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Abstract—In this paper we give the first blind signature
protocol for code-based cryptography. Our approach is different
from the classical original RSA based blind signature scheme,
it is done in the spirit of the Fischlin approach [9] which is
based on proofs of knowledge. To achieve our goal we consider a
new tool for zero-knowledge (ZK) proofs, the Concatenated Stern
ZK protocol, which permits to obtain an authentication protocol
for concatenated matrices. A signature is then obtained from
the usual Fiat-Shamir heuristic. We describe our blind signature
protocol for cryptography based on Hamming metric and show
how it can be extended to rank based cryptography. The security
of our blind protocol is based on the security of a trapdoor
function for the syndrome decoding problem: the CFS signature
scheme for Hamming distance and on the more recent RankSign
protocol for rank metric. We give proofs in the random oracle
model (ROM) for our blind signature scheme, which rely on
the Syndrome Decoding problem. The parameters we obtain for
our protocol are practical for rank metric (200kBytes) for the
signature length and 15k Bytes for public key size) and a little
less practical for Hamming distance.

Keywords: Zero-knowledge protocols, coding theory, Stern
SD scheme, CFS signature, code-based cryptography.

I. INTRODUCTION AND MOTIVATION

Since the seminal work of Chaum on blind signature [4],
this type of signature has found many applications in pri-
vacy preserving protocols like electronic voting protocol or
electronic cash. The original blind signature scheme is based
on the RSA signature protocol and many schemes have been
proposed since, essentially based on number theory.

Our contribution: in this paper we propose the first generic
blind signature protocol based on coding theory. The signature
is based on a code-based trapdoor function which inverts a
random syndrome.

Previous works Although there exist many blind signature
scheme in classical cryptography based on number theory,
there is only one published post-quantum blind signature
protocol: the recent lattice based protocol of Ruckert [19],
but this approach is based on the original RSA approach and
cannot be not directly adaptated for Hamming or rank distance,
because of the properties of the metric.

Organization of the paper The paper is organized as
follows: Section 2 describes our security model for blind sig-
natures, Section 3 recalls background on code-based cryptog-
raphy, Section 4 describes a variation on Stern authentication
protocol, Section 5 describes the protocol, Section 6 explains
how the approach can be generalized to rank metric, and at
last sections 6 and 7 study the security and the parameters of
the protocol.

Julien Schrek
Université de Limoges
julien.schrek @xlim.fr

Nicolas Sendrier
INRIA
nicolas.sendrier @inria.fr

II. SECURITY MODEL FOR BLIND SIGNATURE

As formalized in the paper by Pointcheval and Stern in
[18], a blind signature scheme involves two parties, a user
U and a Signer S. The user submits a masked (or blinded)
message that the Signer sign with a digital signature scheme
whose public key is known. This part is named BSProtocol.
The user unmasks this signature to build a signature of the
unmasked message which is valid for the Signer’s public key.
A verification can be made on the final signature with the
Signer’s public key.

More precisely, we can derive the definition from digital
signatures. Instead of having a signing phase Sign(sk, M; u)
we have an interactive phase BSProtocol(S, i) between the
user U(vk, M;p) who will (probably) transmit a masked
information on M under some randomness p in order to obtain
a signature valid under the verification key vk, and the signer
S(sk; 1), who will generate something based on this value, and
his secret key which should lead the user to a valid signature.

Such signatures are correct if when both the user and signer
are honest then BSProtocol(S,U) does indeed lead to valid
signature on M under vk.

There are two additional security properties, one protecting
the signer, the other the user.

e On one hand, there is an Unforgeability property, where
a malicious user should not be able to compute n + 1
valid signatures on different messages after at most n
interactions with the signer.

¢ On the other hand, the Blindness property says that a
malicious signer who signed two messages My and M,
should not be able to decide which one was signed first.

Bl g ()

1. (param) < BSSetup(1%%)

2. (vk, sk) < BSKeyGen(param)

3.Fori=1,...,qs, BSProtocol(S(sk), A(INIT : vk))

bl—b -
Exppg sx (%) A
1.param < BSSetup(1%)
2.(vk, Mg, M1) < A(FIND : param)
3.0}, < BSProtocol (A, U (vk, Mp))

b ’ > Vb
4.0 _p, + BSProtocol (A, U (vk, My _p)) 4\ (my,o1), o (mggp1,9g541)
5.6% S**(GUESS s Mg, My); 5.1F 3i # j, m; = mj OR i, Verif(pk, m;, 0;) =0
6.RETURN b™ = b. RETURN 0

6.ELSE RETURN 1

Fig. 1. Security Games for the Blind Signatures

III. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

Let F denote the finite field with 2 elements and let H €
F(n=k)xn denote the parity-check matrix of some linear code
of length n and dimension k. In this section and in all the
paper h() will denote a cryptographic hash function.

< A(GUESS : vk);



A. Syndrome Decoding
1) The CSD Problem: We consider the following problem:

Computational Syndrome Decoding Problem: Given a matrix
H e Fin=k)xn g word v € F" %, and an integer w > 0,
find x € F" of Hamming weight < w such that H.z7 = u.

This well known problem is NP-hard.

Decisional Syndrome Decoding Problem(D-SD): Given a ma-
trix H € F"=k)*" an integer w > 0 a random word z € F
of weight w and a random syndrome sy of size n — k. Is it
possible to distinguish between the random syndrome s, and
the syndrome s; = H.z” associated to a small weight vector
x?

The previous DSD problem is proven as hard as its search
version CSD in [3].

2) Gilbert-Varshamov Bound: The volume of a ball of
radius w in the Hamming space F" is V,,(w) = > 1" (g —
1)!("). For given n and k, we call Gilbert-Varshamov (GV)
bound is the integer bgy such that V,(bgv) > ¢ .

3) Complete Decoder: We call w-bounded decoder asso-
ciated to H a procedure F"~* — F™ which returns for all
u € F*F an element of CSD(H,u,w) (or fails if this set
is empty). For given n and k and for almost all codes a w-
bounded decoder fails for a proportion ~ exp(—V;,(w)/q" %)
of the instances. If we choose an integer w > bgy, a w-
bounded decoder almost never fails!. We will speak of a
complete? decoder.

B. Trapdoor Digital Signature (CFS and Parallel-CFS)

Let wy be the smallest integer such that CSD(H, u, wq) # 0
with high probability (i.e. from the previous section wy =
[Tev] Or [Tgy + 1]). We assume here that the linear code
defined by the parity check matrix H has some hidden
algebraic structure (for instance a binary Goppa code) which
enables a trapdoor complete wy-bounded decoder Dyy.

1) CFS.: Obtaining a practical complete decoder is not an
easy task because the desired decoding bound wq is above
the algebraic error correcting capability. It is possible for
binary Goppa codes of high rate (i.e. the ratio k/n between
dimension and length is close to 1) [5]: the resulting complete
decoder is complex but still has an exponential advantage
in complexity compared with the best generic algorithms for
solving CSD.

Let H be the parity check matrix of a CFS code, let D g be the trap CFS decoding
function The CFS problem is defined as given g access to a CFS oracle (Given
z, it returns y = Dy (x)), and u* the adversary has to return y* such that
H(y*)T = w* and wt(y*) = w in polynomial time after at most ¢ queries to

the oracle, on words different from ™.

Fig. 2. The CFS problem

"most of the time w = bgy is enough, exceptionally w = bgy + 1
2the word complete is used here for convenience, the decoder may fail but
for a negligible proportion of the instances

2) Security of CFS.: Parity check matrices of high rate
Goppa codes can be distinguished from random matrices [6].
Still, this distinguishing attack does not lead to an efficient
key recovery attack (recovering Dy from H), however it
invalidates the security reduction given in [5]. We refer to
[17] for more details on the security of CFS.

Limitations of CFS. The computational complexity of the
CFS problem is super-polynomial in the size of the public
key, so that the scheme leads to very high parameters, but still
the scheme permits to construct usable difficult instances than
can be used for cryptographic purposes.

3) Parallel-CFS.: 1t was proposed by Finiasz [8]. It consists
in producing A signatures (3 or 4) of related digests. If done
correctly, the cost for an existential forgery attack can be made
arbitrarily close to the cost for a universal forgery attack.

C. Stern’s Authentication Protocols

1) Stern’s protocol: Stern proposed in 1993 an authentica-
tion algorithm in [21]. In the protocol the prover P convinces
the verifier V that he knows a secret word s € F™ of weight
w such that u = H.sT where u € F"~* and H € F(n—k)xn
are public. A fake prover has a probability 2/3 to cheat at
each iteration and thus many iterations are needed (137 for a
cheating probability < 2789).

A transcript of the protocol for the pair (H,s), denoted
SP(H, s), is a proof of knowledge that the prover knows a
vector of weight w associated to the syndrome s for H, it
consists in a transcript of the different steps of the protocol
when the prover proves itself, like in the Fiat-Shamir heuristics
through the use of random oracle which is used to simulate
the challenges from the list of a sequence of commitments.
Such a transcript is denoted by (H,u,w) and is said valid if
it is a correct proof of knowledge of some s € F" of weight
w such that H.s7 = u.

2) NIZK Digital Signature: The Fiat-Shamir NIZK (Non
Interactive Zero Knowledge) paradigm [7] transform any ZK
identification scheme into a digital signature. This digital sig-
nature essentially consist of a valid transcript of an execution
of the protocol (see [20]).

IV. CONCATENATED STERN AUTHENTICATION PROTOCOL

In this section we introduce a (new) Concatenated Stern
authentication protocol. This protocol is a simple randomized
generalization of a non-randomized concatenated protocol
given in [1]. We refer to [1] for a discussion on the notion
of information leaking and testability of the Stern protocol for
a non-randomized version of the protocol makes sense.

Let us consider @ a k X n; binary matrix and R a k X ng
binary matrix. Suppose there exist a vector (z,y) with  and
y of respective lengths n; and ns and of respective weight
wy and wo, and a syndrome s such that [Q|R].(x,y)T =
s = Q.27 + RyT. The (randomized) concatenated Stern
authentication protocol is a ZK protocol which permits to
prove that the prover P knows a vector (z,y), for « and y of
respective weight w; and ws such that [Q|R].(z,y)T = s =
Q.27 + RT.y. In the following S,, denotes the permutation



group of length n, and | stands for concatenation. The protocol
works as follows:

Concatenated Stern Zero-knowledge authentification protocol
Public data: two matrices: Q and R of respective size k X nj and k X na, a
syndrome s.
Prover P: a vector (x,y) for x and y of respective weight w and ws such that
[QIR].(z,y)" = s =Q.a” + Ry”.
The prover P interacts with a verifier V in 3 steps and a verification :
1) Commitments P generates : o1 & Snys 02 & Sng» U1 & F™uz &
]:nl and T1,T2,T3 <i lA.
P sends three commitments :
c1 = h(o1(u1 )JHaQ(ug) r1)
c2 = h(o1|Quy + Ruy |oz|rz)
cg = h(o1(z + u1)|o(y + uz)|rs)
2) Challenge V responds with b € {0, 1, 2}.
3) Answer There are three possibilities:
e If b =0, P reveals o1(u1), o2(uz2), o1(x), o2(y), r1 and r3.
e If b =1, he reveals o1, 02, T + u1, y + uz, 72 and r3.
If b = 2, he reveals o1, w1, 02, us, 71 and 5.
Verification

e if b = 0 checks ¢y and c3
e if b = 1 checks co and c3
e if b = 2 checks ¢y and co

Fig. 3. Concatenated Stern Zero-knowledge protocol
Theorem 1: The Concatenated Stern Zero-Knowledge pro-
tocol is a ZK protocol with 2/3 cheating probability.

Proof: The protocol we describe is an adaptation of the
protocol described in [1] to which we added random values
r1,72 and r3 so that the protocol cannot be testable and leaks
non information (see [1] for details on testable Stern protocol).
For verification the only non trivial check is (as for Stern
original protocol) for b = 1 and the value c¢;, which is checked
with the public syndrome s, one recovers :Quf + Rul as
Quf + Rul = Q(x +u1)T + R(y + uz)T — s. The proof is
straightforward from [1] with the ZK properties obtained from
the random values 71,9 and 3. [ |

V. A CODE-BASED BLIND SIGNATURE PROTOCOL
A. High level overview:

The general idea of our protocol is inspired by an approach
developped by Fischlin in [9], which works in three steps.
In the first flow the user U chooses a random value z and
consider Bx a committed value of z, he sends to the signer
S a commitment ¢ = Commit(M, Bz) linking the message
M and the random value z, then in a second flow S sends
to U, y = TrapDoor(c), a preimage from its Trapdoor
function, at last the last step, if a Zero-Knowledge proof of
knowledge of the previous signature (Ilz gk (z,y, Eval(y) =
Commit(M, Bz))), i.e. U knows the random value x and
the value y obtained from S, such that y is committed to .
In this way a Verifier is convinced that the user obtained a
signature from the trapdoor function of S and this relatively
to a hash involving a particular random value z, and the ZK
proof permits to blind the identity of the user, who proves that
he knows x and y without revealing them.

In term of coding theory, we define two random matrices
A and B and a trapdoor matrix H. The first commitment
step is obtained by choosing a small word = and sending
a commitment h(M|BzT) + Az” to S, then S computes

a preimage y by its trapdoor matrix H of the received
commitment. The signature is then the couple: B.z” ( a
committed value of z) together with a ZK proof that I/ knows

z and y such that :
( A H ) ( z ) — ( h(M|B.axt) )
B o )\ w BT ’

in this way the Verifier is convinced that the user obtained
a unique signature from S since on one hand y is committed
to the random value z by h(M|Bz!) and since on the other
hand z is chosen so that the syndrome B.z” fixes the chosen
value z. Moreover the user’s identity is blinded by the random
value x and the general security of the scheme relies mainly
on the secret trapdoor H.

B. Our protocol

The blind signature protocol is composed with three algo-
rithms: a key generation algorithm, a blind signature algo-
rithm, which involves the user U/, a message M and the signer
S and a verification algorithm for the Verifier.

KeyGen(k, k', n,n’) :
From some integer parameters k, k’, n and n’, he generates:
e H a trapdoor parity check matrix of size kK X n and its trapdoor D, only
available to the signer S.
e A arandom matrix of size k x n’.
o B arandom matrix of size k' X n’.

Fig. 4. Key Generation

BSProtocol(w,) :
1) Blinding step
The user U:
’

o generates uniformly at random a vector « in F™ of weight w,.

o sends pu = h(M|BzT) 4+ AzT to S.
The signer S returns y = D (p) of weight w,, to the user U. If D g (p) returns
L, then U can send an other request.
2) Blind Signature step : U sends the couple (B.z”, PoK)
where PoK is a transcript of the proof of knowledge that U knows a vector (z, y)
of weight w, and w,, such that:

A H T
B 0 ’ y
The proof of knowledge is obtained through the Concatenated ZK Stern protocol of

s

A
B 0

iz )

Section 4, by taking Q = (

Fig. 5. The blind signature protocol

Verification: upon receiving the message M and and the signature (B.z”, Pok)
, the Verifier checks that the proof of knowledge PoK is correct and hence that the
weights w, and w, of x and y are correct.

Fig. 6. Verification protocol

VI. SECURITY

In this section we consider the security of our protocol,
there are two properties to satisfy: the unforgeability property
and the blindness property. We consider these two properties
in the following theorems.

Theorem 2 (Unforgeability): If there exists an adversary
against the soundness of the Blind Signature, then there exists



an adversary under either the CFS Problem, the Syndrome
Decoding Problem, or the Soundness of the underlying Zero-
Knowledge proof.

Proof: If an adversary A can win the game of unforge-
ability of the blind signature, then he can produce N + 1 blind
signatures with N requests to the blind oracle.

To exploit this adversary, we build a simulator in the
following way. We first receive, the matrix H and a hash
function h from the challenge oracle for CFS, and generate
normally the other parameter of our blind signature.

Receiving signing queries, on string ¢;, we forward it to the
CFS oracle, and receive y; such that H y;r = ¢;.

Receiving hash queries, the simulator answers with a ran-
dom value, and stores it to answer the same way to similar
queries.

After at most ¢ signing queries and n random oracle queries,
the adversary sends us g + 1 signature o; on messages m;,
by sending us values B; and Zero-Knowledge proofs, that he
knows z;,y; such that B; = ijT and Hy]T = h(M,|B;) —
A(.’L j)T.

As this is a valid forgery against the blind signature scheme,
then all the ¢ + 1 signatures are valid.

Either the adversary manage to break the Soundness of
one of the proof, or using the Random Oracle the Simulator
manages to extract the values x;,y;.

If two values y;, and y;, are equal, then the adversary
has managed to find a collision on h(M,,|B;,) — A(z;,)",
in this case, we simply rewind to the furthest random oracle
query on Mj, |B;, and output another random value such
that there is no longer a collision (neither with the query
corresponding to j,, nor with any queries done before to
the ROM). The forking lemma ensures us that the adversary
advantages is approximately the same, after k& rewinding where
k is upperbounded by min(n, gq).

After this, we are sure that all the ¢ + 1 values y; are
different, so there exists at least one y; that does not come
from the Challenge oracle. Rewinding one last time, and
setting h(M,,|B;) to u* — A, and invoking the forking
lemmas, allows to recover an y; such that H(y;)" = h(u*)
and so it allows to solve the CFS Challenge.

|

Theorem 3 (Blindness): If there exists an adversary against
the Blindness of the Blind Signature, then there exists an
adversary under the Zero-Knowledge property of the Stern
protocol or the Computational Syndrome Decoding Problem.

Proof: If an adversary A can win the game of blindness of
the blind signature, then he can break the decisional Syndrome
Decoding problem.

To exploit this adversary, we build a simulator in the fol-
lowing way. We first receive a Decisional Syndrome decoding
C, s and has to guess whether there exists a small x such that
Ca' =s.

The simulator splits the matrix C' into A and B, generates
a matrix H honestly and publishes them as the public keys of
the scheme, and gives H’s trapdoor to the adversary.

The adversary then sends two messages M and M to the
simulator. The simulator picks a random bit b, and proceeds
to send the requests on M and M;_;, and then outputs the
signature on M.

With advantage €, the adversary guesses whether b = 0 or
not.

The simulator then proceeds to a sequence of games, first
in the final signature, he proceeds in simulating the Zero-
knowledge proof (still on an honest value) which leads to game
Gi.

At this step, the adversary view is then B;,, and
h(My|Bg,) + Az, s0 By, Az, and Ay, + h(My|By,) +
h(My|By,) # Az, (Controlling the ROM allows to make sure
of that, anyway it happens with overwhelming probability).

The simulator then splits s into s1, S2, sets Ay, = s1, Bz, =
so If the answer to the challenge was yes, we are still in the
previous game (1. On the contrary, if it was no, it leads us to
the last game G, where B, is taken at random independently
from Ag,.

The last game G2 only view a completely simulated answer,
with random public values, so the adversary has no advantage
against the blindness in G5. The difference between G5 and
(G is the Decisional Syndrome Decoding problem, while the
Zero-knowledge property differentiate G; from the real game.
Hence ¢ < Advzi + Advpsp. Now the DSD problem is
proven harder than the CSD problem in [3]. [ ]

VII. BLIND SIGNATURE FOR RANK METRIC

In this section we outline how our blind signature protocol
can be adapted for rank metric. Consider z(x1,...,x,) an
element of GF(¢™)™ and let B be a GF(q)-basis of GF(¢™).
Writing all the z; in the basis 5, a m X n matrix X can
be associated to x. The rank weight of z is then the rank
of X. Rank-based cryptography is very similar to code-based
cryptography although the first rank-based protocol appeared
only in 1991, in both case a code structure is used, the only
difference being the metric considered. In practice most of
the concept and ideas developed for Hamming distance can
be extended straighforwardly to rank metric. The problem of
Syndrome Decoding(SD) becomes Rank Syndrome Decoding
(RSD), which has been recently shown hard in [15] and also in
its Decisional version [10]. We refer to [12] and the references
within, for more details on rank-based cryptography. The
main interest of rank-based cryptography is that the best
known algorithms for solving the RSD problem have very
high complexity(see [11]), so that in practice it permits to
obtain very small size of keys (a few thousand bits) for hard
to solve instances, when such sizes of keys can only be
reached with additional structure (like cyclicity for instance)
for code-based cryptography (Hamming distance) or lattice-
based cryptography (Euclidean distance).

Most of cryptographic protocols have equivalent counter-
parts in rank metric and in particular all the tools used for
our blind signature scheme have equivalent counterparts in
rank metric : a rank based Stern authentication protocol has
been developed in [14], and there is an equivalent notion of



concatenated rank Stern protocol in [2], at last there is also a
trapdoor signature protocol: the RankSign protocol developed
in [13], which has not a super-polynomial complexity at the
difference of the CFS protocol.

Overall, even if we do not have space to describe it precisely
in this short paper, our protocol and its proofs can be directly
adapted for rank-based cryptography, simply replacing the
code-based cryptographic algorithms by they rank-based coun-
terparts since the general coding structure remains identical.

VIII. INSTANTIATION AND PARAMETERS

A. Instantiation

Overall the best practical attacks against forgery is an attack
against the invertible trapdoor function Dy, CFS for Hamming
distance or RankSign for rank metric, and the best practical for
blindness is retrieving a small weight vector x of weight w,
from the syndrome AxzT+BzT, for A and B random matrices.
Hence we choose parameters according to these constraints.
The size of the public key is only the size of public key of
the signature since A and B are random and can be obtained
from a small seed. At last the size of the signature the public
key is the size of the proof of knowledge obtained from the
concatenated Stern protocol, in our case the length of a vector
of the ambient space is large compared to the size of a hash,
hence on the average 4/3(n + n’) per round, to be multiplied
by a value [ such that (2/3)! = 2* for \ a security parameter.
For rank metric if one considers vectors over GF'(¢™) the size
of vectors in bits is (n + n’)m and the average size of data
for one round is also 4/3(n + n’)m.

B. Parameters

We now give example of parameters for our scheme, con-
sidering parameters for which a word of weight w, is unique
with very strong probability:

© Hamming distance:

We consider the parallel CFS signature scheme with param-
eters n = 2% w, = 9 and k = 162, n’ = 6000, ¥’ = 300
and w, = 30. For that case the security of parallel CFS is
282 and 2°! for the cost of recovering a unique (with strong
probability) x of weight 30 from its syndromes by matrices A
and B.

¢ rank metric:

We consider the RankSign signature scheme for n = 23,
over GF(¢g*) and q = 28 (see [13]), with k = 10,n’ =
28,k = 10, rank(r) = 5 and rank(y) = 8. Notice
that RankSign is very fast protocol, so that the signature
can be computed easily. We choose parameters so that x
is unique with a strong probability. We give in Table 1 the
different sizes of keys (in bytes) and signature we obtain with
previous parameters, our parameters are not as good as the
best parameters for number theory [16] but are designed in a
quantum resistant setting.

Metric pk size | signature size | security bits
Hamming distance (CFS) 3MB 3.1MB 82
Rank metric (RankSign) 15kB 200kB 100

TABLE I

EXAMPLES OF PARAMETERS FOR HAMMING AND RANK METRICS

IX. CONCLUSION

In this paper we propose the first blind signature algorithm
for coding theory. Our approach is completely new for coding
theory, our scheme is generic for a given trapdoor function
Dy (). Our protocol is based on a concatenated version of the
Stern protocol. We give examples of parameters for Hamming
distance and rank metric, these parameters are practical for
rank metric and a little less practical for Hamming distance.

REFERENCES

[11 Q. Alamélou, O. Blazy, S. Cauchie, and P. Gaborit. A code-based group

signature scheme. In Des. Codes Cryptography 82(1-2), pages 469493,

2017.

Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Ga-

borit. A practical group signature scheme based on rank metric. In

Arithmetic of Finite Fields - 6th International Workshop, WAIFI 2016,

Ghent, Belgium, July 13-15, 2016, Revised Selected Papers, pages 258—

275, 2016.

[3] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography with constant
input locality. In CRYPTO 2007, volume 4622 of LNCS, pages 92—110.

[4] D. Chaum. Blind signatures for untraceable payments. In Advances in
Cryptology - CRYPTO 1982, LNCS, pages 199-203. Springer, 1982.

[5] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-
based digital signature scheme. In ASIACRYPT 2001, pages 157-174,
2001.

[6] J.-C. Faugere, V. Gauthier, A. Otmani, L. Perret, and J.-P. Tillich. A

distinguisher for high rate McEliece cryptosystems. In ITW 2011, pages

282-286, Paraty, Brazil, October 2011.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to

identification and signature problems. In CRYPTO ’86, pages 186—194.

[8] M. Finiasz. Parallel-CFS: Strengthening the CFS McEliece-based

signature scheme. In SAC, pages 159-170, 2010.

Marc Fischlin. Round-optimal composable blind signatures in the

common reference string model. In CRYPTO 2006,, pages 60-77.

P. Gaborit, A. Hauteville, and J.-P. Tillich. Ranksynd a PRNG based on

rank metric. In proceedings of PQCrypto 2016, pages 18-28, 2016.

P. Gaborit, O. Ruatta, and J. Schrek. On the complexity of the rank

syndrome decoding problem. Information Theory, IEEE Transactions

on, 62(2):1006-1019, 2016.

P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. New results for rank-

based cryptography. In AFRICACRYPT 2014, pages 1-12, 2014.

P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. Ranksign: An

efficient signature algorithm based on the rank metric. In Post-Quantum

Cryptography, pages 88-107, 2014.

P. Gaborit, J. Schrek, and G. Zémor. Full cryptanalysis of the chen

identification protocol. In Post-Quantum Cryptography 2011, p. 35-50.

P. Gaborit and G. Zémor. On the hardness of the decoding and the

minimum distance problems for rank codes. IEEE Trans. Information

Theory 62(12): 7245-7252 (2016).

Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures.

In EUROCRYPT 2014, pages 477-495, 2014.

Gregory Landais and Nicolas Sendrier. Implementing CFS.

DOCRYPT 2012,, pages 474488, 2012.

David Pointcheval and Jacques Stern. Security arguments for digital

signatures and blind signatures. J. Cryptology, 13(3):361-396, 2000.

Markus Riickert. Lattice-based blind signatures. In ASIACRYPT, pages

413-430, 2010.

J. Stern. A new paradigm for public key identification. /EEE Transac-

tions on Information Theory, 42(6):1757-1768, November 1996.

Jacques Stern. A new identification scheme based on syndrome

decoding. In CRYPTO93, pages 13-21, 1994.

[2

—

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17] In IN-
(18]
[19]
[20]

[21]



