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In this paper, we consider the inhomogeneous nonlinear Schrödinger equation (INLS),

We firstly recall a recent result on the local well-posedness for the (INLS) of Guzman [15], and improve this result in the two and three spatial dimensional cases. We next study the decay of global solutions for the defocusing (INLS), i.e. µ = -1 when 0 < α < α where α = 4-2b d-2 for d ≥ 3, and α = ∞ for d = 1, 2 by assuming that the initial data belongs to the weighted

We finally combine the local theory and the decaying property to show the scattering in Σ for the defocusing (INLS) in the case α < α < α , where α = 4-2b d .

The (INLS) is a particular case of (1.1) with K(x) = |x| -b . The equation (1.1) has been attracted a lot of interest in a past several years. Bergé in [START_REF] Bergé | Soliton stability versus collapse[END_REF] studied formally the stability condition for soliton solutions of (1.1). Towers-Malomed in [START_REF] Towers | Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity[END_REF] observed by means of variational approximation and direct simulations that a certain type of time-dependent nonlinear medium gives rise to completely stabe beams. Merle in [17] and studied the problem of existence and nonexistence of minimal mass blowup solutions for (1.1) with k 1 < K(x) < k 2 and k 1 , k 2 > 0. Fibich-Wang in [START_REF] Fibich | Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities[END_REF] investigated the stability of solitary waves for (1.1) with K(x) := K( |x|) where > 0 is small and R d ). The case K(x) = |x| b with b > 0 is studied by many authors (see e.g. [START_REF] Chen | On a class of nonlinear inhomogeneous Schrödinger equation[END_REF]5,16,25] and references therein).

K ∈ C 4 (R d ) ∩ L ∞ (
In order to review the known results for the (INLS), we recall some facts for this equation. We firstly note that the (INLS) is invariant under the scaling, u λ (t, x) := λ 2-b α u(λ 2 t, λx), λ > 0. An easy computation shows

u λ (0) Ḣγ (R d ) = λ γ+ 2-b α -d 2 u 0 Ḣγ (R d ) .
Thus, the critical Sobolev exponent is given by

γ c := d 2 - 2 -b α . (1.2)
Moreover, the (INLS) has the following conserved quantities:

M (u(t)) := u(t) 2 L 2 (R d ) = M (u 0 ), (1.3 
)

E(u(t)) := 1 2 ∇u(t) 2 L 2 (R d ) -µG(t) = E(u 0 ), (1.4) 
where

G(t) := 1 α + 2
|x| -b |u(t, x)| α+2 dx.

(1.5)

The well-posedness for the (INLS) was firstly studied by Genoud-Stuart in [11, Appendix] (see also [13]). The proof is based on the abstract theory developed by Cazenave [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] which does not use Strichartz estimates. Precisely, the authors showed that the focusing (INLS) with 0 < b < min{2, d} is well posed in H 1 (R d ):

• locally if 0 < α < α ,

• globally for any initial data if 0 < α < α ,

• globally for small initial data if α ≤ α < α . Here α and α are defined by

α := 4 -2b d , α := 4-2b d-2 if d ≥ 3, ∞ if d = 1, 2.
(1.6)

In the case α = α (L 2 -critical), Genoud in [START_REF] Genoud | An inhomogeneous, L 2 -critical, nonlinear Schrödinger equation[END_REF] showed that the focusing (INLS) with 0 < b < min{2, d} is globally well-posed in H 1 (R d ) assuming u 0 ∈ H 1 (R d ) and

u 0 L 2 (R d ) < Q L 2 (R d ) ,
where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation

∆Q -Q + |x| -b |Q| 4-2b d Q = 0. (1.7)
Also, established the classification of minimal mass blow-up solutions for the focusing L 2 -critical (INLS).

In the case α < α < α , Farah in [7] showed that the focusing (INLS) with 0 < b < min{2, d} is globally well-posedness in H 1 (R d ) assuming u 0 ∈ H 1 (R d ) and

E(u 0 ) γc M (u 0 ) 1-γc < E(Q) γc M (Q) 1-γc , (1.8) ∇u 0 γc L 2 (R d ) u 0 1-γc L 2 (R d ) < ∇Q γc L 2 (R d ) Q 1-γc L 2 (R d ) , (1.9)
where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation

∆Q -Q + |x| -b |Q| α Q = 0. (1.10)
Note that the existence and uniqueness of nonnegative, radially symmetric, decreasing solutions to (1.7) and (1.10) were proved by Toland [START_REF] Toland | Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line[END_REF] and Yanagida [24] (see also ). Their results hold under the assumption 0 < b < min{2, d} and 0 < α < α . Farah in [7] also proved that if u 0 ∈ Σ satisfies (1.8) and

∇u 0 γc L 2 (R d ) u 0 1-γc L 2 (R d ) > ∇Q γc L 2 (R d ) Q 1-γc L 2 (R d )
, (1.11) then the blow-up in H 1 (R d ) must occur. Afterwards, Farah-Guzman in [START_REF] Farah | Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation[END_REF]9] proved that the above global solution is scattering under the radial condition of the initial data. Recently, Guzman in [15] used Strichartz estimates and the contraction mapping argument to establish the well-posedness for the (INLS) in Sobolev space. Precisely, he showed that:

• if 0 < α < α and 0 < b < min{2, d}, then the (INLS) is locally well-posed in L 2 (R d ). Thus, it is globally well-posed in L 2 (R d ) by mass conservation. • if 0 < α < α, 0 < b < b and max{0, γ c } < γ ≤ min d 2 , 1 where

α := 4-2b d-2γ if γ < d 2 , ∞ if γ = d 2 ,
and b :=

d 3 if d = 1, 2, 3, 2 if d ≥ 4, (1.12) 
then the (INLS) is locally well-posedness in H γ (R d ).

• if α < α < α, 0 < b < b and γ c < γ ≤ min d
2 , 1 , then the (INLS) is globally well-posed in H γ (R d ) for small initial data. In particular, he proved the following local well-posedness in the energy space for the (INLS). Then the (INLS) is locally well-posed in H 1 (R d ). Moreover, the solutions satisfy u ∈ L p loc (R, L q (R d )) for any Schrödinger admissible pair (p, q). Note that the result of Guzman [15] about the local well-posedness of (INLS) in H 1 (R d ) is weaker than the one of . Precisely, it does not treat the case d = 1, and there is a restriction on the validity of b when d = 2 or 3. Although the result showed by Genoud-Stuart is strong, but one does not know whether the local solutions belong to L p loc (R, L q (R d )) for any Schrödinger admissible pair (p, q). This property plays an important role in proving the scattering for the defocusing (INLS). Our first result is the following local well-posedness in H 1 (R d ) which improves Guzman's result on the range of b in the two and three spatial dimensions.

Theorem 1.2. Let d ≥ 4, 0 < b < 2, 0 < α < α , or d = 3, 0 < b < 1, 0 < α < α , or d = 3, 1 ≤ b < 3 2 , 0 < α < 6 -4b 2b -1 , or d = 2, 0 < b < 1, 0 < α < α .
Then the (INLS) is locally well-posed in H1 (R d ). Moreover, the solutions satisfy u ∈ L p loc (R, L q (R d )) for any Schrödinger admissible pair (p, q). We will see in Section 3 that one can not expect a similar result as in Theorem 1.1 and Theorem 1.2 holds in the one dimensional case by using Strichartz estimates. Thus the local well-posedness in the energy space for the (INLS) of Genoud-Stuart is the best known result.

The local well-posedness 1 of Genoud-Stuart in [11,13] combines with the conservations of mass and energy immediately give the global well-posedness in H 1 (R d ) for the defocusing (INLS), i.e. µ = -1. To our knowledge, there are few results concerning long-time dynamics of the defocusing (INLS). Let us introduce the following weighted space

Σ := H 1 (R d ) ∩ L 2 (R d , |x| 2 dx) = {u ∈ H 1 (R d ) : |x|u ∈ L 2 (R d )}, equipped with the norm u Σ := u H 1 (R d ) + xu L 2 (R d ) .
Our next result concerns with the decay of global solutions to the defocusing (INLS) by assuming the initial data in Σ.

Theorem 1.3. Let 0 < b < min{2, d}. Let u 0 ∈ Σ and u ∈ C(R, H 1 (R d
)) be the unique global solution to the defocusing (INLS). Then, the following properties hold:

1. If α ∈ [α , α ), then for every      2 ≤ q ≤ 2d d-2 if d ≥ 3, 2 ≤ q < ∞ if d = 2, 2 ≤ q ≤ ∞ if d = 1, (1.13 
)

there exists C > 0 such that u(t) L q (R d ) ≤ C|t| -d( 1 2 -1 q ) , (1.14)
for all t ∈ R\{0}. 2. If α ∈ (0, α ), then for every q given in (1.13), there exists C > 0 such that

u(t) L q (R d ) ≤ C|t| -d(2b+dα) 4 ( 1 2 -1 q ) , (1.15)
for all t ∈ R\{0}.

This result extends the well-known result of the classical (i.e. b = 0) nonlinear Schrödinger equation (see e.g. [2, Theorem 7.3.1] and references cited therein).

We then use this decay and Strichartz estimates to show the scattering for global solutions to the defocusing (INLS). Due to the singularity of |x| -b , the scattering result does not cover the same range of exponents b and α as in Theorem 1.2. Precisely, we have the following:

Theorem 1.4. Let d ≥ 4, 0 < b < 2, α ≤ α < α , or d = 3, 0 < b < 1, 5 -2b 3 < α < 3 -2b, or d = 2, 0 < b < 1, α ≤ α < α .
Let u 0 ∈ Σ and u be the unique global solution to the defocusing (INLS). Then there exists

u ± 0 ∈ Σ such that lim t→±∞ u(t) -e it∆ u ± 0 Σ = 0.
In this theorem, we only consider the case α ∈ [α , α ). A similar result in the case α ∈ (0, α ) is possible, but it is complicated due to the rate of decays in (1.15). We will give some comments about this case in the end of Section 6.

This paper is organized as follows. In the next section, we introduce some notation and recall Strichartz estimates for the linear Schrödinger equation. In Section 3, we prove the local wellposedness given in Theorem 1.2. In Section 4, we derive the virial identity and show the pseudoconformal conservation law related to the defocusing (INLS). We will give the proof of Theorem 1.3 in Section 5. Section 6 is devoted to the scattering result of Theorem 1.4.

Preliminaries

In the sequel, the notation A B denotes an estimate of the form A ≤ CB for some constant C > 0. The constant C > 0 may change from line to line.

2.1. Nonlinearity. Let F (x, z) := |x| -b f (z) with b > 0 and f (z) := |z| α z. The complex deriva- tives of f are ∂ z f (z) = α + 2 2 |z| α , ∂ z f (z) = α 2 |z| α-2 z 2 .
We have for z, w ∈ C,

f (z) -f (w) = 1 0 ∂ z f (w + θ(z -w))(z -w) + ∂ z f (w + θ(z -w))z -w dθ.
Thus,

|F (x, z) -F (x, w)| |x| -b (|z| α + |w| α )|z -w|. ( 2.1) 
To deal with the singularity |x| -b , we have the following remark.

Remark 2.1 ([15]

). Let B = B(0,

1) = {x ∈ R d : |x| < 1} and B c = R d \B. Then |x| -b L γ x (B) < ∞, if d γ > b,
and

|x| -b L γ x (B c ) < ∞, if d γ < b. 2.2. Strichartz estimates. Let I ⊂ R and p, q ∈ [1, ∞].
We define the mixed norm

u L p t (I,L q x ) := I R d |u(t, x)| q dx 1 q 1 p
with a usual modification when either p or q are infinity. When there is no risk of confusion, we may write L p t L q x instead of L p t (I, L q x ). We also use L p t,x when p = q. Definition 2.2. A pair (p, q) is said to be Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q = d 2 .
We denote for any spacetime slab

I × R d , u S(L 2 ,I) := sup (p,q)∈S u L p t (I,L q x ) , v S (L 2 ,I) := inf (p,q)∈S v L p t (I,L q x ) .
(2.2)

We next recall well-known Strichartz estimates for the linear Schrödinger equation. We refer the reader to [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]19] for more details.

Proposition 2.3. Let u be a solution to the linear Schrödinger equation, namely

u(t) = e it∆ u 0 + t 0 e i(t-s)∆ F (s)ds,
for some data u 0 , F . Then,

u S(L 2 ,R) u 0 L 2 x + F S (L 2 ,R) .
(2.3)

Local existence

In this section, we give the proof of the local well-posedness given in Theorem 1.2. To prove this result, we need the following lemmas which give some estimates of the nonlinearity. 

|x| -b |u| α v S (L 2 ,I) T θ1 + T θ2 ∇u α S(L 2 ,I) v S(L 2 ,I) , ( 3.1) 
∇(|x| -b |u| α u) S (L 2 ,I) T θ1 + T θ2 ∇u α+1 S(L 2 ,I) . (3.2)
The proof of this result is given in [15,Lemma 3.4]. For reader's convenience and later use, we give some details. Proof of Lemma 3.1. We bound

|x| -b |u| α v S (L 2 ,I) ≤ |x| -b |u| α v S (L 2 (B),I) + |x| -b |u| α v S (L 2 (B c ),I) =: A 1 + A 2 , ∇(|x| -b |u| α u) S (L 2 ,I) ≤ ∇(|x| -b |u| α u) S (L 2 (B),I) + ∇(|x| -b |u| α u) S (L 2 (B c ),I) =: B 1 + B 2 .
On B. By Hölder inequality and Remark 2.1,

A 1 ≤ |x| -b |u| α v L p 1 t (I,L q 1 x (B)) |x| -b L γ 1 x (B) |u| α v L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) v L p 1 t (I,L q 1 x ) T θ1 ∇u L p 1 t (I,L q 1 x ) v L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and 1

q 1 = 1 γ 1 + 1 υ 1 , d γ 1 > b, 1 υ 1 = α n 1 + 1 q 1 , 1 p 1 = α m 1 + 1 p 1 , θ 1 = α m 1 - α p 1 ,
and

q 1 < d, 1 n 1 = 1 q 1 - 1 d .
Here the last condition ensures the Sobolev embedding Ẇ

1,q1 (R d ) ⊂ L n1 (R d ). We see that condi- tion d γ1 > b implies d γ 1 = d - d(α + 2) q 1 + α > b or q 1 > d(α + 2) d + α -b . (3.3)
Let us choose

q 1 = d(α + 2) d + α -b + ,
for some 0 < 1 to be chosen later. By taking > 0 small enough, we see that q 1 < d implies d > b + 2 which is true since we are considering d ≥ 4, 0 < b < 2 or d = 3, 0 < b < 1. On the other hand, using 0 < α < α and choosing > 0 sufficiently small, we see that 2 < q 1 < 2d d-2 . It remains to check θ 1 > 0. This condition is equivalent to

α m 1 - α p 1 = 1 - α + 2 p 1 > 0 or p 1 > α + 2.
Since (p 1 , q 1 ) ∈ S, the above inequality implies

d 2 - d q 1 = 2 p 1 < 2 α + 2 .
A direct computation shows

d(α + 2)[4 -2b -(d -2)α] + (d + α -b)(4 -d(α + 2)) > 0
Since α ∈ (0, α ), we see that 4 -2b -(d -2)α > 0. Thus, by taking > 0 sufficiently small, the above inequality holds true. Therefore, we have for a sufficiently small value of ,

A 1 T θ1 ∇u α S(L 2 ,I) u S(L 2 ,I) . (3.4)
We next bound

B 1 ≤ |x| -b ∇(|u| α u) S (L 2 (B),I) + |x| -b-1 |u| α u S (L 2 (B),I) =: B 11 + B 12 .
The term B 11 is treated similarly as for A 1 by using the fractional chain rule. We obtain

B 11 T θ1 ∇u α+1 S(L 2 ,I) , (3.5)
provided > 0 is taken small enough. Using Remark 2.1, we estimate

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) u L p 1 t (I,L n 1 x ) T θ1 ∇u α+1 L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and 1

q 1 = 1 γ 1 + 1 υ 1 , d γ 1 > b + 1, 1 υ 1 = α + 1 n 1 , 1 p 1 = α m 1 + 1 p 1 , θ 1 = α m 1 - α p 1 ,
and

q 1 < d, 1 n 1 = 1 q 1 - 1 d .
We see that

d γ 1 = d - d(α + 2) q 1 + α + 1 > b + 1 or q 1 > d(α + 2) d + α -b .
The last condition is similar to (3.3). Thus, by choosing q 1 as above, we obtain for > 0 small enough,

B 12 T θ1 ∇u α+1 S(L 2 ,I) . (3.6)
On B c . Let us choose the following Schrödinger admissible pair

p 2 = 4(α + 2) (d -2)α , q 2 = d(α + 2) d + α . Let m 2 , n 2 be such that 1 q 2 = α n 2 + 1 q 2 , 1 p 2 = α m 2 + 1 p 2 . ( 3 

.7)

A direct computation shows

θ 2 := α m 2 - α p 2 = 1 - α + 2 p 2 = 1 - (d -2)α 4 > 0.
Note that in our consideration, we always have (d -2)α < 4. Moreover, it is easy to check that 1

n 2 = 1 q 2 - 1 d .
It allows us to use the Sobolev embedding Ẇ 1,q2 (R d ) ⊂ L n2 (R d ). By Hölder inequality with (3.7),

A 2 ≤ |x| -b |u| α v L p 2 t (I,L q 2 x (B c )) |x| -b L ∞ x (B c ) |u| α v L p 2 t (I,L q 2 x ) u α L m 2 t (I,L n 2 x ) v L p 2 t (I,L q 2 x ) T θ2 ∇u α L p 2 t (I,L q 2 x ) v L p 2 t (I,L q 2
x ) . We thus get

A 2 T θ2 ∇u α S(L 2 ,I) v S(L 2 ,I) . We now bound B 2 ≤ |x| -b ∇(|u| α u) S (L 2 (B c ),I) + |x| -b-1 |u| α u S (L 2 (B c ),I) =: B 21 + B 22 .
The term B 21 is treated similarly by using the fractional chain rule, and we obtain

B 21 T θ2 ∇u α+1 S(L 2 ,I) . (3.8)
Finally, we estimate 3) and (3.5), (3.6), (3.8), (3), we complete the proof. In the three dimensional case, we also have the following extension. 

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L d x (B c ) u α L m 2 t (I,L n 2 x ) u L p 2 t (I,L n 2 x ) T θ2 ∇u α+1 L p 2 t (I,L q 2 x ) . Note that 1 q 2 = α+1 n2 + 1 d . This shows that B 22 T θ2 ∇u α+1 S(L 2 ,I) . Combining (3.4), (
Lemma 3.2. Let d = 3. Let 1 ≤ b < 3 2 and 0 < α < 6-4b 2b-1 and I = [0, T ]. Then there exists θ 1 , θ 2 > 0 such that |x| -b |u| α v S (L 2 ,I) T θ1 + T θ2 ∇ u α S(L 2 ,I) v S(L 2 ,I) , (3.9) ∇(|x| -b |u| α u) S (L 2 ,I) T θ1 + T θ2 ∇ u α+1 S(L 2 ,I) . ( 3 
A 1 ≤ |x| -b |u| α v L p 1 t (I,L q 1 x (B)) |x| -b L γ 1 x (B) |u| α v L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) v L p 1 t (I,L q 1 x ) T θ1 ∇ u L p 1 t (I,L q 1 x ) v L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and 1

q 1 = 1 γ 1 + 1 υ 1 , 3 γ 1 > b, 1 υ 1 = α n 1 + 1 q 1 , 1 p 1 = α m 1 + 1 p 1 , θ 1 = α m 1 - α p 1 ,
and

q 1 ≥ 3, n 1 ∈ (q 1 , ∞) or 1 n 1 = τ q 1 , τ ∈ (0, 1).
Here the last condition ensures the Sobolev embedding

W 1,q1 (R 3 ) ⊂ L n1 (R 3 ). We see that condi- tion 3 γ1 > b implies 3 γ 1 = 3 - 3(2 + ατ ) q 1 > b or q 1 > 3(2 + ατ ) 3 -b .
Let us choose

q 1 = 3(2 + ατ ) 3 -b + ,
for some 0 < 1 to be chosen later. Since 1 ≤ b < 2, 0 < α < 4 -2b and 0 < τ < 1, it is obvious that q 1 > 3. Moreover, by taking > 0 small enough, we see that q 1 < 6. In order to make θ 1 > 0, we need

θ 1 = α m 1 - α p 1 = 1 - α + 2 p 1 > 0 or 2 p 1 < 2 α + 2 . Since (p 1 , q 1 ) is Schrödinger admissible, it is equivalent to show 3 2 - 3 q 1 < 2 α + 2 .
It is then equivalent to

3 [8 -4b -2bα -ατ (2 + 3α)] -(3 -b)(2 + 3α) > 0. Since 0 < 1, it is enough to show f (τ ) := 8 -4b -2bα -ατ (2 + 3α) > 0. Note that f (0) > 0 provided 0 < α < 4-2b b and f (1) > 0 provided 0 < α < 4-2b
3 . Thus, by choosing τ closed to 0, we see that f (τ ) > 0 for 0 < α < 4-2b b . Therefore, we get

A 1 T θ1 ∇ u α S(L 2 ,I) v S(L 2 ,I) , (3.11) 
provided , τ > 0 are taken small enough and

1 ≤ b < 2, 0 < α < 4 -2b b .
The term B 11 is treated similarly as for A 1 by using the fractional chain rule. We obtain

B 11 T θ1 ∇ u α S(L 2 ,I) ∇u S(L 2 ,I) , ( 3.12) 
provided , τ > 0 is taken small enough and

1 ≤ b < 2, 0 < α < 4 -2b b .
We next bound

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) u L p 1 t (I,L n 1 x ) T θ1 ∇ u α+1 L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and

1 q 1 = 1 γ 1 + 1 υ 1 , 3 γ 1 > b + 1, 1 υ 1 = α + 1 n 1 , 1 p 1 = α m 1 + 1 p 1 , θ 1 = α m 1 - α p 1 ,
and

q 1 ≥ 3, n 1 ∈ (q 1 , ∞) or 1 n 1 = τ q 1 , τ ∈ (0, 1).
We see that 3

γ 1 = 3 - 3(1 + (α + 1)τ ) q 1 > b + 1 or q 1 > 3(1 + (α + 1)τ ) 2 -b .
Let us choose

q 1 = 3(1 + (α + 1)τ ) 2 -b + ,
for some 0 < 1 to be determined later. Since we are considering 1 ≤ b < 3 2 , by choosing τ closed to 0 and taking > 0 small enough, we can check that 3 < q 1 < 6. It remains to show θ 1 > 0. As above, we need 2 p1 < 2 α+2 , and it is equivalent to

3 2 - 3 q 1 < 2 α + 2 .
It is in turn equivalent to

3 [6 -4b + α(1 -2b) -(α + 1)τ (2 + 3α)] -(2 -b)(2 + 3α) > 0. Since 0 < 1, it is enough to show g(τ ) := 6 -4b + α(1 -2b) -(α + 1)τ (2 + 3α) > 0. Note that g(0) > 0 provided 0 < α < 6-4b
2b-1 . Thus, by choosing τ closed to 0, we see that g(τ

) > 0 for 0 < α < 6-4b 2b-1 . Therefore, B 12 T θ1 ∇ u α+1 S(L 2 ,I) , (3.13)
provided , τ > 0 are small enough and

1 ≤ b < 3 2 , 0 < α < 6 -4b 2b -1 .
On B c . Let us choose the following Schrödinger admissible pair

p 2 = 4(α + 2) α , q 2 = 3(α + 2) 3 + α . Let m 2 , n 2 be such that 1 q 2 = α n 2 + 1 q 2 , 1 p 2 = α m 2 + 1 p 2 . ( 3.14) 
A direct computation shows

θ 2 := α m 2 - α p 2 = 1 - α 4 > 0.
Note that in our consideration 1 ≤ b < 3 2 , 0 < α < 6-4b 2b-1 , we always have α < 4. Moreover, it is easy to check that 1

n 2 = 1 q 2 - 1 3 .

It allows us to use the Sobolev embedding

W 1,q2 (R 3 ) ⊂ L n2 (R 3
). By Hölder inequality with (3.14),

A 2 ≤ |x| -b |u| α v L p 2 t (I,L q 2 x (B c )) |x| -b L ∞ x (B c ) |u| α v L p 2 t (I,L q 2 x ) u α L m 2 t (I,L n 2 x ) v L p 2 t (I,L q 2 x ) T θ2 ∇ u α L p 2 t (I,L q 2 x ) v L p 2 t (I,L q 2
x ) . We thus get

A 2 T θ2 ∇ u α S(L 2 ,I) v S(L 2 ,I) . (3.15)
The term B 21 is treated similarly by using the fractional chain rule, and we obtain

B 21 T θ2 ∇ u α S(L 2 ,I) ∇u S(L 2 ,I) . (3.16)
Finally, we estimate

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L 3 x (B c ) u α L m 2 t (I,L n 2 x ) u L p 2 t (I,L n 2 x ) T θ2 ∇ u α+1 L p 2 t (I,L q 2 x ) .
This implies

B 22 T θ2 ∇ u α+1 S(L 2 ,I) .
(3.17)

Combining (3.11), (3.12), (3.13), (3.15), (3.16) and (3.17), we complete the proof.

Lemma 3.3. Let d = 2. Let 0 < b < 1 and 0 < α < ∞ and I = [0, T ]. Then there exists θ 1 , θ 2 > 0 such that |x| -b |u| α v S (L 2 ,I) T θ1 + T θ2 ∇ u α S(L 2 ,I) v S(L 2 ,I) , (3.18) ∇(|x| -b |u| α u) S (L 2 ,I) T θ1 + T θ2 ∇ u α+1 S(L 2 ,I) . (3.19) Remark 3.4.
In [15], Guzman proved this result with θ 1 = θ 2 under the assumption 0 < b < 2 3 . Here we extend it to 0 < b < 1. To bound this term in a Lebesgue space L γ with 1 ≤ γ ≤ ∞, we need

d γ > b + 1.
This implies that we need at least d > b + 1, which does not hold when d = 1.

Proof of Lemma 3.3. We continue to use the notations A 1 , A 

A 1 ≤ |x| -b |u| α v L p 1 t (I,L q 1 x (B)) |x| -b L γ 1 x (B) |u| α v L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) v L ∞ t (I,L 2 x ) ∇ u α L m 1 t (I,L 2 x ) v L ∞ t (I,L 2 x ) T θ1 ∇ u α L ∞ t (I,L 2 x ) v L ∞ t (I,L 2 
x ) , provided that (p 1 , q 1 ) ∈ S and

1 q 1 = 1 γ 1 + 1 υ 1 , 2 γ 1 > b, 1 υ 1 = α n 1 + 1 2 , 1 p 1 = α m 1 = θ 1 ,
and

n 1 ∈ (2, ∞) or 1 n 1 = τ 2 , τ ∈ (0, 1).
The last condition allows us to use the Sobolev embedding

W 1,2 (R 2 ) ⊂ L n1 (R 2 ). The condition 2 γ1 > b implies 2 γ 1 = 1 - 2 q 1 -ατ > b or 2 q 1 < 1 -b -ατ.
Note that since 0 < b < 1, by taking τ > 0 small enough, we see that 1 -b -ατ > 0. Let us choose

q 1 = 2 1 -b -ατ + ,
for some 0 < 1 to be chosen later. It is obvious that 2 < q 1 < ∞ and θ 1 > 0. Therefore, we obtain

A 1 T θ1 ∇ u α S(L 2 ,I) v S(L 2 ,I) . (3.20)
The term B 11 is again treated similarly as for A 1 above using the fractional chain rule. We get

B 11 T θ1 ∇ u α S(L 2 ,I) ∇u S(L 2 ,I) . (3.21)
We continue to bound

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L n 1 x ) u L ∞ t (I,L n 1 x ) ∇ u α L m 1 t (I,L 2 x ) ∇ u L ∞ t (I,L 2 x ) T θ1 ∇ u α L ∞ t (I,L 2 x ) ∇ u L ∞ t (I,L 2 
x ) , provided that (p 1 , q 1 ) ∈ S and

1 q 1 = 1 γ 1 + 1 υ 1 , 2 γ 1 > b + 1, 1 υ 1 = α + 1 n 1 , 1 p 1 = α m 1 = θ 1 ,
and

n 1 ∈ (2, ∞) or 1 n 1 = τ 2 , τ ∈ (0, 1). The condition 2 γ1 > b + 1 implies 2 γ 1 = 2 - 2 q 1 -(α + 1)τ > b + 1 or 2 q 1 < 1 -b -(α + 1)τ. Since 0 < b < 1, by choosing τ closed to 0, we see that 1 -b -(α + 1)τ > 0. Let us choose q 1 = 2 1 -b -(α + 1)τ + ,
for some 0 < 1 to be chosen later. It is obvious that 2 < q 1 < ∞ and θ 1 > 0. Thus, we obtain

B 12 T θ1 ∇ u α+1 S(L 2 ,I) . (3.22)
On B c . Let us choose the following Schrödinger admissible pair

p 2 = 2(α + 2) α , q 2 = α + 2.
It is easy to see that 1

q 2 = α+1 q2
. By Hölder's inequality,

A 2 ≤ |x| -b |u| α v L p 2 t (I,L q 2 x (B c )) |x| -b L ∞ x (B c ) |u| α v L p 2 t (I,L q 2 x ) u α L m 2 t (I,L q 2 x ) v L p 2 t (I,L q 2 x ) ∇ u α L m 2 t (I,L 2 x ) v L p 2 t (I,L q 2 x ) T θ2 u α L ∞ t (I,L 2 x ) v L p 2 t (I,L q 2 x ) , where 1 p 2 = α m 2 + 1 p 2 , θ 2 = α m 2 = 2 α + 2 > 0.
We thus get

A 2 T θ2 ∇ u α S(L 2 ,I) v S(L 2 ,I) . (3.23)
By using the fractional chain rule and estimating as for A 2 , we get

B 21 T θ2 ∇ u α S(L 2 ,I) ∇u S(L 2 ,I) . (3.24)
Finally, we bound

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L ∞ x (B c ) |u| α u L p 2 t (I,L q 2 x ) u α L m 2 t (I,L q 2 x ) u L p 2 t (I,L q 2 x ) ∇ u α L m 2 t (I,L 2 x ) u L p 2 t (I,L q 2 x ) T θ2 ∇ u α L ∞ t (I,L 2 x ) u L p 2 t (I,L q 2 x ) T θ2 ∇ u α L ∞ t (I,L 2 x ) ∇ u L p 2 t (I,L q 2
x ) . Where m 2 , θ 2 are as in term A 2 . Thus, we obtain 

B 22 T θ2 ∇ u α+1 S(L 2 ,I) . ( 3 
X = u ∈ C t (I, H 1 x ) ∩ L p t (I, W 1,q x ), ∀(p, q) ∈ S | u S(I) ≤ M , equipped with the distance d(u, v) = u -v S(L 2 ,I) ,
where I = [0, T ] and T, M > 0 to be chosen later. By the Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = e it∆ u 0 + iµ t 0 e i(t-s)∆ |x| -b |u(s)| α u(s)ds
is a contraction on (X, d). By Strichartz estimates, we have

Φ(u) S(I) u 0 H 1 x + |x| -b |u| α u S (L 2 ,I) + ∇(|x| -b |u| α u) S (L 2 ,I) , Φ(u) -Φ(v) S(L 2 ,I) |x| -b (|u| α u -|v| α v) S (L 2 ,I) .
Applying Lemmas 3.1, 3.2, 3.3, we get for some θ 1 , θ 2 > 0,

Φ(u) S(I) u 0 H 1 x + T θ1 + T θ2 u α+1 S(I) , Φ(u) -Φ(v) S(L 2 ,I) T θ1 + T θ2 u α S(I) + v α S(I) u -v S(L 2 ,I) .
This shows that for u, v ∈ X, there exists C > 0 independent of T and

u 0 ∈ H 1 x such that Φ(u) S(I) ≤ C u 0 H 1 x + C T θ1 + T θ2 M α+1 , d(Φ(u), Φ(v)) ≤ C T θ1 + T θ2 M α d(u, v).
If we set M = 2C u 0 H 1

x and choose T > 0 so that

C T θ1 + T θ2 M α ≤ 1 2 ,
then Φ is a strict contraction on (X, d). The proof is complete.

Pseudo-conformal conservation law

In this section, we firstly derive the virial identity and then use it to show the pseudo-conformal conservation law related to the defocusing (INLS). The proof is based on the standard technique (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]19]). Given a smooth real valued function a, we define the virial potential by

V a (t) := a(x)|u(t, x)| 2 dx. (4.1)
By a direct computation, we have the following result (see e.g. [20, Lemma 5.3] for the proof).

Lemma 4.1 ([20]

). If u is a smooth-in-time and Schwartz-in-space solution to

i∂ t u + ∆u = N (u),
with N (u) satisfying Im (N (u)u) = 0, then we have

d dt V a (t) = 2 R d ∇a(x) • Im (u(t, x)∇u(t, x))dx, (4.2)
and

d 2 dt 2 V a (t) = -∆ 2 a(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk a(x)Re (∂ k u(t, x)∂ j u(t, x))dx + 2 ∇a(x) • {N (u), u} p (t, x)dx, (4.3) 
where {f, g} p := Re (f ∇g -g∇f ) is the momentum bracket.

Corollary 4.2. If u is a smooth-in-time and Schwartz-in-space solution to the defocusing (INLS), then we have

d 2 dt 2 V a (t) = -∆ 2 a(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk a(x)Re (∂ k u(t, x)∂ j u(t, x))dx + 2α α + 2 ∆a(x)|x| -b |u(t, x)| α+2 dx - 4 α + 2 ∇a(x) • ∇(|x| -b )|u(t, x)| α+2 dx. (4.4) Proof. Applying Lemma 4.1 with N (u) = F (x, u) = |x| -b |u α u. Note that {N (u), u} p = - α α + 2 ∇(|x| -b |u| α+2 ) - 2 α + 2 ∇(|x| -b )|u| α+2 .
We now have the following virial identity for the defocusing (INLS).

Proposition 4.3. Let u 0 ∈ H 1 (R d ) be such that |x|u 0 ∈ L 2 (R d
) and u the corresponding global solution to the defocusing

(INLS). Then, |x|u ∈ C(R, L 2 (R d ). Moreover, for any t ∈ R, d 2 dt 2 xu(t) 2 L 2 x = 16E(u 0 ) + 4(dα + 2b -4)G(t), (4.5)
where G is given in (1.5).

Proof. The first claim follows from the standard approximation argument, we omit the proof and refer the reader to [2, Proposition 6.5.1] for more details. It remains to show (4.5). Applying Corollary 4.2 with a(x) = |x| 2 , we have

d 2 dt 2 V a (t) = d 2 dt 2 xu(t) 2 L 2 x = 8 ∇u(t) 2 L 2 x + 4(dα + 2b)G(t) = 16E(u(t)) + 4(dα + 2b -4)G(t).
The result follows by using the conservation of energy.

An application of the virial identity is the following "pseudo-conformal conservation law" for the defocusing (INLS). 

(x + 2it∇)u(t) 2 L 2 x + 8t 2 G(t) = xu 0 2 L 2 x + 4(4 -2b -dα) t 0 sG(s)ds. (4.6) Proof. Set f (t) := (x + 2it∇)u(t) 2 L 2
x + 8t 2 G(t). By (4.2), we see that

(x + 2it∇)u(t) 2 L 2 x = xu(t) 2 L 2 x + 4t 2 ∇u(t) 2 L 2 x -4t Im (u(t, x)x • ∇u(t, x))dx = xu(t) 2 L 2 x + 4t 2 ∇u(t) 2 L 2 x -t d dt xu(t) 2 L 2
x . Thus, the conservation of energy implies

f (t) = xu(t) 2 L 2 x + 8t 2 E(u(t)) -t d dt xu(t) 2 L 2 x = xu(t) 2 L 2 x + 8t 2 E(u 0 ) -t d dt xu(t) 2 L 2
x . Applying (4.5), we get

f (t) = d dt xu(t) 2 L 2 x + 16tE(u 0 ) - d dt xu(t) 2 L 2 x -t d 2 dt 2 xu(t) 2 L 2
x = 4(4 -2b -dα)tG(t). Taking integration on (0, t), we obtain (4.6).

Remark 4.5. This result extends the pseudo-conformal conservation law for the classical (i.e. b = 0) nonlinear Schrödinger equation (see e.g. [2, Theorem 7.2.1]). Note that (4.6) is a real conservation law only when α = 4-2b d . Remark 4.6. It is easy to see that if t = 0, then

(x + 2it∇)u(t, x) = 2ite i |x| 2 4t ∇ e -i |x| 2 4t u(t, x) , ( 4.7) 
and

(x + 2it∇)u(t) 2 L 2 x = 4t 2 ∇ e -i |x| 2 4t u(t, x) 2 L 2 x .
Therefore, if we set

v(t, x) := e -i |x| 2 4t u(t, x), ( 4.8) 
then

(x + 2it∇)u(t) 2 L 2 x = 4t 2 ∇v(t) 2 L 2
x , and (4.6) becomes

8t 2 E(v(t)) = xu 0 2 L 2 x + 4(4 -2b -dα) t 0 sG(s)ds. (4.9) Remark 4.7. Let F (x, u) = |x| -b |u| α u. It follows from (4.7) that |(x + 2it∇)F (x, u)| = 2|t| ∇ e -i |x| 2 4t F (x, u) = 2|t||∇F (x, v)|, ( 4.10) 
where v is given in (4.8). Using the facts |v| = |u| and 2|t||∇v| = |(x + 2it∇)u|, we also have In this section, we will give the proof of the decaying property given in Theorem 1.3. We follows the standard argument of Ginibre-Velo [START_REF] Ginibre | On a class of nonlinear Sch "odinger equations[END_REF] (see also [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 7]). Proof of Theorem 1.3. We have from (4.9) that

v L q x = u L q x , 2|t| ∇v L q x = (x + 2it∇)u L q x . ( 4 
8t 2 E(v(t)) = 8t 2 1 2 ∇v(t) 2 L 2 x + G(t) = xu 0 2 L 2 x + 4(4 -2b -dα) t 0 sG(s)ds, ( 5.1) 
for all t ∈ R, where v is defined in (4.8).

If α ∈ [α , α ), then (5.1) implies

4t 2 ∇v(t) 2 L 2 x ≤ xu 0 2 L 2
x , for all t ∈ R. Hence, ∇v(t) L 2 x |t| -1 for t ∈ R\{0}. Using (4.11), Gagliardo-Nirenberg's inequality and the conservation of mass, we have

u(t) L q x = v(t) L q x ∇v(t) d( 1 2 -1 q ) L 2 x v(t) 1-d( 1 2 -1 q ) L 2 x |t| -d( 1 2 -1 q ) u 0 1-d( 1 2 -1 q ) L 2 x |t| -d( 1 2 -1 q ) .
This proves the first claim. We now assume α ∈ (0, α ). Let us consider only the case t ≥ 1, the case t < -1 is treated similarly. By taking t = 1 in (5.1), we see that

8E(v(1)) = xu 0 2 L 2 x + 4(4 -2b -dα) 1 0 sG(s)ds. Thus, 8t 2 E(v(t)) = 8E(v(1)) + 4(4 -2b -dα) t 1 sG(s)ds.

This implies

g(t) := t 2 G(t) ≤ E(v(1)) + 4 -2b -dα 2 t 1 1 s g(s)ds.
Applying Gronwall's inequality, we obtain

g(t) t 4-2b-dα 2 , hence G(t) t -2b-dα 2 
.

By (5.1), we have

4t 2 ∇v(t) 2 L 2 x xu 0 2 L 2 x + 4(4 -2b -dα) t 0 s 2-2b-dα 2 1 + t 4-2b-dα 2 , or ∇v(t) L 2 x t -2b+dα 4 .
By Gagliardo-Nirenberg's inequality, the conservation of mass and (4.11), we obtain

u(t) L q x = v(t) L q x ∇v(t) d( 1 2 -1 q ) L 2 x v(t) 1-d( 1 2 -1 q ) L 2 x t -d(2b+dα) 4 ( 1 2 -1 q ) u 0 1-d( 1 2 -1 q ) L 2 x t -d(2b+dα) 4 ( 1 2 -1 q ) .
This completes the proof.

Scattering in the weighted L 2 space

In this section, we will give the proof of the scattering in the weighted space Σ given in Theorem 1.4. To do this, we use the decay given in Theorem 1.3 to obtain global bounds on the solution. The scattering property follows easily from the standard argument. We also give some comments in the case α ∈ (0, α ) in the end of this section.

Let us introduce the following so-called Strauss exponent

α 0 := 2 -d -2b + d 2 + 12d + 4 + 4b(b -2 -d) 2d , (6.1)
which is the positive root to the following quadratic equation

dα 2 + (d -2 + 2b)α + 2b -4 = 0.
Remark 6.1. It is easy to check that for 0 < b < min{2, d},

α 0 < 4 -2b d .
Note that when b = 0, α 0 is the classical Strauss exponent introduced in [22] (see also [START_REF] Cazenave | Rapidly decaying solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]). Let us start with the following lemmas providing some estimates on the nonlinearity. Lemma 6.2. Let d ≥ 4, b ∈ (0, 2) and α ∈ [α , α ). Then there exist (p 1 , q 1 ), (p 2 , q 2 ) ∈ S satisfying 2α + 2 > p 1 , p 2 and q 1 , q 2 ∈ 2, 2d

d-2 such that |x| -b |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
u S(L 2 ,I) , (6.2)

∇(|x| -b |u| α u) S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇u S(L 2 ,I) , (

where

m 1 = αp1 p1-2 and m 2 = αp2 p2-2 . Proof. Let us bound |x| -b |u| α u S (L 2 ,I) ≤ |x| -b |u| α u S (L 2 (B),I) + |x| -b |u| α u S (L 2 (B c ),I) =: A 1 + A 2 ,
and

∇(|x| -b |u| α u) S (L 2 ,I) ≤ ∇(|x| -b |u| α u) S (L 2 (B),I) + ∇(|x| -b |u| α u) S (L 2 (B c ),I) =: B 1 + B 2 ,
where

B 1 ≤ |x| -b ∇(|u| α u) S (L 2 (B),I) + |x| -b-1 |u| α u S (L 2 (B),I) =: B 11 + B 12 , B 2 ≤ |x| -b ∇(|u| α u) S (L 2 (B c ),I) + |x| -b-1 |u| α u S (L 2 (B c ),I) =: B 21 + B 22 .
On B. By Hölder's inequality and Remark 2.1,

A 1 ≤ |x| -b |u| α u L p 1 t (I,L q 1 x (B)) |x| -b L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L q 1 x ) u L p 1 t (I,L q 1 x ) ,
provided that (p 1 , q 1 ) ∈ S and

1 q 1 = 1 γ 1 + 1 υ 1 , d γ 1 > b, 1 υ 1 = α + 1 q 1 , 1 p 1 = α m 1 + 1 p 1 .

These conditions imply

d γ 1 = d - d(α + 2) q 1 > b, α m 1 = 1 - 2 p 1 .
Let us choose

q 1 = d(α + 2) d -b + , (6.4)
for some 0 < 1 to be chosen later. Since we are considering

d ≥ 4, b ∈ (0, 2) and α ∈ [α , α ), it is easy to check that q 1 ∈ 2, 2d d-2
provided that > 0 is taken small enough. We thus get

A 1 u α L m 1 t (I,L q 1 x ) u S(L 2 ,I) . (6.5)
The term B 11 is treated similarly by using the fractional chain rule, and we have

B 11 u α L m 1 t (I,L q 1
x ) ∇u S(L 2 ,I) . (6.6)

We next bound

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L q 1 x ) u L p 1 t (I,L n 1 x ) u α L m 1 t (I,L q 1 x ) ∇u L p 1 t (I,L q 1 x ) , provided 1 q 1 = 1 γ 1 + 1 υ 1 , d γ 1 > b + 1, 1 υ 1 = α q 1 + 1 n 1 , 1 p 1 = α m 1 + 1 p 1 ,
and

q 1 < d, 1 n 1 = 1 q 1 - 1 d .
Here the last condition allows us to use the homogeneous Sobolev embedding Ẇ

1,q1 (R d ) ⊂ L n1 (R d ).
Note that by taking > 0 small enough, the condition q 1 < d implies α < d -b -2 which is true for d ≥ 4 and α ∈ [α , α ). We then have

d γ 1 = d - d(α + 2) q 1 + 1 > b + 1, α m 1 = 1 - 2 p 1 .
Therefore, by choosing q 1 as in (6.4), we obtain

B 12 u α L m 1 t (I,L q 1
x ) ∇u S(L 2 ,I) . (6.7) On B c . By Hölder's inequality and Remark 2.1,

A 2 ≤ |x| -b |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b L γ 2 x (B c ) |u| α u L p 2 t (I,L υ 2 x ) u α L m 2 t (I,L q 2 x ) u L p 2 t (I,L q 2
x ) , provided that (p 2 , q 2 ) ∈ S and

1 q 2 = 1 γ 2 + 1 υ 2 , d γ 2 < b, 1 υ 2 = α + 1 q 2 , 1 p 2 = α m 2 + 1 p 2 .

These conditions imply

d γ 2 = d - d(α + 2) q 2 < b, α m 2 = 1 - 2 p 2 .
Let us choose

q 2 = d(α + 2) d -b -, (6.8)
for some 0 < 1 to be chosen later. By taking > 0 small enough, we see that q 1 ∈ 2, 2d d-2 . We thus obtain

A 2 u α L m 2 t (I,L q 2
x ) u S(L 2 ,I) . (6.9)

Similarly, by using the fractional chain rule, we have

B 21 u α L m 2 t (I,L q 2
x ) ∇u S(L 2 ,I) . (6.10)

We now estimate

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L γ 2 x (B c ) |u| α u L p 2 t (I,L υ 2 x ) u α L m 2 t (I,L q 2 x ) u L p 2 t (I,L n 2 x ) u α L m 2 t (I,L q 1 x ) ∇u L p 2 t (I,L q 2
x ) , provided that (p 2 , q 2 ) ∈ S and

1 q 2 = 1 γ 2 + 1 υ 2 , d γ 2 < b + 1, 1 υ 2 = α q 2 + 1 n 2 , 1 p 2 = α m 2 + 1 p 2 , q 2 < d, 1 n 2 = 1 q 2 - 1 d .
This is then equivalent to

d γ 2 = d - d(α + 2) q 2 + 1 < b + 1, α m 2 = 1 - 2 p 2 .
Thus by choosing q 2 as in (6.8), we obtain

B 22 u α L m 2 t (I,L q 1
x ) ∇u S(L 2 ,I) . (6.11) Collecting (6.5), (6.9) and (6.6), (6.7), (6.10), (6.11), we obtain (6.2) and (6.3). It remains to check that p 1 , p 2 < 2α + 2 where (p 1 , q 1 ), (p 2 , q 2 ) ∈ S with q 1 , q 2 as in (6.4) and (6.8) respectively. Note that q 1 , q 2 are almost similar up to ± . Let us denote (p, q) ∈ S with

q = d(α + 2) d -b + a , a ∈ {±1}.
We will check that for > 0 small enough, p < 2α+2 or

d 2 -d q = 2 p > 1 α+1 . By a direct computation, it is equivalent to d[dα 2 + (d -2 + 2b)α + 2b -4] + a (d -b)[d(α + 1) -2] > 0.
Since α ≥ 4-2b d > α 0 (see (6.1)), we see that dα 2 + (d -2 + 2b)α + 2b -4 > 0. Therefore, the above inequality holds true by taking > 0 sufficiently small.

Lemma 6.3. Let d = 3. Let b ∈ 0, 5 4 , α ∈ 4 -2b 3 , 3 -2b .
Then there exist (p 1 , q 1 ), (p 2 , q 2 ) ∈ S satisfying 2α + 2 > p 1 , p 2 and q 1 , q 2 ∈ (3, 6) such that

|x| -b |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
u S(L 2 ,I) , (6.12)

∇(|x| -b |u| α u) S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇ u S(L 2 ,I) , (6.13)

where m 1 = αp1 p1-2 and m 2 = αp2 p2-2 . Proof. We firstly note that by using the same lines as in the proof of Lemma 6.2, the following estimates

|x| -b |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x ) u S(L 2 ,I) , |x| -b ∇(|u| α u) S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇u S(L 

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L q 1 x ) u L p 1 t (I,L n 1 x ) u α L m 1 t (I,L q 1 x ) ∇ u L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and

1 q 1 = 1 γ 1 + 1 υ 1 , d γ 1 > b + 1, 1 υ 1 = α q 1 + 1 n 1 , 1 p 1 = α m 1 + 1 p 1 ,
and

q 1 ≥ 3, n 1 ∈ (q 1 , ∞) or 1 n 1 = τ q 1
, τ ∈ (0, 1).

This implies that

d γ 1 = 3 - 3(α + 1 + τ ) q 1 > b + 1, α m 1 = 1 - 2 p 1 .
Le us choose

q 1 = 3(α + 1 + τ ) 2 -b + , (6.15)
for some 0 < 1 to be chosen later. Since α ≥ 4-2b 3 , it is obvious that q 1 > 3. Moreover, the condition q 1 < 6 implies α + τ < 3 -2b. Thus by choosing τ closed to 0, we need α < 3 -2b. Combining with α ≥ 4-2b 3 , we get

4 -2b 3 ≤ α < 3 -2b, 0 < b < 5 4 . (6.16)
Thus, for b and α satisfying (6.16), we have

B 12 u α L m 1 t (I,L q 1 x ) ∇ u S(L 2 ,I) .
Similarly, we estimate

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L γ 2 x (B c ) |u| α u L p 2 t (I,L υ 2 x ) u α L m 2 t (I,L q 2 x ) u L p 2 t (I,L n 2 x ) u α L m 2 t (I,L q 2 x ) ∇ u L p 2 t (I,L q 2 x )
provided that (p 2 , q 2 ) ∈ S and

1 q 2 = 1 γ 2 + 1 υ 2 , d γ 2 < b + 1, 1 υ 2 = α p 2 + 1 n 2 , 1 p 2 = α m 2 + 1 p 2 ,
and

q 2 ≥ 3, n 2 ∈ (q 2 , ∞) or 1 n 2 = τ q 2
, τ ∈ (0, 1).

We thus get

d γ 2 = 3 - 3(α + 1 + τ ) q 2 < b + 1, α m 2 = 1 - 2 p 2 .
Let us choose

q 2 = 3(α + 1 + τ ) 2 -b -, (6.17) 
for some 0 < 1 to be chosen later. It is easy to see that q 2 ∈ (3, 6) for 0 < b < 5 4 , 4-2b 3 ≤ α < 3 -2b and > 0 small enough. We thus obtain

B 22 u α L m 2 t (I,L q 2 x ) ∇ u S(L 2 ,I) .
It remains to check p 1 , p 2 < 2α + 2 for (p 1 , q 1 ), (p 2 , q 2 ) ∈ S with q 1 and q 2 given in (6.15) and (6.17) respectively. Let us denote (p, q) ∈ S with

q = 3(α + 1 + τ ) 2 -b + a , a ∈ {±1}.
The condition p < 2α + 2 is equivalent to

3 2 - 3 q = 2 p > 1 α + 1 . A direct computation shows 3[3α 2 + 2bα + 2b -3 + τ (3α + 1)] + a (2 -b)(3α + 1) > 0.
By taking > 0 small enough and τ closed to 0, it is enough to have

3α 2 + 2bα + 2b -3 > 0.
It implies that α > 3-2b 3 . Comparing with (6.16), we see that

4 -2b 3 ≤ α < 3 -2b, b ∈ 0, 5 4 
.
The proof is complete.

We also have the following result in the same spirit with Lemma 6.3 in the two dimensional case. Lemma 6.4. Let d = 2. Let b ∈ (0, 1) and α ∈ [α , α ). Then there exist (p 1 , q 1 ), (p 2 , q 2 ) ∈ S satisfying 2α + 2 > p 1 , p 2 and q 1 , q 2 ∈ (2, ∞) such that

|x| -b |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
u S(L 2 ,I) , (6.18)

∇(|x| -b |u| α u) S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇ u S(L 2 ,I) , (

where m 1 = αp1 p1-2 and m 2 = αp2 p2-2 .

Proof. We firstly note that the following estimates

|x| -b |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x ) u S(L 2 ,I) , |x| -b ∇(|u| α u) S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇u S(L 2 ,I) (6.20)

still hold true for d = 2, b ∈ (0, 2) and α ∈ [α , α ) by using the same lines as in the proof of Lemma 6.2. It remains to estimate the term |x| -b-1 |u| α u S (L 2 ,I) . Using the notations given in the proof of Lemma 6.2, we bound this term by B 12 + B 22 . By Hölder's inequality and Remark 2.1,

B 12 ≤ |x| -b-1 |u| α u L p 1 t (I,L q 1 x (B)) |x| -b-1 L γ 1 x (B) |u| α u L p 1 t (I,L υ 1 x ) u α L m 1 t (I,L q 1 x ) u L p 1 t (I,L n 1 x ) u α L m 1 t (I,L q 1 x ) ∇ u L p 1 t (I,L q 1
x ) , provided that (p 1 , q 1 ) ∈ S and 1

q 1 = 1 γ 1 + 1 υ 1 , 2 γ 1 > b + 1, 1 υ 1 = α q 1 + 1 n 1 ,
and

q 1 ≥ 2, n 1 ∈ (q 1 , ∞) or 1 n 1 = τ q 1 , τ ∈ (0, 1). These conditions imply that 2 γ 1 = 2 - 2(α + 1 + τ ) q 1 > b + 1, α m 1 = 1 - 2 p 1 .
Let us choose

q 1 = 2(α + 1 + τ ) 1 -b + , ( 6.21) 
for some 0 < 1 to be chosen later. It is obvious that q 1 ∈ (2, ∞) for any τ ∈ (0, 1). We thus obtain

B 12 u α L m 1 t (I,L q 1 x ) ∇ u S(L 2 ,I) .
Similarly,

B 22 ≤ |x| -b-1 |u| α u L p 2 t (I,L q 2 x (B c )) |x| -b-1 L γ 2 x (B c ) |u| α u L p 2 t (I,L υ 2 x ) u α L m 2 t (I,L q 2 x ) u L p 2 t (I,L n 2 x ) u α L m 2 t (I,L q 1 x ) ∇ u L p 2 t (I,L q 2 x ) , provided that 1 q 2 = 1 γ 2 + 1 υ 2 , 2 γ 1 < b + 1, 1 υ 2 = α q 2 + 1 n 2 ,
and

q 2 ≥ 2, n 2 ∈ (q 2 , ∞) or 1 n 2 = τ q 2 , τ ∈ (0, 1).
We learn from these conditions that

d γ 2 = 2 - 2(α + 1 + τ ) q < b + 1, α m 2 = 1 - 2 p 2 .
Let us choose

q 2 = 2(α + 1 + τ ) 1 -b -, (6.22) 
for some 0 < 1 small enough. By choosing > 0 sufficiently small, we have q 2 ∈ (2, ∞) for any τ ∈ (0, 1). We get

B 22 u α L m 2 t (I,L q 1 x )
∇ u S(L 2 ,I) .

To complete the proof, we need to check p 1 , p 2 < 2α + 2 with (p 1 , q 1 ), (p 2 , q 2 ) ∈ S where q 1 and q 2 given in (6.21) and (6.22) respectively. Let us denote (p, q) ∈ S with

q = 2(α + 1 + τ ) 1 -b + a , a ∈ {±1}.
The condition p < 2α + 2 is equivalent to

1 - 2 q = 2 p > 1 α + 1 .
It is in turn equivalent to

2[α 2 + bα + b -1 + τ α] + a α(1 -b) > 0.
By taking > 0 small enough and τ closed to 0, this condition holds true provided

α 2 +bα+b-1 > 0. This implies α > 1 -b which is satisfied since α ∈ [α , α ) . The proof is complete.
As a direct consequence of Lemmas 6.2, 6.3, 6.4, we have the following global H 1 -Strichartz bound of solutions to the defocusing (INLS).

Proposition 6.5. Let d ≥ 4, b ∈ (0, 2), α ∈ [α , α ), or d = 3, b ∈ 0, 5 4 , α ∈ [α , 3 -2b), or d = 2, b ∈ (0, 1), α ∈ [α , α
). Let u 0 ∈ Σ and u be the global solution to the defocusing (INLS). Then u ∈ L p (R, W 1,q (R d )) for any Schrödinger admissible pair (p, q). Proof. We have from the Duhamel formula,

u(t) = e it∆ u 0 -i t 0 e i(t-s)∆ |x| -b |u(s)| α u(s)ds. ( 6.23) 
Let 0 ≤ T ≤ t. We apply Lemmas 6.2, 6.3, 6.4 with I = (T, t) and use the conservation of mass to get

2 u S(I) ≤ C u(T ) H 1 x + C |x| -b |u| α u S (L 2 ,I) + C ∇(|x| -b |u| α u) S (L 2 ,I) ≤ C u 0 H 1 x + C u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x ) u S(I) ,
where (p i , q i ) ∈ S satisfy p i < 2α + 2, q i ∈ (2, 2 ) and x ) can be written as

m i = αpi pi-2 for i = 1, 2. Here 2 = 2d d-2 if d ≥ 3 and 2 = ∞ if d = 2.
t T u(s) mi L q i x ds α m i = t T u(s) αp i p i -2 L q i x ds p i -2 p i .
By the decay of global solutions given in Theorem 1.3, we see that

u(s) L q i x s -d 1 2 -1 q i = s -2 p i so u(s) αp i p i -2 L q i x s -2α p i -2 .
2 See (3.26) for the definition of u S(I) .

Since p i < 2α + 2 or 2α pi-2 > 1, by choosing T > 0 large enough,

C t T u(s) αp i p i -2 L q i x ds p i -2 p i ≤ 1 4 .
We thus obtain u S(I) ≤ C + 1 2 u S(I) or u S(I) ≤ 2C.

Letting t → +∞, we obtain u S((T,+∞)) ≤ 2C. Similarly, one can prove that u S((-∞,-T )) ≤ 2C. Combining these two bounds and the local theory, we prove u ∈ L p (R, W 1,q (R d )) for any Schrödinger admissible pair (p, q). Remark 6.6. Using this global H 1 -Strichartz bound, one can obtain easily (see the proof of Theorem 1.4 given below) the scattering in H 1 provided that u 0 ∈ Σ. But one does not know whether the scattering states u ± 0 belong to Σ. In order to show the scattering states u ± 0 ∈ Σ, we need to show the global L 2 -Strichartz bound for the weighted solutions (x + 2it∇)u(t). To do this, we need the following estimates on the nonlinearity. Lemma 6.7.

1. Let d = 3, b ∈ (0, 1), α ∈ 5 -2b 3 , 3 -2b .
Then there exist (p 1 , q 1 ), (p 2 , q 2 ) ∈ S satisfying α + 1 > p 1 , p 2 and q 1 , q 2 ∈ (3, 6) such that

|x| -b-1 |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇ u S(L 2 ,I) .

2. Let d = 2, b ∈ (0, 1), α ∈ [α , α ). Then there exist (p 1 , q 1 ), (p 2 , q 2 ) ∈ S satisfying α + 1 > p 1 , p 2 and q 1 , q 2 ∈ (2, ∞) such that

|x| -b-1 |u| α u S (L 2 ,I) u α L m 1 t (I,L q 1 x ) + u α L m 2 t (I,L q 2 x )
∇ u S(L 2 ,I) .

Proof. In the case d = 3, we use the same argument as in the proof of Lemma 6.3 with

q 1 = 3(α + 1 + τ ) 2 -b + , q 2 = 3(α + 1 + τ ) 2 -b -
for some > 0 small enough and τ closed to 0. It remains to check α + 1 > p 1 , p 2 where (p 1 , q 1 ), (p 2 , q 2 ) ∈ S. Let us denote (p, q) ∈ S with

q = 3(α + 1 + τ ) 2 -b + a , a ∈ {±1}. The condition p < α + 1 is equivalent to 3 2 - 3 q = 2 p > 2 α + 1 .
An easy computation shows

3[3α 2 + 2(b -1)α + 2b -5 + τ (3α -1)] + a (2 -b)(3α -1) > 0.
By taking and τ small enough, it is enough to show

3α 2 + 2(b -1)α + 2b -5 > 0.
This implies that α > 5-2b 3 . Comparing with the assumptions b ∈ 0, 5 4 and α ∈ 4-2b 3 , 3 -2b of Lemma 6.3, we have b ∈ (0, 1), α ∈ 5 -2b 3 , 3 -2b .

The case d = 2 is treated similarly. As in the proof of Lemma 6.4, we choose

q 1 = 2(α + 1 + τ ) 1 -b + , q 2 = 2(α + 1 + τ ) 1 -b -,
for some , τ > 0 small enough. As above, let us denote (p, q) ∈ S with

q = 2(α + 1 + τ ) 1 -b + a , a ∈ {±1}.
The condition p < α + 1 is equivalent to

1 - 2 q = 2 p > 2 α + 1 .
An easy computation shows

2[α 2 + (b -1)α + b -2 + τ (α -1)] + a (1 -b)(α -1) > 0.
By taking and τ small enough, it is enough to show

α 2 + (b -1)α + b -2 > 0.
This implies that α > 1 -b which is always satisfied for α ∈ [α , α ). The proof is complete. Then w ∈ L p (R, L q (R d )) for every Schrödinger admissible pair (p, q).

Proof. We firstly notice that x + 2it∇ commutes with i∂ t + ∆. By Duhamel's formula, Let v be as in (4.8). By (4.10), we have

|(x + 2it∇)(|x| -b |u| α u)| = 2|t||∇(|x| -b |v| α v)|, |v| = |u|, 2|t||∇v| = |w|.
Case 1: d ≥ 4. Strichartz estimates and Lemma 6.2 show that for any t > 0 and I = (0, t),

w S(L 2 ,I) xu 0 L 2 x + (x + 2is∇)(|x| -b |u| α u) S (L 2 ,I) xu 0 L 2 x + 2|s|∇(|x| -b |v| α v) S (L 2 ,I) . Let 0 ≤ T ≤ t. We bound 2|s|∇(|x| -b |v| α v) S (L 2 ,I) ≤ 2|s|∇(|x| -b |v| α v) S (L 2 ,(0,T )) + 2|s|∇(|x| -b |v| α v) S (L 2 ,(T,t)) = A+B.
The term A is treated as follows. By Lemma 6.2 and keeping in mind that |v| = |u|, 2|s||∇v| = |w|, we bound

A u α L m 1 t ((0,T ),L q 1 x ) + u α L m 2 t ((0,T ),L q 2 x )
2|s|∇v S(L 2 ,I)

u α L m 1 t ((0,T ),L q 1 x ) + u α L m 2 t ((0,T ),L q 2 x )
w S(L 2 ,I) , for some (p i , q i ) ∈ S satisfy p i < 2α + 2, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. We next estimate

u α L m i t ((0,T ),L q i x ) T α m i u α L ∞ t ((0,T ),H 1 x ) < ∞, i = 1, 2.
Here the time T > 0 is large but fixed and u ∈ L ∞ t ((0, T ), H 1 x ) by the local theory. We also have w S(L 2 ,(0,T )) < ∞ which is proved in the Appendix. This shows the boundedness of A. For the term B, we bound

B u α L m 1 t ((T,t),L q 1 x ) + u α L m 2 t ((T,t),L q 2 x )
2|s|∇v S(L 2 ,(T,t))

u α L m 1 t ((T,t),L q 1 x ) + u α L m 2 t ((T,t),L q 2 x )
w S(L 2 ,I) , for some (p i , q i ) ∈ S satisfy p i < 2α + 2, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. By the same argument as in the proof of Proposition 6.5, we see that u α L m i t (T,t) is small for T > 0 large enough. Therefore,

w S(L 2 ,I) ≤ C + 1 2 w S(L 2 ,I) or w S(L 2 ,I) ≤ 2C.
Letting t → +∞, we prove that w S(L 2 ,(0,+∞)) ≤ 2C. Similarly, one proves as well that w S(L 2 ,(-∞,0)) ≤ 2C. This shows w ∈ L p (R, L q (R d )) for any Schrödinger admissible pair (p, q). Case 2: d = 2, 3. We bound

w S(L 2 ,I) xu 0 L 2 x + (x + 2is∇)(|x| -b |u| α u) S (L 2 ,I) xu 0 L 2 x + 2|s|∇(|x| -b |v| α v) S (L 2 ,I) xu 0 L 2 x + 2|s||x| -b ∇(|v| α v) S (L 2 ,I) + 2|s||x| -b-1 |v| α v S (L 2 ,I) xu 0 L 2 x + A + B.
The term A is treated similarly as in Case 1 using (6.14), (6.20). It remains to bound the term B. By Lemma 6.7,

B |s| 1 α u α L m 1 t (I,L q 1 x ) + |s| 1 α u α L m 2 t (I,L q 2 x ) u S(L 2 ,I) ,
for some (p i , q i ) ∈ S satisfy p i < α + 1, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. We learn from Proposition 6.5 that u S(L 2 ,I) < ∞. Let us bound |s|

1 α u α L m i t (I,L q i
x ) for i = 1, 2. To do so, we split I into (0, T ) and (T, t). By Sobolev embedding

|s| 1 α u α L m i t ((0,T ),L q i x ) T 1+ α m i u α L ∞ t ((0,T ),H 1 x ) < ∞. We next write |s| 1 α u α L m i t ((T,t),L q i x ) = t T |s| m i α u(s) mi L q i x ds α m i .
By the decay of global solutions given in Theorem 1.3, we see that

|s| m i α u(s) mi L q i x |s| m i α -mi d 2 -d q i = |s| -mi 2 p i -1 α = |s| - 2α-p i p i -2 .
Since p i < α + 1 or 2α-pi pi-2 > 1, by taking T > 0 sufficiently large, we see that |s|

1 α u α L m i t ((T,t),L q i x )
is small. This proves that the term B is bounded for some T > 0 large enough. Therefore,

w S(L 2 ,I) ≤ C + 1 2 w S(L 2 ,I) or w S(L 2 ,I) ≤ 2C.
By letting t tends to +∞, we complete the proof.

We are now able to prove Theorem 1.4. The proof follows by a standard argument (see e. Let 0 < t 1 < t 2 < ∞. By Strichartz estimates and Lemmas 6.2, 6.3, 6.4,

e -t2∆ u(t 2 ) -e -it1∆ u(t 1 ) H 1 x = t2 t1 e -its∆ |x| -b |u(s)| α u(s)ds H 1 x |x| -b |u| α u S (L 2 ,(t1,t2)) + ∇(|x| -b |u| α u) S (L 2 ,(t1,t2)) u α L m 1 t ((t1,t2),L q 1 x ) + u α L m 2 t ((t1,t2),L q 2 x ) u S((t1,t2)) ,
where (p i , q i ) ∈ S satisfy p i < 2α+2, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. By the same argument as in Proposition 6.5 and the global bound u S(R) < ∞, we see that

u α L m 1 t ((t1,t2),L q 1 x ) + u α L m 2 t ((t1,t2),L q 2 x )
u S((t1,t2)) → 0, as t 1 , t 2 → +∞. This show that e -it∆ u(t) is a Cauchy sequence in H 1 (R d ) as t → +∞. Therefore, there exists u + 0 ∈ H 1 (R d ) such that e -it∆ u(t) → u + 0 as t → +∞. Note that this convergence holds for d, b and α as in Proposition 6.5. We now show that this scattering state u + 0 belongs to Σ. To do so, we firstly observe that the operator x + 2it∇ can be written as

x + 2it∇ = e it∆ xe -it∆ .

(6.25) Indeed, since x+2it∇ commutes with i∂ t +∆, we see that if u is a solution to the linear Schrödinger equation, then so is (x + 2it∇)u. Thus, if we set u(t) = e it∆ ϕ, then (x + 2it∇)u(t) = e it∆ xϕ.

By setting ϕ = e -it∆ ψ, we see that (x + 2it∇)ψ = e it∆ xe -it∆ ψ, which proves (6.25). Using the Duhamel formula (6.24) and (6.25), we have

xe -it∆ u(t) = xu 0 -i t 0 e -is∆ (x + 2is∇)(|x| -b |u(s)| α u(s))ds.
Case 1: d ≥ 4. By Strichartz estimates, Lemma 6.2 and using the same argument as in Proposition 6.8, we see that

xe -t2∆ u(t 2 ) -xe -it1∆ u(t 1 ) L 2 x = t2 t1 e -its∆ (x + 2is∇)(|x| -b |u(s)| α u(s))ds L 2 x (x + 2is∇)(|x| -b |u| α u) S (L 2 ,(t1,t2)) 2|s|∇(|x| -b |v| α v) S (L 2 ,(t1,t2)) u α L m 1 t ((t1,t2),L q 1 x ) + u α L m 2 t ((t1,t2),L q 2 x ) 2|s|∇v S(L 2 ,(t1,t2)) u α L m 1 t ((t1,t2),L q 1 x ) + u α L m 2 t ((t1,t2),L q 2 x ) w S(L 2 ,(t1,t2)) ,
where (p i , q i ) ∈ S satisfy p i < 2α + 2, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. Arguing as in the proof of Proposition 6.8 and the global bound w S(L 2 ,R) < ∞, we see that

u α L m 1 t ((t1,t2),L q 1 x ) + u α L m 2 t ((t1,t2),L q 2 x ) w S(L 2 ,(t1,t2)) → 0, as t 1 , t 2 → +∞. Case 2: d = 2, 3. xe -t2∆ u(t 2 ) -xe -it1∆ u(t 1 ) L 2 x = t2 t1 e -its∆ (x + 2is∇)(|x| -b |u(s)| α u(s))ds L 2 x (x + 2is∇)(|x| -b |u| α u) S (L 2 ,(t1,t2)) 2|s|∇(|x| -b |v| α v) S (L 2 ,(t1,t2)) 2|s||x| -b ∇(|v| α v) S (L 2 ,(t1,t2)) + 2|s||x| -b-1 |v| α v S (L 2 ,(t1,t2)) =: A + B.
For term A, we use (6. w S(L 2 ,(t1,t2)) , (6.26) for some (p i , q i ) ∈ S satisfy p i < 2α + 2, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. Similarly, by Lemma 6.7,

B |s| 1 α u α L m 1 t ((t1,t2),L q 1 x ) + |s| 1 α u α L m 2 t ((t1,t2),L q 2 x )
u S(L 2 ,(t1,t2)) , (

for some (p i , q i ) ∈ S satisfy p i < α + 1, q i ∈ (2, 2 ) and m i = αpi pi-2 for i = 1, 2. By the same argument as in Case 2 of the proof of Proposition 6.8, we see that the right hand sides of (6.26) and (6.27) tend to 0 as t 1 , t 2 → +∞.

In both cases, we show that xe -it∆ u(t) is a Cauchy consequence in L 2 as t → +∞. We thus have xu + 0 ∈ L 2 and so u + 0 ∈ Σ. Moreover,

u + 0 (t) = u 0 -i ∞ t
e -is∆ |x| -b |u(s)| α u(s)ds.

By repeating the above estimates, we prove as well that e -it∆ u(t) -u + 0 Σ → 0, as t → +∞. The proof is complete. Remark 6.9. We end this section by giving some comments on the scattering in Σ for α ∈ (0, α ). In this case, by Theorem 1.3, we have the following decay of global solutions to the defocusing (INLS)

u(t) L q x |t| -d(2b+dα)

4

( 1 2 -1 q ) , (6.28) for q as in (1.13). Let us consider the easiest case d ≥ 4. In order to obtain the global H 1 -Strichartz bound on u and the global L 2 -Strichartz bound on w (see Proposition 6.5 and Proposition 6.8), we need u α L m t ((T,t),L q x ) to be small as T > 0 large enough, where (p, q) ∈ S and m = αp p-2 . This norm can be written as To make the right hand side of (6.29) small, we need α(2b+dα) Let us choose q as in the proof of Lemma 6.2, i.e.

q = d(α + 2) d -b + a , a ∈ {±1},
for some > 0 small enough. We see that (6.30) is equivalent to > 0. Hence f (α) = 0 has a solution in (0, α ). Thus, the inequality f (α) > 0 holds true for a sub interval of (0, α ). By the same argument as for the case α ∈ [α , α ), we can obtain a similar scattering result in Σ for a certain range of α ∈ (0, α ). Then w ∈ L p loc (R, L q (R d )) for any Schrödinger admissible pair (p, q). Proof. We follow the argument of Tao-Visan-Zhang [START_REF] Tao | The nonlinear Schrödinger equation with combined power-type nonlinearities[END_REF]. For simplifying the notation, we denote H(t) = x + 2it∇. We will show that Hu S(L 2 ,I) < ∞ for any finite time interval I of R. By the time reversal symmetry, we may assume I = [0, T ]. We split I into a finite number of subintervals I j = [t j , t j+1 ] such that |I j | < for some small constant > 0 to be chosen later.

Case 1: d ≥ 4, b ∈ (0, 2) or d = 3, b ∈ (0, 1) and α ∈ (0, α ). By (6.25), we see that on each interval I j , H(t)u(t) = e i(t-tj )∆ H(t j )u(t j ) -i x + θ1 + θ2 u α S(Ij ) Hu S(L 2 ,Ij ) + 1+θ1 + 1+θ2 u α+1 S(Ij ) . Since u S(R) < ∞, by choosing > 0 small enough depending on T, u S(R) , we get Hu S(L 2 ,Ij ) ≤ C H(t j )u(t j ) L 2

x + C, for some constant C > 0 independent of T . By induction, we get for each j, Hu S(L 2 ,Ij ) ≤ C xu 0 L 2

x + C. Summing over all subintervals I j , we complete the proof.

1 .

 1 IntroductionConsider the inhomogeneous nonlinear Schrödinger equation, namelyi∂ t u + ∆u + µ|x| -b |u| α u = 0, u(0) = u 0 , (INLS) where u : R × R d → C, u 0 : R d → C, µ = ±1 and α, b > 0. The terms µ = 1 and µ = -1 correspond to the focusing and defocusing cases respectively. The case b = 0 is the well-known nonlinear Schrödinger equation which has been studied extensively over the last three decades. The inhomogeneous nonlinear Schrödinger equation arises naturally in nonlinear optics for the propagation of laser beams, and it is of a form i∂ t u + ∆u + K(x)|u| α u = 0. (1.1)
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  Appendix A. Local L 2 -Strichartz bound of weighted solutions Lemma A.1. Let d, b and α be as in Theorem 1.2. Let u 0 ∈ Σ and u be the corresponding global solutions to the defocusing (INLS). Set w(t) = (x + 2it∇)u(t).

  t tj e i(t-s)∆ H(s)(|x| -b |u(s)| α u(s))ds. Let v be as in (4.8). By Strichartz estimates and (3.2) and that |v(s)| = |u(s)|, 2|s||∇v(s)| = |H(s)u(s)|, we have Hu S(L

  14), (6.20) and the fact |v| = |u|, 2|s||∇v| = |w| to have
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  2 ,Ij ) H(t j )u(t j ) L 2x + H(s)(|x| -b |u| α u) S (L 2 ,Ij ) H(t j )u(t j ) L 2 x + 2|s|∇(|x| -b |v| α v) S (L 2 ,Ij ) H(t j )u(t j ) L 2 x + |I j | θ1 + |I j | θ2 ∇u α S(L 2 ,Ij ) 2|s|∇v S(L 2 ,Ij ) H(t j )u(t j ) L 2 x + θ1 + θ2 u α S(Ij ) Hu S(L 2 ,Ij ) . Since u S(R) < ∞, by choosing > 0 small enough depending on T, u S(R) , we get Hu S(L 2 ,Ij ) H(t j )u(t j ) L 2x . By induction, we have for each j,Hu S(L 2 ,Ij ) H(0)u(0) L 2 x = xu 0 L 2x . Summing these estimates over all subintervals I j , we obtainHu S(L 2 ,I) < ∞.Case 2: d = 3, b ∈ 1, 3 2 and α ∈ 0, 6-4b 2b-1 or d = 2, b ∈ (0, 1) and α ∈ (0, α ). By Strichartz estimates, (3.10), (3.19) and keeping in mind that |v| = |u|, 2|s||∇v| = |Hu|, we boundHu S(L 2 ,Ij ) H(t j )u(t j ) L 2 x + H(s)(|x| -b |u| α u) S (L 2 ,Ij ) H(t j )u(t j ) L 2 x + 2|s|∇(|x| -b |v| α v) S (L 2 ,Ij ) H(t j )u(t j ) L 2 x + |I j | θ1 + |I j | θ2 ∇ u α S(L 2 ,Ij ) 2|s|∇v S(L 2 ,Ij ) + |I j | 1+θ1 + |I j | 1+θ2 ∇ u α S(L 2 ,Ij ) u S(L 2 ,Ij ) H(t j )u(t j ) L 2

The local well-posedness in H 1 (R d ) of Genoud-Stuart is still valid for the defocusing case.
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