosh(u)) and I = R. One has from (34)

ψ̃n(A) = mnE
[
euSn1{TĀ=n}

]
= mneu(L+1)P[T+ = n, T+ < T−] +mneu.(−1)P[T− = n, T− < T+],

(35)

where T− and T+ be the exit times (with values in N ∪ {+∞}) of the one
dimensional random walk {Sn, n ≥ 0} out of Ā through respectively 0 and
L.

Remark 9. An example of distribution for V for which E
[
euSn1{TĀ=n}

]
is

available is the case where displacements are bilateral geometric distributed,
i.e. such that V or −V is G(p) distributed with probability 1/2. In that case
indeed, (35) is replaced by

ψ̃n(A) = mnE(eu(Y+L))P[T+ = n, T+ < T−]+m
nE(e−uY )P[T− = n, T− < T+]

where Y ∼ G(p), by the memoryless distribution of the G(p) distribution.
We will focus on the Rademacher distribution in what follows. It is however
noted that similar results hold in the case of bilateral geometric distribution.

5.1. Computations of ψ(κ).

In the case of Rademacher displacements, random walk Sn is equal to
a+
∑n

k=1 ξk , where (ξk)k∈N is i.i.d. with distribution thanks to (6), i.e. such
that

ξk ∼
p

m
δ0 +

pEN
2m

δ−1 +
pEN
2m

δ+1, k ∈ N.

Looking back at (35), we need thus to give estimations on the two following
quantities as n→ +∞:

P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn = L+ 1] = P[T+ = n, T+ < T−] (36)

P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn = −1] = P[T− = n, T− < T+]. (37)

These two quantities correspond to the probability that a Markov chain
{Xn, n ∈ N}, starting from X0 = a, with values in {−1, 0, ..., L, L + 1}
and two absorbing states −1 and L + 1 respectively reach L + 1 and −1

14



at time n for the first time, and with transition probability (Qij)i,j=−1,...,L+1

defined by

Qi,i−1 = Qi,i+1 =
pEN
2m

, Qi,i =
p

m
, i = 0, ..., L,

Q−1,−1 = 1, QL+1,L+1 = 1.

Letting ei the column vector of size L + 3 such that its ith component,
i ∈ {−1, ..., L+1}, is 1, and 0 otherwise. Since L+1 is absorbing, and since
state L+ 1 is reachable only from state L, one has that

P[T+ = n, T+ < T−] = P[Xn = L+ 1, Xn−1 = L] = pEN
2m

e′aQ
n−1eL,

P[T− = n, T− < T+] = P[Xn = −1, Xn−1 = 0] = pEN
2m

e′aQ
n−1e0,

(38)
where we remind that a ∈ {0, ..., L} is the initial position of both the branch-
ing process and {Xn, n ∈ N}, so that probabilities in (38) are equal to 0
when n = 0. Letting Q̃ = (Qi,j)i,j=0,...,L the (L + 1) × (L + 1) submatrix
of Q obtained by considering indices 0,...,L, it can be easily checked that
[Qn−1]i,j = [Q̃n−1]i,j for all i, j in {0, ..., L}, so that one can write

e′xQ
n−1eL = ẽ′aQ̃

n−1ẽL,

e′xQ
n−1e0 = ẽ′aQ̃

n−1ẽ0
(39)

where ẽi, i = 0, ..., L, is the column vector of size L+1 of entry i equal to 1 and
0 if not. Since Q̃ is an irreducible and non negative matrix, it admits a largest
eigenvalue ρ(Q) which is less than 1 since Q̃ is substochastic. Remember that
a is the starting point of the branching process as well as of Markov chain
{Xn, n ∈ N}. By the Perron Frobenius theory (see Theorem 8.2.9 p.499 of
[3]), one has

[ρ(Q)−1Q̃]n −→ xy′ := LQ, n→ +∞ (40)

where x and y are right and left eigenvectors associated to ρ(Q) such that
x′y = 1. From (38), (39) and (40), we thus obtain the following estimates
for (36) and (37)

P[T+ = n, T+ < T−] ∼ ρ(Q)n−1pEN
2m

ẽ′aLQẽL , (41)

P[T− = n, T− < T+] ∼ ρ(Q)n−1pEN
2m

ẽ′aLQẽ0 , (42)

as n→ +∞.
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We now compute ρ(Q), x and y explicitly, using the fact that x (and y)
are the unique right (and left) eigenvectors of Q̃ with only positive entry (up
to a multiplicative constant), and ρ(Q) is the associated eigenvalue. We set

xj =

√
2

L+ 1
sin

π(j + 1)

L+ 2
, j = −1, 0, ..., L+1, x = (x0, . . . , xL) and y = x′,

(43)
and we observe that for all j ∈ {0, . . . , L}, we have

(Q̃x)j = xj
p

m
+
pEN
2m

(xj−1 + xj+1)

= xj
p

m
+
pEN
2m

√
2

L+ 1

(
sin

π(j + 2)

L+ 2
+ sin

πj

L+ 2

)
= xj

p

m
+
pEN
2m

√
2

L+ 1

(
2 sin

π(j + 1)

L+ 2
cos

π

L+ 2

)
= xjρ(Q),

where we have set

ρ(Q) =
p

m

(
1 + EN cos

π

L+ 2

)
. (44)

With the same computations we obtain y′Q̃ = ρ(Q)y′, and we observe easily
that x′y = 1 with our choice of normalization.

Plugging these observations into (35) and using Proposition 4, we obtain
the following result:

Proposition 10. One has, for an initial position a ∈ {0, ..., L} that constant
κ such that ψ̃n(A)/κ

n converges (see (12)) is

κ = mρ(Q) (45)

where ρ(Q) is given by (44). If κ defined in (45) is larger than 1, ψ̃(κ)(A)
and ψ(κ) are given by

ψ̃(κ)(A) = ρ(Q)−1pEN
2m

[
eu(L+1)ẽ′aLQẽL + eu.(−1)ẽ′aLQẽ0

]
, (46)

ψ(κ) =

[
mρ(Q)

mρ(Q)− 1

] [
p (1 + EN cosh(u))− 1

p (1 + EN cosh(u))−mρ(Q)

]
ψ̃(κ)(A). (47)

Here matrix LQ is defined by (40).

Let us also note that Condition κ < m required by Proposition 4 in order to
get expression (47) is always fulfilled, as ρ(Q) is always less than 1.
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5.2. Asymptotic behaviour of expected number of particles in A and Ā.

We recall that all expressions obtained previously depend on parameter
u ∈ I. Let us consider the particular case when u is equal to zero. To explicit
this particular case, 0 is added as a superscript to the quantities ψ, ψ1, ψ2,
ψ̃k (k ≥ 1), ψ(κ) and ψ̃(κ).

• limn→∞ ψ0
n represents the expected limit number of offsprings ;

• limn→∞ ψ0
n
(1)

represents the expected limit number of offsprings which
are in Ā that is to say not in the trap zone ;

• limn→∞ ψ0
n
(2)

represents the expected limit number of offsprings which
are in the trap zone A.

Now, let us distinguish the three different cases κ = mρ(Q) > 1, κ =
mρ(Q) < 1 and κ = mρ(Q) = 1.

Case κ = mρ(Q) > 1. From (16),

lim
n→∞

ψ0
n
(1)

κn
= ψ̃0

(κ)
(Ā) ,

lim
n→∞

ψ0
n
(2)

κn
=

κ

κ− 1
ψ̃0

(κ)
(A) ,

where ψ̃0
(κ)

(Ā) and ψ̃0
(κ)

(A) are given by (14) and (46) with u = 0. As a
consequence, when n goes to infinity, the expected limit number of offspring

which are not in the trap zone is equivalent to κnψ̃0
(κ)

(Ā) and goes to infinity
since κ > 1 and the expected limit number of offspring in the gap zone is

equivalent to (κn+1/(1− κ))ψ̃0
(κ)

(A) which goes to infinity too. To end this

case, E(νn(1)) is equivalent to κn
(
ψ̃0

(κ)
(Ā) + (κ/(1− κ))ψ̃0

(κ)
(A)
)

which

goes logically to infinity.
Case κ = mρ(Q) < 1. Let us first use Lemma 2 and write

ψ0
n
(1)

= Ea

∑
|z|=n

1TA(z)>n

 = mnE
[
1{Sj∈Ā, j≤n}

]
= mnP(min(T+, T−) > n)

= mn

+∞∑
k=n+1

P(min(T+, T−) = k) .

17



From (41) and (42), and since ρ(Q) < 1, one gets the following equivalent:

ψ0
n
(1) ∼ mn

+∞∑
k=n+1

ρ(Q)k
pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0) , n→ +∞ ,

= mnρ(Q)n
ρ(Q)

1− ρ(Q)

pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0)

= κn
ρ(Q)

1− ρ(Q)

pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0) . (48)

As a consequence, the expected limit number of offspring which are not in
the trap zone goes to zero since κ < 1.

For the second term ψ0
n
(2)
, let us first recall that

ψ0
n
(2)

=
n∑
k=0

ψ̃0
k(A) . (49)

Since ψ̃0
k(A) ∼

k→∞
κkψ̃0

(κ)
then

∑∞
k=0 ψ̃

0
k(A) is finite. Then, we deduce that

the expected limit number of offspring in the gap zone is finite.
Case κ = mρ(Q) = 1. Note that computation (48) becomes

ψ0
n
(1) ∼ ρ(Q)

1− ρ(Q)

pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0) , n→ +∞,

so that the expected limit number of offspring which are not in the trap

zone converges to a finite limit. As to ψ0
n
(2)
, (49) still holds but is this time

divergent as n→ ∞.
Gathering all these cases, we thus have proved the following result:

Proposition 11. The mean number ψ0
n
(1)

and ψ0
n
(2)

of particles respectively
in the trap zones A and in the non-trap zone Ā evolve according to the fol-
lowing cases for κ defined by (45), as n→ +∞.
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Supercritical case κ > 1
ψ0
n
(1) ∼ κnψ̃0

(κ)
(Ā) −→ +∞,

ψ0
n
(2) ∼ κn+1 1

1− κ
ψ̃0

(κ)
(A) −→ +∞.

Subcritical case κ < 1

ψ0
n
(1) ∼ κn

ρ(Q)

1− ρ(Q)

pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0) −→ 0,

ψ0
n
(2) ∼

∞∑
k=0

ψ̃k(A) < +∞.

Critical case κ = 1

ψ0
n
(1) ∼ ρ(Q)

1− ρ(Q)

pEN
2m

(ẽ′aLQẽL + ẽ′aLQẽ0) < +∞,

ψ0
n
(2) ∼

n∑
k=0

ψ̃k(A) −→ +∞.

Here ψ̃0
(κ)

(Ā) and ψ̃0
(κ)

(A) are given by (14) and (46) with u = 0.

5.3. Generating function

The generating function ψ̂(t) of of (ψn)n∈N is provided in the following
result.

Proposition 12. One has the following expressions:

ψ̂(t, A) =
pEN
2

e′a (I − tmQ)−1 .
[
eu(L+1)eL + e−ue0

]
,

ψ̂(t) =
pEN
2
e′a (I − tmQ)−1 .

[
eu(L+1)eL + e−ue0

]
− eua

m(u)t− 1

+
1

1− t

pEN
2

e′a (I − tmQ)−1 .
[
eu(L+1)eL + e−ue0

]
for |t| small enough and less than 1/m(u) = 1/[p (1 + EN cosh(u))], where I
is the identity matrix.

Proof. Expression of ψ̂(t, A) is obtained thanks to (38), (36) and (37)
plugged into (35) in the definition ψ̂(t, A) =

∑∞
n=0 t

nψ̃n(A) of the gener-
ating function. Since this involves summing

∑∞
n=0(tmQ)

n, the series con-
verges when t is small enough such that matrix I − tmQ is invertible, i.e.
|t| < 1/mr(Q) where r(Q) is the largest eigenvalue in modulus of Q, which
here is equal to 1 as Q is the transition matrix of a Markov chain with
absorbing states. Expression of ψ̂(t) is obtained thanks to Expression (20)
in Proposition 5. We note that, since (20) is valid for |t| < 1/m(u) and
m(u) ≥ m, the condition for both I − tmQ being invertible and ψ̂(t) to be
valid is |t| < 1/m(u). �
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5.4. Almost sure behaviour of νn in the supercritical case κ > 1

We apply in this section the results developed in Section 4 to compute the
almost sure behaviour of νn. We observe that in this case matrix M defined
in (23) has the following expression:

∀i, j ∈ {0, ..., L}, Mi,j = pδi,j +
pEN

2
(δi,j+1 + δi,j−1).

We note, with the notation in Section 4, that M = mQ̃, so that expression
(44) in Subsection 5.1 immediately yields that ρ(M) = κ, and, inspired by
(43), that eigenvector b and eigenvalue ρ(M) are given by

∀i ∈ Ā = {0, ..., L}, bj =
sin(π/(L+ 2))

cos(π/(L+ 2))
sin

π(j + 1)

L+ 2

and ρ(M) = mρ(Q) = p

(
1 + EN cos

π

L+ 2

)
= κ.

In particular, the process survives with positive probability as soon as we are
in the supercritical case

κ > 1 ⇐⇒ cos
π

L+ 2
>

1− p

pEN
, (50)

that we assume is true in this section. Moreover, we have immediately from
(26)

a−1 = aL+1 = pEN
κ

κ− 1

sin(π/(L+ 2))2

cos(π/(L+ 2))
,

ai = bi, i = 0, ..., L.
(51)

We conclude from Theorem 6 the following result:

Proposition 13. Under condition (50), there exists a non negative random
variable W such that the following convergences occur:

νn
νn(1)

 
n→+∞

L+1∑
i=−1

āiδi on S,

κ−nνn  
n→+∞

W
L+1∑
j=−1

ajδj a.s.

where S is the set of survival of the branching random walk, and āi is defined
by (27) and a−1,..., aL+1 are given by (51).

20



6. Laplace distributed displacements

We suppose in this section that S = R, the active zone Ā is the open
bounded interval

Ā = (−1, 1),

and that displacements are Laplace distributed with parameter µ, i.e. posi-
tive or negative with probability 1/2, with exponential distribution in abso-
lute value with parameter µ (denoted by V ∼ L(µ) in the following).

We are here interested in the generating function ψ̂(t) of (ψn)n∈N as de-
fined in (4). As in (35), we wish to use Lemma 2, yielding

ψ̃n(A) = mnE
[
euSn1{Sj∈Ā, ∀j=1,...,n−1,Sn∈A}

]
. (52)

The corresponding random walk {Sn = a+
∑n

k=1 ξk, n ≥ 0} is defined thanks
to (6), with distribution

ξk ∼
p

m
δ0 +

pEN
m

L(µ), k ∈ N. (53)

Since overshooting +1 (resp. undershooting−1) for the random walk {Sn, n ≥
0} necessarily corresponds to an exponentially distributed jump, one has from
the memoryless property that

ψ̃n(A) = mnE
[
euSn1{Sj∈Ā, ∀j=1,...,n−1,Sn<−1}

]
+mnE

[
euSn1{Sj∈Ā, ∀j=1,...,n−1,Sn>1}

]
= mne−u

µ

µ− u
P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn < −1]

+mneu
µ

µ+ u
P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn > 1], (54)

where we suppose that |u| < µ. Both probabilities on the right-hand side of
(54) correspond to the distribution of the exit time of {Sn, n ≥ 0} out of Ā
and can be written as (similarly to (36)-(37))

P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn < −1] = P[T−1 = n, T−1 < T1], (55)

P[Sj ∈ Ā, ∀j = 1, ..., n− 1, Sn > 1] = P[T1 = n, T1 < T−1], (56)

for all n ∈ N, where T−1 (resp. T1) represents the first instant when {Sn, n ≥
0} downcrosses −1 (resp. upcrosses +1), and T := min(T−1, T1) is the first
exit time out of Ā.
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From (54), (55) and (56) one obtains the following expression for ψ̂(t, A)

ψ̂(t, A) = e−u
µ

µ− u
ϕ−(tm) + eu

µ

µ+ u
ϕ+(tm) (57)

where ϕ− and ϕ+ are Laplace transforms of T−1 and T1 on the event that
first exit from Ā is through −1 and +1, i.e.

ϕ−(t) := E[tT−11{T−1<T1}], ϕ+(t) := E[tT11{T1<T−1}], |t| < 1. (58)

In the following we will make use of results from [4] that gives the expressions
of such quantities ϕ−(t) and ϕ+(t) only when the increments of the random
walk {Sn, n ≥ 0} are non lattice. Since this is not the case here (as seen in
(53)), we will need the following lemma:

Lemma 14. Let T 0
−1, T

0
1 be the downcrossing and upcrossing times through

−1 and +1 of random walk {S0
n =

∑n
k=1 ξ

0
k, n ≥ 0} where ξ0k ∼ L(µ), and

let

ϕ0
−(t) := E[tT 0

−11{T 0
−1<T

0
1 }], ϕ0

+(t) := E[tT 0
1 1{T 0

1<T
0
−1}], |t| < 1,

be the corresponding generating functions. ϕ−(t) and ϕ+(t) are given in func-
tion of ϕ0

−(t) and ϕ
0
+(t) by

ϕ±(t) =
1

1− tpE(N)/m
ϕ0
±

(
−tp

m− tpE(N)

)
, |t| < m/pE(N). (59)

From the above result we obtain the following expression for ψ̂(t, A) and
ψ̂(t):

Proposition 15. Let us define the following invertible matrix

Mt :=


eµ

√
1−t

1−
√
1− t

e−µ
√
1−t

1 +
√
1− t

e−µ
√
1−t

1 +
√
1− t

eµ
√
1−t

1−
√
1− t

 , 0 < |t| < 1,

and let (c−(t), d−(t)), (c+(t), d+(t)), be defined by

(c−(t), d−(t))
′ =M−1

t (1, 0)′, (c+(t), d+(t))
′ =M−1

t (0, 1)′. (60)
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Then ϕ0
± have the following expressions

ϕ0
−(t) = c−(t)e

−aµ
√
1−t + d−(t)e

aµ
√
1−t,

ϕ0
+(t) = c+(t)e

−aµ
√
1−t + d+(t)e

aµ
√
1−t,

0 < |t| < 1. (61)

Finally, the generating function of (ψ̃n(A))n∈N is given by

ψ̂(t, A) = e−u
µ

µ− u

1

1− tpE(N)
ϕ0
−

(
−tp

1− tpE(N)

)
+ eu

µ

µ+ u

1

1− tpE(N)
ϕ0
+

(
−tp

1− tpE(N)

)
, (62)

for |t| < 1, and ψ̂(t) is obtained thanks to (20) as well as the above expression
for ψ̂(t, A).

Proof of Proposition 15. One just needs to be able to compute expressions
of ϕ0

−(t) and ϕ
0
+(t) required in Lemma 14 then plug (59) into (57) in order to

obtain (62). This is done by using Theorem 5 from [4]. Indeed, ξ0k defined in
Lemma 14 is non lattice so that the latter result is applicable. Following [4],
one has first to solve the so-called Lundberg equation (see Eq. (26) therein)
which here takes the form

1

2

µ

µ+ z
+

1

2

µ

µ− z
=

2

t

for a fixed t ∈ (−1, 1) \ {0} and of which solutions are z = ±µ
√
1− t. It is

then not hard to check that (c−(t), d−(t)), (c+(t), d+(t)) in (60) are exactly
the solutions to the linear system of equations following (27) in [4], and that
Expressions (61) are exactly (27) from [4], where constants (K,L) in this
paper are respectively (1, 0) then (0, 1). �
Proof of Lemma 14. First note that {S0

n =
∑n

k=1 ξ
0
k, n ≥ 0} has same dis-

tribution as {Sn =
∑n

k=1 ξk, n ≥ 0} conditioned not to have zero increments.
The idea of the proof is to intuitively consider that T−1 and T

0
−1 only differ by

a (random) number of times that the random walk {Sn =
∑n

k=1 ξk, n ≥ 0}
had zero increments. It may be convenient to write

(Sn)n∈N
D
=

(
n∑
k=0

Θkξ
0
k

)
n∈N

(63)
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where (Θk)k∈N is an i.i.d. B(pE(N)/m) distributed sequence of random vari-
ables, independent from the (ξ0k)k∈N. Let us introduce the following notation:

p−(j) := P[T 0
−1 = j, T 0

−1 < T 0
1 ], j ∈ N.

One then has from (63) that, for all n ∈ N,

P[T−1 = n, T−1 < T1] = E [P[T−1 = n, T−1 < T1| Θ1, ...,Θn]]

= E

[
p−

(
n−

n∑
k=1

Θk

)]

=
n∑
j=0

p−(n− j)

(
n

j

)(
pE(N)

m

)j ( p
m

)n−j
. (64)

One then computes

ϕ−(t) =
∞∑
n=0

tnP[T−1 = n, T−1 < T1]

=
∞∑
n=0

tn
n∑
j=0

p−(n− j)

(
n

j

)(
pE(N)

m

)j ( p
m

)n−j
from (64),

=
∞∑
j=0

∑
n≥j

tnp−(n− j)
n!

(n− j)!j!

(
pE(N)

m

)j ( p
m

)n−j
=

∞∑
j=0

∞∑
n=0

tn+jp−(n)
(n+ j)!

n!j!

(
pE(N)

m

)j ( p
m

)n
=

∞∑
n=0

tn
( p
m

)n
p−(n)

1

n!

[
∞∑
j=0

(n+ j)!

j!

(
tpE(N)

m

)j]
. (65)

One has that
∞∑
j=0

(n+ j)!

j!
xj =

∞∑
j=0

(n+ j)...(j + 1)xj is the nth derivative of

x 7→
∑∞

j=0 x
j = 1/(1− x), |x| < 1, i.e.

∞∑
j=0

(n+ j)!

j!
xj = (−1)nn!(1− x)−n−1,
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so that in (65) we get, for |tpE(N)/m| < 1,

ϕ−(t) =
∞∑
n=0

tn
( p
m

)n
p−(n)(−1)n

(
1− tpE(N)

m

)−n−1

=
1

1− tpE(N)/m

∞∑
n=0

p−(n)

(
−tp

m− tpE(N)

)n
which is exactly (59) for ϕ−(t) (ϕ+(t) is obtained similarly), for t small enough
such that |tpE(N)/m| < 1. �

Remark 16. The special distribution L(µ) for displacements was studied as
a special case of the distribution which admit a rational Laplace transform.
This class of such distributions includes the class of double sided PH-type
distribution, i.e. V = ∆X where ∆ is Rademacher distributed and X is
PH-type distributed. A closer look at the proofs shows that one of the main
ingredients for obtaining the expression of the generating function (62) in
Proposition 15 is to be able to get the distribution of the exit time of ran-
dom walk {Sn, n ≥ N} jointly to the overshoot or undershoot out of interval
Ā = (−1, 1), see (54) where we used the memoryless property of the ex-
ponential distribution. This joint distribution is actually given in [4] in the
case of PH distributions (instead of the exponential distribution here), so that
Proposition 15 could be adapted to include this type of distribution.

7. The torus case

We now suppose that S is the torus T with length of size 2, i.e. interval
[0, 2) where we identify endpoints 0 and 2. In that case, expression of νn(e

u·)
is given by

νn(e
u·) :=

∑
|x|=n

eu(V (x)−2⌊V (x)/2⌋) =
∑
|x|=n

euV̄ (x),

V̄ (x) := V (x)− 2⌊V (x)/2⌋ = V (x) mod 2, (66)

where ⌊z⌋ stands for the integer part of z ∈ R, for a branching random walk
(V (x), x ∈ T) on R with displacement distributed as V , so that (V̄ (x), x ∈
T) is a branching random walk on T with same displacement distribution.
We suppose here that we are in the case m = p(1 + EN) > 1. We start by
studying the case where T does not contain any trapping zone.
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Theorem 17 (No trapping zone case). Let us suppose that E(N log(N+
1)) < +∞, and let S be the set of non extinction. For any non lattice
distribution of displacement V , one has the following a.s. convergence of
empirical measure

νn
νn(1)

 
n→+∞

U(T) on S,

where U(T) is the uniform distribution on torus T.

Proof. For k ∈ Z and n ∈ N the kth Fourier coefficient of random measure
νn is given by

Mn(k) := νn(e
ikπ.) =

∫
T

eikπxνn(dx),

One verifies thatMn(k) =
∑

|u|=n e
iπkV (u), i.e. is the Fourier coefficient of the

branching random walk (V (x), x ∈ T) on R . We write ϕk := E(M1(k)) =
p
(
1 + E(N)E(eiπkV )

)
. Observe that for any k ̸= 0, and because V is non

lattice,
|ϕk| = p

∣∣1 + E(N)E(eikπV )
∣∣ < p(1 + EN) = m.

By [5, Theorem 1],
(
Mn(k)
ϕnk

)
n∈N

is a martingale. Consequently, and because of

the above strict inequality, E
(∑∞

n=0
Mn(k)
mn

)
is finite for k ̸= 0 and thus Mn(k)

mn

converges a.s. to 0 for any k ̸= 0. Moreover, by classical Galton-Watson
theory, Mn(0)/m

n → Z a.s. for some r.v. Z ≥ 0, such that Z = 0 is the set
of extinction S under the assumption E(Mn(0) ln(Mn(0) + 1)) < +∞, which
one can check is equivalent to condition E(N log(N +1)) < +∞. We deduce
that for any measurable bounded function f : T→ R,

lim
n→+∞

νn(f)

mn
= Z

∫ 2

0

f(s)ds.

As a result, νn/νn(1) converges on S towards the uniform distribution on the
torus. �
We next suppose thatT admits a trapping zone [1, 2) and a non trapping zone
[0, 1). This is equivalent to consider a branching random walk (V (x), x ∈ T)
on R with displacement distributed as V , and trapping zone

A := ∪j∈ZAj, Aj := [2j + 1, 2j + 2) = A+ 2j.

The non trapping zone is then Ā such that
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Ā1A0

Ā
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Figure 3: Trapping zone on torus.

Ā := ∪j∈ZĀj, Āj := [2j, 2j + 1) = Ā+ 2j,

see Figure 3. We will also consider from now that displacements are, as in
Section 6, Laplace distributed, namely V ∼ L(µ) for some µ > 0. Following
the S = R case studied in Section 6, we are interested in

ψ̂(t, a) :=
∞∑
n=0

tnEa(νn(eu·)). (67)

where a ∈ Ā0 is the initial position of the first particle, for a u ∈ R fixed
throughout this section. We are interested in an integral equation satisfied
by ψ̂(t, .). Since displacements have same distribution as in Section 6, we
briefly recall some notation. We introduce and recall again the associated
random walk (Sn)n∈N defined in Lemma 2 by (6), with here the ξn’s defined
as in (53), i.e.

ξk ∼
p

m
δ0 +

pEN
m

L(µ), k ∈ N.

Furthermore, we recall the notation given in Lemma 14

ϕ±(t) = ϕ±,a(t) =
1

1− tpE(N)/m
ϕ0
±,a

(
−tp

m− tpE(N)

)
, |t| < m/pE(N),

stressing the dependence on the initial position a, where ϕ0
+,a(z) and ϕ

0
+,a(z)

are the generating functions respectively of the left and right exit times of
random walk (Sn)n∈N out of Ā0 = [0, 1) starting from a ∈ Ā0, given by
(61). It is not difficult to obtain an expression for these quantities, as in
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Proposition 15, so we will consider that those quantities ϕ0
±,a(z), a ∈ Ā0, are

available.
The main result of this section is the following theorem.

Theorem 18. Let us suppose that the trapping zone is as in Figure 3 and
V ∼ L(µ). Then a ∈ Ā0 7→ ψ̂(t, a) is the unique continuous solution to the
following equation:

ψ̂(t, a) = ψ̂a(t, Ā0) + ψ̂a(t, A) +

∫
Ā0

ψ̂(t, v)µe−µvdv
e−µ

1− e−2µ
ϕ+(mt)

+

∫
Ā0

ψ̂(t, v)µeµvdv
e−2µ

1− e−2µ
ϕ−(mt) (68)

where t and u and small enough such that (t, u) belong to set{
(s, v) ∈ R2

∣∣∣∣ |v| < µ, |s| < p

m
+
pE(N)

m

µ2

µ2 − v2

}
,

and where ψ̂a(t, Ā0), ψ̂a(t, A) are given by

ψ̂a(t, Ā0) :=
µ2 − u2

µ2 − u2 − t(p(µ2 − u2) + pE(N)µ2)

.

[
eua − eu

µ

µ− u
ϕ+(tm)− µ

µ+ u
ϕ−(tm)

]
, (69)

ψ̂a(t, A) :=
1

1 + e−µ
ϕ−(tm) + eu

e−µ

1 + e−µ
ϕ+(tm). (70)

The remaining of this section is dedicated to proving Theorem 18. We first
establish that ψ̂(t, .) is solution to integral equation (68). Then we prove
that such a solution is unique among the set of continuous functions from Ā0

to R.
Establishing Equation (68). As in (9), we split Ea(νn(eu·)) in three

terms, according to whether a lineage of particles stayed in Ā0, exited Ā0 at
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some point in k ∈ {0, ..., n} in A or some other Āj, j ̸= 0:

Ea(νn(eu·)) = Ea

∑
|x|=n

eu(V̄ (x)⌋)
1TĀ0

(x)>n


+

n∑
k=0

Ea

∑
|x|=k

eu(V (x)−2⌊V (x)/2⌋)
1{TĀ0

(x)>k−1}∩{V (x)∈A}


+

n∑
k=0

Ea

∑
|x|=n

eu(V (x)−2⌊V (x)/2⌋)
1{TĀ0

(x)>k−1}∩{V (xk)∈Ā\Ā0}


:= ψ(1)

n (a) + ψ(2)
n (a) + ψ(3)

n (a). (71)

We wish to obtain the generating function of ψ
(2)
n (a). As in development

leading to Expression (57) one obtains

∞∑
n=0

tnψ(2)
n (a) := ψ̂a(t, A) =

∫
∪j≤−1Aj

µeµzdz .ϕ−(tm)

+eu
∫
∪j≥0Aj

µe−µzdz .ϕ+(tm)

=
−1∑

j=−∞

∫ 2j+2

2j+1

µeµzdz .ϕ−(tm) + eu
∞∑
j=0

∫ 2j+2

2j+1

µe−µzdz .ϕ+(tm),

leading to Expression (70).

We turn to generating function of ψ
(1)
n (a). Since within Ā0 the branching

process behaves as a classical branching random walk, and as ⌊V (x)/2⌋ = 0
while V (x) ∈ Ā0, one has

ψ(1)
n (a) = Ea

∑
|x|=n

euV (x)
1TĀ0

(x)>n

 .
Using Lemma 2, we have thus

ψ(1)
n (a) = mnEa

[
euSn1{Sj∈Ā0,j=0,...,n}

]
= mnEa

[
euSn

]
−mn

n∑
k=0

Ea
[
euSn1{Sj∈Ā0,j=0,...,k−1,Sk /∈Ā0}

]
. (72)
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Let us introduce Ea
[
euSn

]
:= cn(a), which, after straightforward computa-

tion, has the following expression:

cn(a) = eua
(
p

m
+
pE(N)

m

µ2

µ2 − u2

)n
(73)

for |u| < µ. Now using memoryless property of the exponential distribution:

Ea
[
euSn1{Sj∈Ā0,j=0,...,k−1,Sk /∈Ā0}

]
= E

[
eu(Sn−k+W+1)

]
.Pa[Sj ∈ Ā0, j = 0, ..., k − 1, Sk > 1]

+ E
[
eu(Sn−k−W )

]
Pa[Sj ∈ Ā0, j = 0, ..., k − 1, Sk < 0]

=

∫ ∞

0

cn−k(v + 1)dPW (v).Pa[T+ = k, T+ < T−]

+

∫ ∞

0

cn−k(−v)dPW (v).Pa[T− = k, T− < T+]

where W is distributed as E(µ). Here we let T+ and T− the respective right
and left exit times of random walk (Sn)n∈N out of Ā0 = [0, 1). (72) then
reads

ψ(1)
n (a) = mncn(a)−mn

n∑
k=0

∫ ∞

0

cn−k(v + 1)dPW (v).Pa[T+ = n, T+ < T−]

−mn

n∑
k=0

∫ ∞

0

cn−k(−v)dPW (v).Pa[T− = n, T− < T+]. (74)

We deduce from the above that the generating function of ψ
(1)
n (a) is

∞∑
n=0

tnψ(1)
n (a) := ψ̂a(t, Ā0) = ĉ(mt, a)−

∫ ∞

0

ĉ(mt, v + 1)dPW (v).ϕ+(mt)

−
∫ ∞

0

ĉ(mt,−v)dPW (v).ϕ−(mt) (75)

where ĉ(s, a) is the following generating function

ĉ(s, a) :=
∞∑
n=0

sncn(a) = eua
m(µ2 − u2)

m(µ2 − u2)− s(p(µ2 − u2) + pE(N)µ2)
,

|u| < µ, |s| < p

m
+
pE(N)

m

µ2

µ2 − u2
,
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which, plugged in (75), yields (69).

Finally, we turn to ψ
(3)
n (a). Similarly to (72) we write, using the Many to

one Lemma (Lemma 2):

Ea

∑
|x|=n

eu(V (x)−2⌊V (x)/2⌋)
1{TĀ0

>k−1}∩{V (xk)∈Ā\Ā0}


= Ea

∑
|x|=n

eu(V (x)−2⌊V (x)/2⌋)
1{TĀ0

>k−1}∩{V (xj)∈Ā\Ā0,j=k,...,n}


+

n∑
p=k

Ea

∑
|x|=n

eu(V (xp)−2⌊V (xp)/2⌋)1{TĀ0
>k−1}∩{V (xj)∈Ā\Ā0,j=k,...,p−1,V (xp)∈A}


= mnEa

[
eu(Sn−2⌊Sn/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sj∈Ā\Ā0,j=k,...,n}

]
+ mn

n∑
p=k

Ea
[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sj∈Ā\Ā0,j=k,...,p−1,Sp∈A}

]
. (76)

Now in the second term in the above equality one has, considering both cases
according to whether Sk ∈ Ā \ Ā0 is positive or negative:

Ea
[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sj∈Ā\Ā0,j=k,...,p−1,Sp∈A}

]
= Ea

[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sk∈

∪
r≥1 Ār,Sj∈Ā\Ā0,j=k+1,...,p−1,Sp∈A}

]
+Ea

[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sk∈

∪
r≤−1 Ār,Sj∈Ā\Ā0,j=k,...,p−1,Sp∈A}

]
. (77)

The following is obtained according to the Markov property, the memoryless
property of exponential distribution, then again Lemma 2:

mnEa
[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sk∈

∪
r≥1 Ār,Sj∈Ā\Ā0,j=k+1,...,p−1,Sp∈A}

]
= mnE

[
eu((Sp−k+W )−2⌊(Sp−k+W )/2⌋)

1{W∈
∪

r≥1 Ār,W+Sj∈Ā\Ā0,j=1,...,p−k−1,W+Sp−k∈A}

]
.Pa[T+ = k, T+ < T−]

= mk

∫
∪

r≥1 Ār

Ev

 ∑
|x|=n−k

eu(V (xp−k)−2⌊V (xp−k)/2⌋)1{V (xj)∈Ā\Ā0,j=1,...,p−k−1,V (xp−k)∈A}


dPW (v).Pa[T+ = k, T+ < T−] (78)
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whereW = 1+Z where Z is a generic E(µ) distributed r.v. Treating similarly
second term in the right-hand side of (77) yields a similar formula as (78)
and entails the following

Ea
[
eu(Sp−2⌊Sp/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sj∈Ā\Ā0,j=k,...,p−1,Sp∈A}

]
= mk

∫
∪

r≥1 Ār

Ev

 ∑
|x|=n−k

eu(V (xp−k)−2⌊V (xp−k)/2⌋)1{V (xj)∈Ā\Ā0,j=1,...,p−k−1,V (xp−k)∈A}


dPW (v).Pa[T+ = k, T+ < T−]

+ mk

∫
∪

r≤−1 Ār

Ev

 ∑
|x|=n−k

eu(V (xp−k)−2⌊V (xp−k)/2⌋)1{V (xj)∈Ā\Ā0,j=1,...,p−k−1,V (xp−k)∈A}


dPW ′(v).Pa[T− = k, T− < T+] (79)

where W ′ is such that −W ′ is E(µ) distributed. Finally, one has similarly
that the first term on the right-hand side of (76) verifies

mnEa
[
eu(Sn−2⌊Sn/2⌋)1{Sj∈Ā0,j=0,...,k−1}∩{Sj∈Ā\Ā0,j=k,...,n}

]
= mk

∫
∪

r≥1 Ār

Ev

 ∑
|x|=n−k

eu(V (x)−2⌊V (x)/2⌋)
1{V (xj)∈Ā\Ā0,j=1,...,n−k}

 dPW (v)

.Pa[T+ = k, T+ < T−]

+ mk

∫
∪

r≤−1 Ār

Ev

 ∑
|x|=n−k

eu(V (x)−2⌊V (x)/2⌋)
1{V (xj)∈Ā\Ā0,j=1,...,n−k}

 dPW ′(v)

.Pa[T− = k, T− < T+]. (80)

Gathering (79) and (80) and plugging into (76) yields

ψ(3)
n (a) =

n∑
k=0

mk

∫
∪

r≥1 Ār

Ev(νn−k(eu·))dPW (v).Pa[T+ = k, T+ < T−]

+
n∑
k=0

mk

∫
∪

r≤−1 Ār

Ev(νn−k(eu·))dPW ′(v).Pa[T− = k, T− < T+]. (81)

Finally, noticing that
∫∪

r≤−1 Ār
Ev(νn−k(eu·))dPW ′(v) =

∫∪
r≥1 Ār

E2−v(νn−k(e
u·))dPW (v),

decomposition (71) alongside Expressions (69), (70), as well as decomposition
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(80), yield the following integral equations for generating function ψ̂(t, .):

ψ̂(t, a) = ψ̂a(t, Ā0) + ψ̂a(t, A)

+

∫
∪

r≥1 Ār

ψ̂(t, v)dP1+W (v).ϕ+(mt) +

∫
∪

r≤−1 Ār

ψ̂(t, v)dP−W (v)ϕ−(mt)

which, by straightforward computation, yields (68).
Uniqueness of solution to (68). We use here the notation ϕ+,a (resp.

ϕ−a) for ϕ+ (resp ϕ−) to make explicit the dependence in a. Let us introduce
the following operator A defined on the set of continuous functions from Ā0

to R by

Af(a) :=
∫
Ā0

f(v)µe−µvdv
e−µ

1− e−2µ
ϕ+,a(mt)+

∫
Ā0

f(v)µeµvdv
e−2µ

1− e−2µ
ϕ−,a(mt),

a ∈ Ā0, (where t is fixed), equipped with norm ||f || := supa∈Ā0
|f(a)|. A

short computation shows that A satisfies the following inequality

||Af || ≤ C.||f ||

where

C := sup
a∈Ā0

∣∣∣∣(1− e−µ)
e−µ

1− e−2µ
ϕ+,a(mt) + (eµ − 1)

e−2µ

1− e−2µ
ϕ−,a(mt)

∣∣∣∣
≤

[
(1− e−µ)

e−µ

1− e−2µ
+ (eµ − 1)

e−2µ

1− e−2µ

]
max (||ϕ+,.(mt)||, ||ϕ−,.(mt)||)

=
2e−µ

1 + e−µ
max (||ϕ+,.(mt)||, ||ϕ−,.(mt)||) ,

a quantity which is strictly less than 1 since 2e−µ

1+e−µ , ||ϕ+,.(mt)|| and ||ϕ−,.(mt)||
are all quantities upper bounded by 1. Thus A is a contracting operator, and
Equation (68), which can also be written

ψ̂(t, a) = ψ̂a(t, Ā0) + ψ̂a(t, A) +
(
Aψ̂(t, .)

)
(a), a ∈ Ā0,

admits a unique solution. �
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