Antonin Chambolle 
  
Flaviana Sergio Conti 
  
Flaviana Iurlano 
  
Approximation of functions with small

published or not. The documents may come    

Introduction

The last few years have seen the development of several techniques to approximate a certain class of special functions with bounded deformation (SBD). Such functions appear in the mathematical formulation of fracture in the framework of linearized elasticity [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Maso | Generalised functions of bounded deformation[END_REF]. Their peculiarity is the structure of the symmetric distributional derivative, which unveils the presence of a regularity zone, where the function admits a symmetric gradient in an approximate sense, and of a singularity zone, where the function jumps. The variational problems in such spaces are generally hard to tackle, and few strong existence results are known with no artificial additional constraint (L ∞ bounds, a priori bounds on the discontinuity set, ...) We address in this paper the issue of the existence of strong minimizers for Griffith's model of brittle fracture in linear elasticity [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF], in the formulation introduced by Francfort and Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (up to lower-order terms, see Theorem 1 below for details). A scalar simplification of this problem leads to the Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], well known in the mathematical literature. By strong minimizers, we mean functions defined in an open set, with a closed (n -1)-dimensional discontinuity set. This class of "free-discontinuity problems" has been thoroughly studied, in the scalar case, in the 90's and is now well understood; a classical way to the existence of strong minimizers is to show first the existence of minimizers in the class SBV [START_REF] Giorgi | New functionals in the calculus of variations[END_REF] and then, that the jump set of such solutions is closed [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF]. The technical point where the proof of [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] (and most subsequent proofs, see for instance [START_REF] Maddalena | Lower semicontinuity properties of functionals with free discontinuities[END_REF][START_REF] Bucur | Monotonicity formula and regularity for general free discontinuity problems[END_REF]) is not easily transferred is an approximation issue where one needs to show that a minimizer with almost no jump is close to a smooth minimizer. Hence the need to develop new approximation methods in such a context. Indeed, standard methods do not work in a linearized framework, being these based on the identification of bad parts of the function via coarea formula and their removal via truncation [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF]. In contrast, results of this kind have important applications, beyond the already mentioned existence of minimizers for the Griffith's problem in its strong formulation, including the integral representation in SBD of functionals with p growth, or the study of the quasi-static evolution of brittle fracture, in the 2d case see respectively [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF], [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF], and [START_REF] Friedrich | Quasistatic crack growth in linearized elasticity[END_REF].

The first two authors, together with G. Francfort established in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] a Poincaré-Korn's inequality for functions with p-integrable strain and small jump set. Their idea is to estimate the symmetric variation of u on many lines having different orientations and not intersecting the jump set, thus allowing to use the fundamental theorem of calculus along such lines. Through a variant of this strategy with restrictions to the planar setting, the last two authors, together with M. Focardi, proved in [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF] that such functions are in fact Sobolev out of an exceptional set with small area and perimeter, and obtained a Korn's inequality in that class. Similar slicing techniques were first used in [3,[START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | Fracture and plastic models as Γ-limits of damage models under different regimes[END_REF] to prove density and in [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF][START_REF] Dolzmann | Microstructures with finite surface energy: the two-well problem[END_REF][START_REF] Kohn | New integral estimates for deformations in terms of their nonlinear strains[END_REF] to prove rigidity. A different approach, based on the idea of binding the jump heights after suitable modifications of the jump set and of the displacement field, has been employed by Friedrich in [START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF][START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF][START_REF]A piecewise Korn inequality in SBD and applications to embedding and density results[END_REF] to prove Poincaré-Korn's, Korn's with a non-sharp exponent, and piecewise Korn's inequalities in the planar case.

On the one hand, the drawback of [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] is the lack of control on the perimeter of the exceptional set, which prevents good estimates for the strain; nevertheless these can be recovered through a suitable mollification. On the other hand, [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF] and [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF][START_REF]A piecewise Korn inequality in SBD and applications to embedding and density results[END_REF] use respectively a scaling argument and geometric constructions which hold in dimension 2 and do not trivially extend to higher dimensions.

The purpose of this paper is to establish a n-dimensional version of the approximation result in [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF], where it is shown that SBD functions with a small jump set can be approximated with W 1,p functions. Our technique, which is slightly different from [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF] and other "classical" methods already developed for the approximation of (G)SBD functions [3,[START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF]A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF], is based on a subdivision of the domain into "bad" and "good" little cubes (depending on the size of the jump set in each cube) which was first introduced in [START_REF]Approximation of a brittle fracture energy with a constraint of noninterpenetration[END_REF] and also recently used in [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]. Given a function with p-integrable strain and small jump set, we first cover the domain by dyadic small cubes which become smaller and smaller close to the boundary, we then identify the good cubes, those which still contain a small amount of jump. The biggest cubes are chosen with size much larger than the measure of total jump, so that they are all good, and give rise to a compact set which covers most of the domain. In the good cubes the result in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] provides a small set and an affine function which is close to the original function out of the exceptional set. In such set we redefine the function as the aforementioned affine function, then we mollify the new function in the good cube in order to gain regularity. Finally our approximations are obtained by taking a partition of unity on the good part and keeping the original function in the rest. Since a large compact is made of good cubes, our approximation is smooth in most of the domain. For more details we refer to Section 3. Since there are no additional mathematical difficulties, we prove the approximation in the more general setting GSBD, see Section 2 for the definition.

As we mentioned, this result can be employed to prove the existence of strong minimizers for Griffith's energy, thus extending for p = 21 the result in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] in any dimension. Denoting by C the "Hooke's law" of a linear-elastic material, that is, C is a symmetric linear map from R n×n to itself with the properties

C(ξ -ξ T ) = 0 and Cξ • ξ ≥ c 0 |ξ + ξ T | 2 for all ξ ∈ R n×n , (1) 
we obtain the following result: [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. Then the functional

Theorem 1. Let Ω ⊂ R n be a bounded Lipschitz set, g ∈ L ∞ (Ω; R n ), β > 0, κ > 0, C as in
E 2 [Γ, u] := ˆΩ\Γ (Ce(u) : e(u) + κ|u -g| 2 )dx + 2βH n-1 (Γ ∩ Ω) (2) 
has a minimizer in the class

A 2 := {(u, Γ) : Γ ⊂ Ω closed, u ∈ C 1 (Ω \ Γ)}. (3) 
Here, e(u) = (Du + Du T )/2 is the symmetrized gradient of the displacement u.

In [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] the only part of the argument which is restricted to two dimensions was in fact the convergence of quasi-minimizers with vanishing jump to a minimizer without jump, which is obtained precisely using the 2d approximation of [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF]. We show the convergence in Section 4, making use of the approximation result in Section 3. We refer to [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] for the rest of the proof of existence since it remains unchanged in higher dimension.

We remark that apparently the formulation of Griffith's problem considered in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] and here differs from the original one for the presence of a fidelity term of type |u -g| 2 , and for the absence of boundary conditions. Both of them have the only role of guaranteeing existence of a minimizer in GSBD p for the weak global problem, hence one should employ different compactness and semicontinuity theorems in the two cases. One uses [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3] in the first case; in the second case, in presence of Dirichlet boundary conditions, one uses [START_REF] Friedrich | Quasistatic crack growth in linearized elasticity[END_REF]Theorem 4.15] in dimension 2. Compactness in the n-dimensional GSBD setting in presence of Dirichlet boundary conditions is still an open problem. If weak compactness holds, or, in other words, if the weak problem has a minimizer, then the present argument yields the desired regularity. This regularity result also holds in the case κ = 0, which coincides with the classical Griffith model.

Theorem 2. Let Ω ⊂ R n be a bounded Lipschitz set, g ∈ L ∞ (Ω; R n ), β > 0, κ ≥ 0, C as in (1). Let u ∈ GSBD 2 (Ω) be a local minimizer of ˆΩ\Ju (Ce(u) : e(u) + κ|u -g| 2 )dx + 2βH n-1 (J u ) (4) 
Then, up to null sets, u and J u coincide with a local minimizer of

E 2 [Γ, u] in the class A 2 .
By local minimizer we mean here minimizer with respect to perturbations with compact support, i.e., in the class of all v ∈ GSBD 2 (Ω) such that {u = v} ⊂⊂ Ω.

The structure of the paper is the following. In Section 2 we introduce the notation for GSBD functions. In Section 3 we state and prove our main result, the approximation in any dimension for functions with p-integrable strain and small jump set. In Section 4 we study the limit of quasi-minimizers with vanishing jump sets, which is instrumental to obtain existence of minimizers for Griffith's problem in any dimension. Finally, in Section 5 we recall from [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] the main steps of the proof of Theorem 1.

Notation

Fixed Ω ⊂ R n open and u ∈ L 1 (Ω; R n ) one defines the slice u ξ y : Ω ξ y → R for ξ ∈ S n-1 and y ∈ R n by u ξ y (t) = u(y + tξ) • ξ, where Ω ξ y := {t ∈ R : y + tξ ∈ Ω}. One also introduces Ω ξ := (Id -ξ ⊗ ξ)Ω, that is the orthogonal projection of Ω in the direction ξ.

A generalized special function with bounded deformation GSBD(Ω) (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]) is then a L n -measurable function u : Ω → R n for which there exists a bounded positive Radon measure λ u ∈ M + b (Ω) such that the following condition holds for every ξ ∈ S n-1 : for H n-1 -a.e. y ∈ Ω ξ the function u ξ y (t) belongs to SBV loc (Ω ξ y ) and for every Borel set

B ⊂ Ω it satisfies ˆΩξ |Du ξ y |(B ξ y \ J 1 u ξ y ) + H 0 (B ξ y ∩ J 1 u ξ y ) dH n-1 ≤ λ u (B), (5) 
where J 1

u ξ y := {t ∈ J u ξ y : |[u ξ y ](t)| ≥ 1}. If u ∈ GSBD(Ω)
, the approximate symmetric gradient e(u) and the approximate jump set J u are well-defined, are respectively integrable and rectifiable, and can be reconstructed by slicing, see [START_REF] Maso | Generalised functions of bounded deformation[END_REF] for details. We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for properties of functions of bounded variation BV .

The subspace GSBD p (Ω) contains all functions in GSBD(Ω) satisfying e(u) ∈ L p (Ω; R n×n ) and H n-1 (J u ) < ∞.

3 Approximation of functions with small jump

Preliminary results

We begin by stating a slight generalization of the Poincaré-Korn inequality for functions with small jump set obtained in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF]Prop. 3].

Proposition 3.1. Let 0 < θ < θ < 1, r > 0. Let Q = (-r, r) n , Q = (-θ r, θ r) n , p ∈ [1, ∞), u ∈ GSBD p (Q).
1. There exists a set ω ⊂ Q and an affine function a : R n → R n with e(a) = 0 such that

|ω| ≤ c * rH n-1 (J u ) (6) 
and

ˆQ \ω |u -a| np/(n-1) ≤ c * r n(p-1)/(n-1) ˆQ |e(u)| p dx n/(n-1) (7) 
2. If additionally p > 1 then there is p > 0 (depending on p and n) such that, for a given mollifier

ρ r ∈ C ∞ c (B (θ -θ )r ), ρ r (x) = r -n ρ 1 (x/r), the function v = uχ Q \ω + aχ ω obeys ˆQ |e(v * ρ r ) -e(u) * ρ r | p dx ≤ c H n-1 (J u ) r n-1 p ˆQ |e(u)| p dx , where Q = (-θ r, θ r) n .
The constant in 1. depends only on p, n and θ , the one in 2. also on ρ 1 and θ .

Proof. This result was proven in Prop. 3 of [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] for θ = 1/2, θ = 1/4 and u ∈ SBD p . The same proof works in u ∈ GSBD p (Q), since it uses only the properties of slices, which hold also in the generalazed context (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 8.1 and 9.1] for the slicing formulas for J u and e(u) in GBD). At the same time, the proof works for general values of θ and θ after very minor corrections. Basically, using the same notation of [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF], the explicit bound

H 1 (R x ξ ) ≥ 1 becomes H 1 (R x ξ ) ≥ 2(1 -θ ), correspondingly in the definition of ω * ξ one takes (1 -θ ) instead of 1/2.
The explicit constant in (3.5) becomes 1/(1-θ ), which then propagates (via the unspecified constants "c", which hereby acquire a dependence on θ ) to the end of the proof. The proof of 2. is unchanged, since it already depends on the choice of the mollifier.

Remark 3.2. The statement still holds for θ = 1, but we do not need this here.

The main result

We first show how a GSBD p function with (very) small jump set can be well approximated by a function which is smooth on a large subset of the domain. For simplicity we assume that the domain is a cube Q, so that the coverings are all explicit, using a Whitney-type argument our proof extends easily to other regular open sets. The key idea is to cover the domain Q into a large number of small cubes of side length δ, and then to let the decomposition refine towards the boundary. Then one applies the Korn-Poincaré estimate of Proposition 3.1 to each cube. If H n-1 (J u ) is sufficiently small, on a scale set by the length scale δ (and the constants of Proposition 3.1), then for each of the "interior" cubes (with side length δ) one finds that the exceptional set covers only a small part of the cube. One replaces u by the affine approximant in the exceptional set, mollifies, and then interpolates between neighbouring cubes, to obtain a smooth function with the needed properties. A bound on the difference between the affine approximants in neighbouring cubes is obtained by using Proposition 3.1 on slightly enlarged versions of the cubes.

The boundary layer is however different. Moving towards the exterior boundary, one uses smaller and smaller cubes, and eventually it may happen that the exceptional set covers some cubes entirely. Then the rigidity estimate gives no information on the structure of u, and our construction cannot be performed. The union of those cubes, denoted by B in the proof, is therefore treated differently: the function u is left untouched here. This generates a difficulty with the partition-of-unity approach, at the boundary between the two regions. The key idea here is to construct a partition of unity only in Q \ B, with summands that do not have to obey any boundary data on ∂ * B (but vanish as usual on ∂Q). Then one can completely separate the construction in Q \ B, which is done by filling the holes and mollifying, from the one on B, where u is untouched. As a result, we create a small amount of jump, which however remains in a δ-neighborhood of the original jump set and whose measure remains controlled. In 2D, it is possible to perform a similar construction without any additional jump, see [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF].

In order to have good estimates it is as usual necessary to introduce the refinement not close to the (fixed) boundary of Q but instead close to the boundary of a slightly smaller cube, and to work with several coverings with families of cubes (denoted by q ⊂ q ⊂ q ⊂ q ) which are slightly enlarged versions of each other, see Figure 1 for a representation.

Let

f 0 (ξ) := 1 p Cξ • ξ p /2 , for ξ ∈ R n×n sym , with C obeying (1). Let Q r := (-r, r) n and let Q := Q 1 = (-1, 1) n .
Theorem 3. There exist η, c positive constants and a mollifier ρ

∈ C ∞ c (B(0, 1); R + ) such that if u ∈ GSBD p (Q 1 ) and δ := H n-1 (J u ) 1/n satisfies δ < η, then there exist R ∈ (1 - √ δ, 1), ũ ∈ GSBD p (Q 1 ), and ω ⊂ Q R ⊂⊂ Q 1 , such that 1. ũ ∈ C ∞ (Q 1- √ δ ), ũ = u in Q 1 \ Q R , H n-1 (J u ∩ ∂Q R ) = H n-1 (J ũ ∩ ∂Q R ) = 0; 2. H n-1 (J ũ \ J u ) ≤ c √ δH n-1 (J u ∩ (Q 1 \ Q 1- √ δ )); 3. It holds e(ũ) -ρ δ * e(u) L p (Q 1-√ δ ) ≤ cδ s e(u) L p (Q) and for any open set Ω ⊂ Q we have ˆΩ f 0 (e(ũ))dx ≤ ˆΩδ f 0 (e(u))dx + cδ s ˆQ1 f 0 (e(u))dx,
where Ω δ := Q ∩ ∪ x∈Ω (x + (-3δ, 3δ) n ); and s ∈ (0, 1) depends only on n and p.

4. |ω| ≤ cδH n-1 (J u ∩ Q R ) and ˆQ\ω |ũ -u| p dx ≤ cδ p ˆQ |e(u)| p dx; 5. If ψ ∈ Lip (Q; [0, 1]), then ˆQ ψf 0 (e(ũ))dx ≤ ˆQ ψf 0 (e(u))dx + cδ s (1 + Lip (ψ)) ˆQ |e(u)| p dx. 6. If in addition u ∈ L p (Q), then for Ω ⊂ Q, ũ L p (Ω) ≤ u L p (Ω) + cδ 1 2p ( u L p (Q) + e(u) L p (Q) ).
The constant c depends on n, p, and C.

Q i 0 Q i 0 +1 Q 1 q q q q Figure 1: Sketch of the decomposition of Q i 0 into disjoint squares. Left: global decom- position. The refinement takes place in C i 0 = Q i 0 \ Q i 0 +1
. Right: blow-up showing a few of the cubes q and the corresponding enlarged cubes q , q , q . See text.

Proof. We let η := 1/(2 • 8 n c * ), where c * is the constant entering [START_REF]Approximation of a brittle fracture energy with a constraint of noninterpenetration[END_REF]. We can assume without loss of generality that c * ≥ 1.

Let

N := [1/δ], so that (-N δ, N δ) n ⊆ Q. For i = 0, . . . , N -1 we let Q i := (-(N -i)δ, (N -i)δ) n and C i := Q i \ Q i+1 (C N -1 = Q N -1
). Up to a small translation of the Q i 's we can assume that J u does not intersect the boundaries ∂Q i and that almost every point y ∈ ∂Q i is a Lebesgue point for e(u), in the sense that

H n-1 (J u ∩ ∂Q i ) = 0, (8) 
lim r→0 Br(y) |e(u) -e(u)(y)| p dx = 0, H n-1 -a.e. y ∈ ∂Q i , (9) 
for every i = 0, . . . , N -1.

We choose

i 0 ∈ N ∩ [1, 1/ √ δ -3] such that (see Lemma 3.3, and observe that (N - [1/ √ δ] + 1)δ ≥ 1 - √ δ) we have both      ˆCi 0 ∪C i 0 +1 |e(u)| p dx ≤ 8 √ δ ˆQ\Q 1-√ δ |e(u)| p dx H n-1 (J u ∩ (C i 0 ∪ C i 0 +1 )) ≤ 8 √ δH n-1 (J u ∩ (Q \ Q 1- √ δ )) ( 10 
)
if δ is small enough. Next, we cover Q i 0 by disjoint cubes, up to a null set. First we subdivide Q i 0 +1 into cubes z + (0, δ) n , z ∈ δZ n . Then we divide the crown C i 0 into dyadic slabs

S k := (-(N -i 0 -2 -k )δ, (N -i 0 -2 -k )δ) n \ (-(N -i 0 -2 -k+1 )δ, (N -i 0 -2 -k+1 )δ) n , k = 1, . . . , ∞ and each slab S k into σ k cubes of the type z + (0, δ2 -k ) n , z ∈ 2 -k δZ n , so that σ k ≤ C2 k(n-1) /δ n-1 .
Here and henceforth C will denote a dimensional constant. We denote by W the collection of these cubes and W 0 ⊂ W the cubes of size δ, which cover the central cube Q i 0 +1 (see Figure 1). For q ∈ W, we let q , q , q , be respectively the cubes with same center and dilated by 7/6, 4/3, 3/2. In particular, the cubes q have a finite overlap; also, one has

q∈W\W 0 q ⊂ C i 0 ∪ C i 0 +1 .
Given q ∈ W, we say that q is "good" if

H n-1 (q ∩ J u ) ≤ ηδ n-1 q (11)
where δ q is the size of the edge of the cube (δ q = δ if q ∈ W 0 and δ2 -k if q ⊆ S k , k ≥ 1). We say that q is "bad" if [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] is not satisfied. Observe in particular that since by definition, δ n = H n-1 (J u ) ≤ ηδ n-1 , each q ∈ W 0 is good. On the other hand, there are at most (since the cubes q can overlap with their neighbours)

C(2 k(n-1) /δ n-1 )H n-1 (J u ∩ (S k-1 ∪ S k ∪ S k+1 ))/η
bad cubes in the slab S k , with a total perimeter bounded by

C η H n-1 (J u ∩ (S k-1 ∪ S k ∪ S k+1 )).
Hence the total perimeter of the union B of the bad cubes is bounded by

H n-1 (∂ * B) ≤ C η H n-1 (J u ∩ (C i 0 ∪ C i 0 +1 )) ≤ C η √ δH n-1 (J u ∩ (Q \ Q 1- √ δ )) (12) 
thanks to [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF]. Observe also that B ⊂ C i 0 , with

|B| ≤ C δ 3/2 η H n-1 (J u ∩ (Q \ Q 1- √ δ )).
We enumerate the good cubes, denoted (q i ) ∞ i=1 , and we assume that W 0 = i≤N 0 q i for some N 0 ∈ N. We construct a partition of unity associated to the "good" cubes (q i ), so that

ϕ i ∈ C ∞ (Q i 0 \ B; [0, 1]), ϕ i = 0 on Q i 0 \ q i \ B, |∇ϕ i | ≤ C/δ q i and i ϕ i = 1 on Q i 0 \ B,
the sum being locally finite. To do this, we first choose for each q i a function φi ∈ C ∞ c (q i ; [0, 1]) with φi = 1 on q i and |∇ φi | ≤ C/δ q i , then in Q i 0 \ B we set ϕ i := φi /( j φj ). We recall that the sum runs over all good cubes and stress that the functions ϕ i are not defined in B.

Thanks to Prop. 3.1, for each good cube q i one can find a set ω i ⊂ q i with |ω i | ≤ c * δ q i H n-1 (J u ∩ q i )≤ c * ηδ n q i , and an affine function a i with e(a i ) = 0 such that ˆq

i \ω i |u -a i | p dx ≤ cδ p q i ˆq i |e(u)| p dx, (13) 
ˆq i \ω i |u -a i | np/(n-1) dx ≤ cδ n(p-1)/(n-1) q i ˆq i |e(u)| p dx n/(n-1)
.

Moreover, given a symmetric mollifier ρ with support in B 1/6 , if one lets

u i := ρ δq i * (uχ q i \ω i + a i χ ω i ), (15) 
then

ˆq i |e(u i ) -e(u) * ρ δq i | p dx ≤ c H n-1 (J u ∩ q i ) δ n-1 q i p ˆq i |e(u)| p dx (16) 
where c depends on ρ, n, p. Observe in addition that (the mollifier being symmetric, one has ρ δq i * a i = a i ):

ˆq i |u i -a i | p dx = ˆq i |ρ δq i * ((u -a i )χ q i \ω i )| p dx ≤ ˆq i \ω i |u -a i | p dx ≤ cδ p q i ˆq i |e(u)| p dx (17)
thanks to [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF].

Notice that if q i and q j are touching, one can estimate the distance between a i and a j . Using (13) on the two squares q i and q j we find a i -a j L p (q i ∩q j \(ω i ∪ω j )) ≤ a i -u L p (q i \ω i ) + a j -u L p (q j \ω j ) ≤ cδ q i e(u) L p (q i ) + cδ q j e(u) L p (q j ) .

We now observe that by the properties of the grid, if q i ∩ q j = ∅ then necessarily |q i ∩ q j | ≥ 4 -n max{|q i |, |q j |} (the critical case is the one with two squares whose side lengths differ by a factor of 2, and which share a corner). By the choice of η, since q i and q j are good we obtain |ω i | ≤ 1 2 8 -n |q i |, and the same for j. Therefore |ω i ∪ω j | ≤ |q i ∩q j |/4. Since a i -a j is affine (see for example [START_REF]Which special functions of bounded deformation have bounded variation?[END_REF]Lemma 4.3], which generalizes immediately to parallelepipeds) a i -a j L np/(n-1) (q i ∩q j ) ≤ cδ (p-1)/p q i e(u) L p (q i ∪q j ) .

(

) 18 
This is the point which motivates the choice of η.
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We then define

ũ =    i u i ϕ i in Q i 0 \ B u in B ∪ (Q \ Q i 0 ).
and observe that ũ is smooth in

Q i 0 \ B, with e(ũ) = i ϕ i e(u i ) + i ∇ϕ i u i . (19) 
Since i ∇ϕ i = 0, we write ∇ϕ i = -j∼i ∇ϕ j (where i ∼ j if i = j and q i ∩ q j = ∅).

Hence for each x ∈ q i , l

(∇ϕ l u l )(x) = (∇ϕ i u i )(x) + j∼i (∇ϕ j u j )(x) = j∼i (∇ϕ j (u j -u i ))(x). ( 20 
)
Let now Ω ⊂ Q be open, and define Ω δ as a 3δ-neighbourhood in the • ∞ norm, in the sense that

Ω δ := {x ∈ Q : ∃y ∈ Ω, |x i -y i | < 3δ for i = 1, . . . , n} = Q ∩ x∈Ω (x + 3(-δ, δ) n ).
The key property of this neighbourhood, which motivates the choice of the factor 3, is the fact that if q i ∩ Ω = ∅ then q i ⊂ Ω δ and, additionally, for any j with q i ∼ q j one has q j ⊂ Ω δ . In the following, all constants will not depend on the choice of Ω.

We first introduce Q := Q i 0 +1 \ i>N 0 q i and start with estimating [START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF] in Q, where all mollifications are at scale δ. In particular, if x ∈ Q, then all cubes q j appearing in the right-hand side of (20) (with a non-vanishing term) are of size δ.

For any two good cubes q i ∼ q j , i, j ≤ N 0 , we have

u i -u j L p (q i ∩q j ) = ρ δ * (uχ q i \ω i + a i χ ω i -uχ q j \ω j -a j χ ω j ) L p (q i ∩q j ) ≤ (u -a i )χ ω j \ω i -(u -a j )χ ω i \ω j + (a i -a j )χ ω i ∪ω j L p (q i ∩q j ) ≤ u -a i L pn n-1 (q i \ω i ) |ω j | 1 np + u -a j L pn n-1 (q j \ω j ) |ω i | 1 np + a i -a j L pn n-1 (q i ∩q j ) |ω i ∪ ω j | 1 np .
Recalling ( 14), ( 18), [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF], and

|∇ϕ i | ≤ c/δ, we obtain i ∇ϕ i u i L p (Ω∩ Q) ≤ c i:q i ⊂Ω δ ,i≤N 0 |ω i | 1/n δ 1/p j∼i,j≤N 0 e(u) L p (q j ) .
Since |ω i | ≤ c * δ n+1 for i ≤ N 0 , we see that the factor is bounded by δ 1/(np) and

N 0 i=1 ∇ϕ i u i L p (Ω∩ Q) ≤ cδ 1/(np) e(u) L p (Ω δ ∩Q i 0 ) . (21) 
It follows from ( 19) and ( 21) that

e(ũ) -ρ δ * e(u) L p (Ω∩ Q) ≤ N 0 i=1 ϕ i (e(u i ) -e(u) * ρ δ ) L p (Ω∩ Q) + cδ 1/(np) e(u) L p (Ω δ ∩Q i 0 ) ≤ i≤N 0 ,q i ⊂Ω δ e(u i ) -e(u) * ρ δ L p (q i ) + cδ 1/(np) e(u) L p (Ω δ ∩Q i 0 ) ≤ c i≤N 0 ,q i ⊂Ω δ H n-1 (J u ∩ q i ) δ n-1 p p e(u) L p (q i ) + cδ 1/(np) e(u) L p (Ω δ ∩Q i 0 ) ≤ cδ s e(u) L p (Ω δ ∩Q i 0 ) ( 22 
)
where s := min{p/p, 1/(np)} and we have used [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF]. We deduce the first assertion in Property 3. by choosing Ω = Q 1- √ δ . In addition, it follows that ˆΩ∩

Q f 0 (e(ũ))dx 1/p ≤ ˆΩ∩ Q f 0 (e(u) * ρ δ )dx 1/p + cδ s e(u) L p (Ω δ ∩Q i 0 ) ≤ ˆΩδ ∩ Q f 0 (e(u))dx 1/p + cδ s e(u) L p (Ω δ ∩Q i 0 ) ≤ (1 + cδ s ) ˆΩδ ∩Q i 0 f 0 (e(u))dx 1/p . (23) 
Observing that for δ ≤ η ≤ 1, (1 + cδ s ) p ≤ 1 + pc(1 + c) p-1 δ s , we end up with the estimate ˆΩ∩

Q f 0 (e(ũ))dx ≤ (1 + cδ s ) ˆΩδ ∩Q i 0 f 0 (e(u))dx. ( 24 
)
We now turn to the boundary layer and estimate ´Ω∩Q i 0 \ Q f 0 (e(ũ))dx. This is done in a similar way, however less precise, and we only find that

ˆΩ∩Q i 0 \ Q f 0 (e(ũ))dx ≤ c ˆΩδ ∩(C i 0 ∪C i 0 +1 ) f 0 (e(u))dx. (25) 
Indeed, for now i > N 0 (that is, q i a good cube at scale δ2 -k for some k ≥ 1), one writes first that (using again that ρ δq i * a i = a i since ρ is even),

e(u i ) L p (q i ) = e(u i -a i ) L p (q i ) = e(ρ δq i * (uχ q i \ω i + a i χ ω i -a i )) L p (q i ) ≤ ∇ρ L 1 δ q i u -a i L p (q i \ω i ) ≤ C e(u) L p (q i ) ,
thanks to [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]. Hence, to show (25) it remains to estimate i ∇ϕ i u i L p (q i ) for i > N 0 . As before we observe that this is bounded by j∼i ∇ϕ j (u i -u j ) L p (q j ∩q i ) and thanks to the fact that |∇ϕ i | ≤ C/δ q i and, when j ∼ i, δ q j ∈ {(1/2)δ q i , δ q i , 2δ q i }), each term in the sum is bounded by

C δ q i u i -a i L p (q i ) + C δ q j u j -a j L p (q j ) + C δ q i a i -a j L p (q i ∩q j ) .
Thanks to ( 17) and ( 18), this is bounded by e(u) L p (q i ∪q j ) and ( 25) follows.

Hence using [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] 

and ũ = u in B ∪ Q \ Q i 0 we get ˆΩ f 0 (e(ũ))dx ≤ (1 + cδ s ) ˆΩδ f 0 (e(u))dx+c √ δ ˆQ\Q 1-√ δ f 0 (e(u))dx. ( 26 
)
Using s < 1/2, we deduce Property 3.

Let now ψ ∈ Lip (Q; [0, 1]). Then ˆQ ψf 0 (e(ũ))dx = ˆQ ˆψ(x)

0 f 0 (e(ũ))dxdt = ˆ1 0 ˆ{x:t<ψ(x)} f 0 (e(ũ))dxdt.
If Ω = {x : t < ψ(x)}, then Ω δ ⊂ {x : t < ψ(x) + c ψ δ}, where c ψ = 3n 1/2 Lip (ψ). Therefore [START_REF] Kohn | New integral estimates for deformations in terms of their nonlinear strains[END_REF] implies ˆQ ψf 0 (e(ũ))dx

≤ ˆ1 0 (1 + cδ s ) ˆ{x:t<ψ(x)+c ψ δ} f 0 (e(u))dx + c √ δ ˆQ\Q 1-√ δ f 0 (e(u))dx dt = (1 + cδ s ) ˆQ(ψ(x) + c ψ δ)f 0 (e(u))dx + c √ δ ˆQ\Q 1-√ δ f 0 (e(u))dx.
This proves Property 5.

We finally estimate the distance between ũ and u outside of ω := i ω i \ B. We find by ( 13) and ( 17):

ˆQ\ω |ũ -u| p dx ≤ c i ˆq i \ω i |u i -u| p dx ≤ ≤ c i ˆq i |u i -a i | p dx + c i ˆq i \ω i |u -a i | p dx ≤ cδ p ˆQ |e(u)| p dx. ( 27 
)
This proves Property 4, together with the observation

2 that |ω i | ≤ c * δH n-1 (J u ∩ q i ). One has moreover J ũ ∩Q i 0 ⊆ ∂ * B∪(J u \ Q i 0 +1
), and J ũ \J u ⊆ ∂ * B, which is bounded by [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF].

For y ∈ ∂Q i 0 one also obtains (letting

δ k := δ2 -k ) that ˆBδ k (y)\ω |ũ -u| p dx ≤ Cδ p 2 -kp ˆBδ k-1 (y) |e(u)| p dx, while |ω ∩ B δ k (y)| ≤ Cδ k (1 + 1/η)H n-1 (J u ∩ B δ k-1 (y)
). Hence we have for every ε > 0 and for H n-1 -a.e. y ∈ ∂Q i 0

1 δ n k |{|ũ -u| > ε} ∩ B δ k (y)| ≤ ≤ |ω ∩ B δ k (y)| δ n k + 1 ε B δ k (y)\ω |ũ -u| p dx 1/p ≤ cH n-1 (J u ∩ B δ k (y)) δ n-1 k + cδ k B δ k-1 (y) |e(u)| p dx 1/p
, with the last line which vanishes as δ k ↓ 0 thanks to [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF]. Hence one can deduce that the trace of ũ on ∂Q i 0 coincides with the inner trace of u, showing that ũ is GSBD when extended with the value of u out of

Q i 0 , with J ũ \ Q i 0 = J u . In particular we obtain that ũ ∈ GSBD p (Q) ∩ C ∞ (Q i 0 +1 ), and ũ ∈ C ∞ ((-(1 - √ δ), 1 - √ δ) n ).
Assume eventually that u ∈ L p (Q; R n ), and let us show also that we can ensure also Property 6. in this case. Let Ω ⊂ Q. One now has thanks to [START_REF] Maddalena | Lower semicontinuity properties of functionals with free discontinuities[END_REF] ũ L p (Ω) ≤ u L p (Ω\ω) + cδ e(u) L p (Q) + ũ L p (Ω∩ω) [START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF] and we need to estimate the last term, starting from the fact that

ˆΩ∩ω |ũ| p dx ≤ ∞ i=1 ˆΩ∩q i ∩ω |u i | p dx. ( 29 
)
For each i ≥ 1,

ˆΩ∩q i ∩ω |u i | p dx ≤ c ˆΩ∩q i ∩ω |u i -a i | p dx + c ˆΩ∩q i ∩ω |a i | p dx ≤ cδ p q i ˆq i |e(u)| p dx + c ˆΩ∩q i ∩ω |a i | p dx (30)
thanks to [START_REF] Dolzmann | Microstructures with finite surface energy: the two-well problem[END_REF]. We now consider q i such that q i ∩ Ω = ∅. Notice that

|ω ∩ q i | ≤ c *   δ q i H n-1 (J u ∩ q i ) + j∼i δ q j H n-1 (J u ∩ q j )   ≤ c * min{3 n δ n+1 , 6 n ηδ n q i },
which is small if η is small enough. In this case, thanks to Lemma 3.4 (and more precisely its consequence (32))

3 ˆΩ∩q i ∩ω |a i | p dx ≤ c |ω ∩ q i | |q i | ˆqi \ω i |a i | p dx ≤ c |ω ∩ q i | |q i | ˆqi \ω i (|u -a i | p + |u| p )dx.
The first term in the integral is estimated as usual with δ p q i ´q i |e(u)| p dx, while, for the second, we use that

|ω ∩ q i | |q i | ≤    3 n c * δ if i ≤ N 0 , 6 n c * η if i > N 0 to deduce i ˆΩ∩q i ∩ω |a i | p dx ≤ cδ p ˆQ |e(u)| p dx + cδ ˆΩδ ∩Q i 0 +1 |u| p dx + cη ˆΩδ ∩C i 0 |u| p dx.
Using ( 29), (30), we find

ˆΩ∩ω |ũ| p dx ≤ cδ p ˆQ |e(u)| p dx + cδ ˆΩδ |u| p dx + cη ˆΩδ ∩C i 0 |u| p dx.
To estimate the last term, there are two possible strategies: one is to send η → 0 as δ → 0, the other which we adopt here is to require, when selecting the index i 0 , that in addition to [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] it satisfies:

ˆCi 0 |u| p dx ≤ 8 √ δ ˆQ\Q 1-√ δ |u| p dx,
which can be ensured in the same way. We deduce in this case that

ˆΩ∩ω |ũ| p dx ≤ cδ p ˆQ |e(u)| p dx + cδ ˆΩδ |u| p dx + c √ δ ˆQ\Q 1-√ δ |u| p dx. (31) 
Hence we obtain Property 6. from ( 28) and (31).

Lemma 3.3. Let a i ≥ 0, b i ≥ 0 be such that k i=1 a i ≤ A and k i=1 b i ≤ B .
Then there is j ∈ {1, . . . , k} such that

a j ≤ 2 k A and b j ≤ 2 k B .
Proof. We write

k i=1 a i A + b i B ≤ 2
and choose j as one index for which the summand is minimal. Notice that if A = 0 then all a i are also 0.

Lemma 3.4. Let q ⊂ R n be a cube, and ω ⊂ q and p ≥ 1: there exists a constant c (depending only on n, p) such that

ˆω |a| p dx ≤ c |ω| |q| ˆq |a| p dx
for any affine function a : q → R.

If θ < 1 and θq is the cube with same center as q and sides multiplied by θ, it is possible to show by a direct computation that for a affine,

a L p (q) ≤ 1 θ n/p+1 a L p (θq) .
Hence one can also deduce (for c = c(n, p, θ)) 

ˆω
Proof. By translation and scaling, it is enough to show the lemma for q = (0, 1) n . Then, a L p (q) is a norm on the finite-dimensional space of affine functions. Hence there exists c (depending only on p) such that sup x∈q |a(x)| ≤ c a L p (q) . We conclude by observing that (1/|ω|) ´ω |a(x)| p dx ≤ sup x∈q |a(x)| p for any ω ⊂ q.

4 Limit of minimizing sequences with vanishing jump 

Let κ ≥ 0, β > 0, p > 1, g ∈ L ∞ (Ω; R n ), µ ≥ 0,
G(u, κ, β, A) := ˆA f µ (e(u))dx + κ ˆA |u -g| p dx + βH n-1 (J u ∩ A), (33) 
where

f µ (ξ) := 1 p Cξ • ξ + µ p /2 -µ p /2 (34) 
and C is a symmetric linear map from R n×n to itself which satisfies (1). We assume that u is a local minimizer of G in GSBD(Ω). We remark that, if κ > 0, then a global minimizer exists by [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3].

Let us introduce the following homogeneous version of G G 0 (u, κ, β, A) := ˆA f 0 (e(u))dx + κ ˆA |u| p dx + βH n-1 (J u ∩ A), which will be useful to establish the decay estimate and the density lower bound. For open sets A ⊂ Ω we define also the deviation from minimality

Ψ 0 (u, κ, β, A) := G 0 (u, κ, β, A) -Φ 0 (u, κ, β, A),
where

Φ 0 (u, κ, β, A) := inf{G 0 (v, κ, β, A) : v ∈ GSBD(Ω), {v = u}⊂ ⊂A}. ( 35 
)
The minimality of the limit u of energy-minimizing sequences u h with vanishing jump sets is established similarly to [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF]Prop. 3.3]. Any competitor of u is modified close to the boundary of the domain in order to become a competitor of u h -a h for G 0 . Estimating in L p the symmetric gradient of the transition, one obtains a term of the form |u h -a h -u| p , which is known to vanish only a.e. and not in L 1 . Therefore an intermediate interpolation step which passes through ũh -a h becomes necessary. The functions ũh , constructed via Theorem 3, are smooth away from a small neighborhood of the boundary, whose size decreases as h → ∞. This permits to perform the entire construction in W 1,p and greatly simplifies the computations.

The following theorem is the generalization to arbitrary dimension of [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF]Prop. 3.4]. Notice that the proof is made a bit easier with respect to [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF]Prop. 3.4] by the fact that the approximation we employ (see Section 3) is more precise than the one employed in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] (see [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF]Sections 2 and 3]).

Theorem 4 (Convergence and minimality).

Let p ∈ (1, ∞). Let Q r be a cube, u h ∈ GSBD p (Q r ) and κ h ∈ [0, ∞), β h ∈ (0, ∞) be two sequences with κ h → 0 as h → ∞, and such that sup h G 0 (u h , κ h , β h , Q r ) < ∞, and lim h→∞ Ψ 0 (u h , κ h , β h , Q r ) = lim h→∞ H n-1 (J u h ) = 0 .
Then there exist u ∈ W 1,p (Q r ; R n ), a : R n → R n affine with e(a) = 0, and a subsequence h j such that 1. for all t ∈ (0, r)

lim j→∞ G 0 (u h j , κ h j , β h j , Q t ) = ˆQt f 0 (e(u))dx + ˆQt |a| p dx;
2. for all v ∈ u + W 1,p 0 (Q r ) ˆQr f 0 (e(u))dx ≤ ˆQr f 0 (e(v))dx;

3. u h j -a j → u pointwise L n -a.e. on Q r for some affine functions a j , e(u h j ) → e(u)

in L p (Q t ), β h j H n-1 (J u h j ∩ Q t ) → 0, and κ 1 /p h j u h j → a in L p (Q t ) for all t ∈ (0, r).
Proof. We assume r = 1 (wlog) and we denote Q := Q 1 . By monotonicity, after taking a subsequence (not relabelled) we can assume that for all s ∈ (0, 1],

lim h→∞ G 0 (u h , κ h , β h , Q s ) =: Λ(s)
exists and is finite. Since κ

1/p h u h is bounded in L p (Q)
, it has a subsequence converging to some ā, weakly. By [5, Prop. 2] there exist ω h , a h such that |ω h | ≤ cH n-1 (J u h ) and

ˆQ\ω h |u h -a h | p dx ≤ C ˆQ |e(u h )| p dx which is bounded. Therefore κ 1/p h (u h -a h )χ Q\ω h → 0 strongly in L p . Recalling that κ 1/p h u h
ā weakly in L p , we deduce χ Q\ω h κ 1/p h a h ā and then κ 1/p h a h ā, since |ω h | → 0 and a h are affine functions. Being the space of affine functions finite dimensional, the convergence κ 1/p h a h → ā is in fact strong in L p and ā is a linearized rigid motion. Also, observe that still up to a subsequence,

(u h -a h )χ Q\ω h u in L p (Q),
for some u ∈ L p (Q; R n ). Let t ∈ (0, 1] be a point of (left) continuity of Λ. Let δ h = H n-1 (J u h ∩ Q t ) 1/n and let ũh , ωh be the functions and sets obtained applying Theorem 3 in Q t , which obey (ũ h -u h )χ Qt\ω h → 0 in L p thanks to Property 4. in Theorem 3.

We have that up to a subsequence, ũh -a h ũ in W 1,p (Q s ) for every s < t. In fact, ũ = u and we do not have to extract a subsequence at this stage. Indeed, given

ϕ ∈ C ∞ c (Q t ), one has ˆQt (ũ h -a h ) • ϕ dx = ˆQt∩(ωh∪ωh) (ũ h -a h ) • ϕ dx+ + ˆQ[(u h -a h )χ Q\ω h ] • [ϕχ Qt\ω h ]dx + ˆQt [(ũ h -u h )χ Qt\ω h ] • ϕχ Qt\ω h dx → ˆQ u • ϕ dx
as h → ∞, which shows the claim. Observe now that thanks to Property 3. of Theorem 3, any weak limit of e(u h ) in L p (Q t ) must coincide with the weak limit of e(ũ h ), which is e(u). We deduce that e(u h ) e(u) in L p (Q t ) and in particular that ˆQt f 0 (e(u))dx ≤ lim inf h→∞ ˆQt f 0 (e(u h ))dx.

Using also that κ

1/p h u h ā in L p (Q), we deduce that ˆQt f 0 (e(u)) + |ā| p dx ≤ Λ(t). ( 37 
) Consider now v ∈ W 1,p (Q t ; R n ) with {v = u} ⊂⊂ Q t . Let ψ ∈ C c (Q t ) be a Lipschitz cut-off with {0 < ψ < 1} ⊂ {v = u} ∩ Q t for some t < t. If h is large enough, one also has that ũh ∈ W 1,p (Q t ; R n ). We let v h := (ũ h -a h )(1 -ψ) + ψv. Then, for large h one has v h ∈ W 1,p (Q t ; R n ) and {v h + a h = u h } ⊂⊂ Q t , so that by definition of Ψ 0 we have G 0 (u h , κ h , β h , Q t ) ≤ Ψ 0 (u h , κ h , β h , Q 1 ) + G 0 (v h + a h , κ h , β h , Q t ), (38) 
which we write as ˆQt

(f 0 (e(u h )) + κ h |u h | p )dx + β h H n-1 (J u h ∩ Q t ) ≤ ˆQt (f 0 (e(v h )) + κ h |v h + a h | p )dx + β h H n-1 (J v h ∩ Q t ) + o(1). ( 39 
)
Recalling that (by Properties 1. and 2. of Theorem 3)

J v h ⊂ J ũh ⊂ Q t \ Q t- √ δ h and H n-1 (J ũh \ J u h ) ≤ c √ δ h H n-1 (J u h ), we then subtract β h H n-1 (J u h ∩ Q t \ Q t- √ δ h
) from both sides of inequality (39) and we deduce ˆQt

(f 0 (e(u h )) + κ h |u h | p )dx + β h H n-1 (J u h ∩ Q t- √ δ h ) ≤ ˆQt (f 0 (e(v h )) + κ h |v h + a h | p )dx + o(1). ( 40 
)
We have e 

(v h ) = ψe(v)+(1-ψ)e(ũ h )+∇ψ (v-ũh +a h ). Recalling that ũh -a h → u in L p loc (Q t ) and that v = u outside of {ψ = 1}, we obtain ũh -a h -v → 0 in L p ({0 < ψ < 1}). Hence ˆQt f 0 (e(v h ))dx ≤ (1 + o(1)) ˆQt ψf 0 (e(v))dx + ˆQt (1 -ψ)f 0 (e(ũ h ))dx + o(1
| p )dx + β h H n-1 (J u h ∩ Q t- √ δ h ) ≤ ˆQt (ψf 0 (e(v)) + κ h |v h + a h | p )dx + o(1). (41) 
Similarly, thanks to Property 6. of Theorem 3 we have:

κ h ˆQt (1 -ψ)|ũ h | p dx = κ h ˆ1 0 ˆQt∩{1-ψ>s} |ũ h | p dx ds ≤ κ h ˆ1 0 ˆQt∩{1-ψ>s} |u h | p dx + o(1) ds ≤ κ h ˆQt (1 -ψ)|u h | p dx + o(1) so that, since v h + a h = ψ(v + a h ) + (1 -ψ)ũ h , we deduce from (41) ˆQt ψ(f 0 (e(u h )) + κ h |u h | p )dx + β h H n-1 (J u h ∩ Q t- √ δ h ) ≤ ˆQt ψ(f 0 (e(v)) + κ h |v + a h | p )dx + o(1). (42) 
Observe that κ 

Λ(t) = ˆQt (f 0 (e(u)) + |ā| p )dx. ( 44 
)
For this we choose v = u in (42), and let t < t be such that ψ ≡ 1 in Qt, then we find as

h → ∞ that Λ( t) ≤ ˆQt ψ(f 0 (e(u)) + |ā| p )dx ≤ Λ(t)
thanks to (37). Since t is a point of continuity of Λ, (44) follows, sending t to t. In particular, we deduce that every t ∈ (0, 1] is a point of continuity of Λ.

It remains to show Properties 3. The fact that lim h β h H n-1 (J u h ∩ Q t ) = 0 and that e(u h ) → e(u), κ 1/p h u h → ā strongly easily follows from Property 1. Finally, as t = 1 is a point of (left) continuity of Λ, the above construction applied to Q 1 provides ũh such that (ũ h -a h ) h converges strongly to u in L p loc (Q 1 ), and therefore, also u h χ Q 1 \ω h converges to u in L p loc (Q 1 ). Hence, possibly extracting a last subsequence, we may also assume that u h → u a.e. in Q 1 .

We conclude this section by stating explicitly the compactness and semicontinuity result for functions with vanishing jump sets which has been proved within the proof of Theorem 4. 

δ k := H n-1 (J u k ) 1/n → 0. ( 45 
)
Then there are a subsequence k h of k, a sequence ũh

∈ GSBD p (Q 1 )∩C ∞ (Q 1- √ δ k h
) with {ũ h = u k h } ⊂⊂ Q 1 , affine functions a h : R n → R n with e(a h ) = 0, and u ∈ W 1,p (Q 1 ; R n ), such that 1. ũh -a h → u in L p loc (Q 1 ) and u k h -a h → u L n -a.e. on Q 1 ;

2. for every r, s with r < s < 1 we have ˆQ1 \Qs f 0 (e(ũ h ))dx ≤ (1 + o(1)) ˆQ1 \Qr f 0 (e(u k h ))dx, 

H n-1 (J ũh ∩ (Q 1 \ Q r )) ≤ (1 + o(1))H n-1 (J u k h ∩ (Q 1 \ Q r )),
Proof. For large h we can apply Theorem 3 to obtain ũk ∈ GSBD(Q 1 ) from u k . By Properties 1. and 3. up to a subsequence and a rigid motion a k the sequence ũk converges in L p loc (Q 1 ) to a limit u ∈ W 1,p (Q 1 ). Moreover (u k -a k )χ Q 1 \ω k converges also to u in L p loc (Q 1 ) by Theorem 3, Property 4. Since |ω k | → 0 we can deduce that u k -a k converges to u in measure and then up to subsequences also almost everywhere in Q 1 .

The assertion in 2. directly follows by Theorem 3, Properties 2., 4., 5., and 6. Let now 0 < t < t < 1. Then e(ũ k ) e(u) in L p (Q t ), and using convexity of f 0 and then Property 3. of Theorem 3 we obtain ˆQt f 0 (e(u))dx ≤ lim inf By continuity of the left-hand side we deduce first the case t = t and then the case t = 1.

Existence of Griffith's minimizers in dimension n

The following statements follow from Theorem 4 with exactly the same proof as [11, Lemma 3.8 and Corollary 3.9] respectively. The following density lower bound is explicitly stated for p = 2. In that case, it is well-known that solutions of div Ce(u) = 0 are smooth and can be computed using a (C-dependent) kernel which is (2 -n)-essentially homogeneous (see for instance [28, § 6.2, Thm. 6. 

  and let Ω ⊂ R n be a bounded, open, Lipschitz set. For all u ∈ GSBD(Ω) and all Borel sets A ⊂ Ω let us define the functional

Corollary 4 . 1 (

 41 Compactness and semicontinuity). Let p ∈ (1, ∞) and let u k ∈ GSBD p (Q 1 ) be such thatsup k ˆQ1 f 0 (e(u k ))dx < ∞,

k ˆQt f 0

 0 (e(ũ k ))dx ≤ lim inf k ˆQt f 0 (e(u k ))dx.

Corollary 5 . 2 (

 52 2.1]). It follows that (for a solution defined in the unit ball)e(u) L ∞ (B 1/2 ) ≤ c e(u) L 2 (B 1 )for some c depending only on C and thus, for ρ ≤ 1/2, ˆBρ f 0 (e(u))dx ≤ cρ n ˆB1 f 0 (e(u))dx.Therefore, one can reproduce the proof of[START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] Lemma 3.7] with almost no change, and obtain the following result.Lemma 5.1 (Density lower bound for G 0 ). Let p = 2, κ ≥ 0, andβ > 0. If u ∈ GSBD 2 (Ω) is a local minimizer of G(•, κ, β, Ω) defined in (33), then there exist ϑ 0 and R 0 , depending only on n, C, κ, β, µ, andg L ∞ (Ω) , such that if 0 < ρ < R 0 , x ∈ J u , and B ρ (x) ⊂ ⊂ Ω, then G 0 (u, κ, β, B ρ (x)) ≥ ϑ 0 ρ n-1 . (47)Moreover H n-1 (Ω ∩ (J u \ J u )) = 0.(48) Density lower bound for the jump). Let p = 2, κ ≥ 0, and β > 0. If u ∈ GSBD 2 (Ω) is a local minimizer of G(•, κ, β, Ω) defined in (33), then there exist ϑ 1 and R 1 , depending only on n, C, κ, β, µ, and g L ∞ (Ω) , such that if 0 < ρ < R 1 , x ∈ J u , and B ρ (x) ⊂ ⊂ Ω, then H n-1 (J u ∩ B ρ (x)) ≥ ϑ 1 ρ n-1 .(49)

  |a| p dx ≤ c

		|ω| |q| ˆθq	|a| p dx;
	additionally if |ω| |q| is small enough (so that |ω| |q| 1 -c |ω| |q|	-1	≤ 2 |ω| |q| ), we deduce
	ˆω |a| p dx ≤ c	|ω| |q| ˆθq\ω	|a| p dx.

  ). so that subtracting (1 -ψ)f 0 (e(u h )) from both sides of (40) we conclude ˆQt (ψf 0 (e(u h )) + κ h |u h

	By 5. in Theorem 3 we find
	ˆQt
	(1 -ψ)f

0 (e(ũ h ))dx ≤ ˆQt (1 -ψ)f 0 (e(u h ))dx + o(1),

  ˆQ1 \Qr |ũ h | p dx ≤ ˆQ1 \Qr |u k h | p dx + o(1) ˆQ1 |u k h | p + f 0 (e(u k h )) dx;3. the following lower estimate holds for all t ∈ (0, 1]: ˆQt f 0 (e(u))dx ≤ lim inf k→∞ ˆQt f 0 (e(u k ))dx .

This only holds for p =

2, since[START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] relies, when p = 2, on integral estimates proved in[START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF] which do not scale with the appropriate exponent in dimensions larger than 2.

[START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF] Prop. 6] shows that, in fact, one could ensure that |ωi| ≤ cH n-1 (Ju ∩q i ) n/(n-1) . With our choice of δ, this improves the inequality to |ωi| ≤ cδ n/(n-1) H n-1 (Ju ∩ q i ). Hence the first point in Prop. 4 could be improved, in fact, to |ω| ≤ cδ n/(n-1) H n-1 (Ju ∩ QR) ≈ H n-1 (Ju ∩ QR) n/(n-1) .

this requires an additional condition on η which might need to be reduced.
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