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ON ECALLE-HAKIM’S THEOREMS IN HOLOMORPHIC DYNAMICS

MARCO ARIZZI AND JASMIN RAISSY*

ABSTRACT. In this survey we provide detailed proofs for the results by Hakim regarding the dy-
namics of germs of biholomorphisms tangent to the identity of order £ + 1 > 2 and fixing the

origin.
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1. INTRODUCTION

One of the main questions in the study of local discrete holomorphic dynamics, i.e., in the study
of the iterates of a germ of a holomorphic map of CP at a fixed point, which can be assumed to
be the origin, is when it is possible to holomorphically conjugate it to a “simple” form, possibly
its linear term. It turns out (see [Ab3], [Ab4], [Br], [CC], [IY], [Yo] and Chapter 1 of [Ra] for
general surveys on this topic) that the answer to this question strongly depends on the arithmetical
properties of the eigenvalues of the linear term of the germ.

It is not that useful to search for a holomorphic conjugacy in a full neighborhood of the origin in
the so-called tangent to the identity case, that is, when the linear part of the germ coincides with the
identity, but the germ is not the identity. Nevertheless, it is possible to study the dynamics of such

*Supported in part by FSE, Regione Lombardia.
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germs, which is indeed very interesting and rich, using the conjugacy approach in smaller domains
having the origin on their boundaries. The one-dimensional case, was first studied by Leau [Le] and
Fatou [Fa] who provided a complete description of the dynamics in a pointed neighbourhood of the
origin. More precisely, in dimension 1, a tangent to the identity germ can be written as

(1.1) f(2) =z + azFt 4 O(2F2),

where the number k£ + 1 > 2 is usually called the order of f. We define the attracting directions
{vi,...,u} for f as the k-th roots of —%, and these are precisely the directions v such that the
term av**! points in the direction opposite to v. An attracting petal P for f is a simply-connected
domain such that 0 € 9P, f(P) C P and lim,, o f"(z) = 0 for all z € P, where f™ denotes
the n-th iterate of f. The attracting directions for f~! are called repelling directions for f and
the attracting petals for f=1 are repelling petals for h. Then the Leau-Fatou flower theorem is

the following result (see, e.g., [Ab4], [Br], [Mi]). We write a ~ b whenever there exist constants
0 < ¢ < C such that ca < b < CCa.

Theorem 1.1 (Leau-Fatou, [Le, Fa]). Let f be as in (1.1). Then for each attracting direction v of
h there exists an attracting petal P for f (said centered at v) such that for each z € P the following
hold:

(1) f™(2) #0 for all n and lim,,_, % =,
2) If*)F = 5

Moreover, the union of all k attracting petals and k repelling petals for f forms a punctured open
neighborhood of 0.

By the property (1), attracting [resp. repelling] petals centered at different attracting [resp.
repelling] directions must be disjoint.

For dimension p > 2 the situation is more complicated and a general complete description of the
dynamics in a full neighborhood of the origin is still unknown (see [AT] for some interesting partial
results). Analogously to the one-dimensional case, we can write our germ as sum of homogeneous
polynomials

F(2) = 2+ Prepa(2) + O(||2]*2),
where k 4+ 1 > 2 is the order of F.

Very roughly, Ecalle using his resurgence theory [Ec], and Hakim with classical tools [Ha] proved
that generically, given a tangent to the identity germ of order k + 1, it is possible to find one-
dimensional “petals”, called parabolic curves, that is one-dimensional F-invariant analytic discs
having the origin on the boundary and where the dynamics is of parabolic type, i.e., the orbits
converge to the origin tangentially to a particular direction, called characteristic (see Definition 4.1).
Abate, in [Ab2], then proved that in dimension 2 such parabolic curves always exist. Hakim also
gave sufficient conditions, that here we call attracting (see Definition 4.8) for the existence of basins
of attraction along non-degenerate characteristic directions (see Definition 4.1) modeled on such
parabolic curves, proving the following result:

Theorem 1.2 (Hakim, [Ha]). Let F' be a tangent to the identity germ fixing the origin of order
k41 > 2, and let [v] be a non-degenerate characteristic direction. If [v] is attracting, then there
exist k parabolic invariant domains, where each point is attracted by the origin along a trajectory
tangential to [v].
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Hakim’s techniques have been largely used in the study of the existence of parabolic curves (see
[Ab2], [BM], [Mo], [R1]), basins of attraction and Fatou-Bieberbach domains, i.e., proper open
subset of CP biholomorphic to CP, (see [BRZ], [Ri], [R2], [V1]).

The aim of this survey is to make available important results and very useful techniques, that
were included, up to now, only in [Ha2], a preprint which is not easily retrievable, and where the
case k > 1 was stated with no detailed proofs.

We shall provide, from Section 3 up to Section 7, the reformulations for any order k+1 > 2, with
detailed proofs, of the results published by Hakim in [Ha] (Hakim gave detailed proofs of her results
for k = 1 only), and, in the last three sections, again reformulating definitions, lemmas, propositions
and theorems for any order k 4+ 1 > 2, we shall provide detailed proofs for the unpublished results,
including her construction of Fatou-Bieberbach domains, obtained by Hakim in [Ha2].

Acknowledgments. We would like to thank the anonymous referee for useful comments and remarks
which improved the presentation of the paper.

2. NOTATION

In the following we shall work in CP, p > 2 with the usual Euclidean norm

1
p 2
1]l = (Z Izil2>
1=1

We shall denote by D, ; the following subset of C
Dr’k:{zeCsz—ﬂ<r},

which has exactly & connected components, that will be denoted by HT R ,Hf o
Let F': CP — CP be a holomorphic map. We shall denote with F” (zo) the Jacobian matrix of F'

in zp. If, moreover, we write CP = C* x C*, then 2 B L and 8F will be the Jacobian matrices of F(-,y)
and F(x,-).
Given f,g1,...,gs: C™ — C¥, we shall write

f:O(glv"'agS)a
if there exist C4,...,Cs > 0 so that
1f ()]l < Cillgi(w)]| + - - - + Csllgs(w) I3

and moreover, with f = o(g) we mean

1/ ()l
lg(w)

Similarly, given a sequence w,, € CP, we shall write

—0asw— 0.

w—O<1><:>3C>O:\wn|§O;
n n

1
w:0< ><:>—>0asn—>oo

1/
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Given {z,} a sequence in a metric space(M,d), by x,Z we mean that, for n sufficiently large,
d(xp,x) = 0.

Finally, we shall denote with Diff(CP,0) the space of germs of biholomorphisms of CP fixing the
origin.

3. PRELIMINARIES

One of the main tools in the study of the dynamics for tangent to the identity germs is the
blow-up of the origin. In our case, it will suffice one blow-up to simplify our germ.

Definition 3.1. Let F' € Diff(CP,O) be tangent to the identity. The order vo(F) of F is the
minimum v > 2 so that P, # 0, where we consider the expansion of as sum of homogeneous

polynomials
F(Z) = Zpk(z)v
k>1
where P, is homogeneous of degree k (P1(z) = 2z). We say that F'is non-degenerate if P, (py(z) =0
if and only if z = 0.

Let C? C CP x CPP~! be defined by
CP{(v,[l]) € C» x CP*~' : v € [I]}.
Using coordinates (z1,...,2,) € CP and [S; : - -+ : Sp] € CPP~L, we obtain that C is determined by
the relations
2nSk = 2kSh
for h,k € {1,...,p}. It is well-known that Crisa complex manifold of the same dimension as CP.
Gi\fien o:CP — CP Ehe projection, the exceptional divisor E := o=1(0) is a complex submanifold
of CP and U|@,\ p: CP\ E — CP\ {0} is a biholomorphism. The datum (CP,o) is usually called
blow-up of CP at the origin.
Note that an atlas of C? is given by {(V}, ¢;j)}1<j<p, Where
Vi={(2,[8) € C"| 8; # 0},
and @;: V; — CP is given by
w21, 2p, (St e 0 Sp]) = (S1,..0, 25,0 ..,5)
since the points in {S; = 1} satisfy z; = 2;Sy for k € {1,...,p} \ {j}. Moreover we have
(pj_l(zl,...,zp) = (2125, 1 2j, .- 22, (21t 1 Lt ) € V.
The projection o: CP — CP is given by o(z,[S]) = z, and in the charts (Vi, ;) it is given by
oo gpj_l(zl, conZp) = (124,00, 24y e 2pZ).
Proposition 3.2. Let F' € Diff(CP,0) be tangent to the identity, and let (@p,a) be the blow-up of
CP at the origin. Then there exists a unique lift F' € Diff(CP, E) so that
Foo=o0oF.
Moreover, F acts as the identity on the points of the exceptional divisor , i.e., F(0,[S]) = (0,[S]).



ON ECALLE-HAKIM’S THEOREMS IN HOLOMORPHIC DYNAMICS 5

We omit the proof of the previous result, which can be found in [Abl]. It is also possible to
prove that there exists a unique lift for any endomorphism G of (CP,0) so that G(z) = > <}, Pr(2),
where h is the minimum integer such that P, # 0 and so that Pj,(z) = 0 if and only if z = 0, and
in such a case the action on the exceptional divisor is G(0, [S]) = (0, [P4(S)]).

4. CHARACTERISTIC DIRECTIONS

We shall use the following reformulation of Definition 2.1 and Definition 2.2 of [Hal for the case
E+12>2.

Definition 4.1. Let F' € Diff(CP,0) be a tangent to the identity germ of order k4 1, and let Py
be the homogeneous polynomial of degree k + 1 in the expansion of F' as sum of homogeneous
polynomials (that is, the first non-linear term of the series). We shall say that v € CP \ {0} is a
characteristic direction if Py41(v) = Av for some A € C. Moreover, if Py11(v) # 0, we shall say that
the characteristic direction is non-degenerate, otherwise, we shall call it degenerate.

Since characteristic direction are well-defined only as elements in CPP~!, we shall use the notation
[v] € CPP~L,

Definition 4.2. Let F' € Diff(CP,0) be a tangent to the identity germ. A characteristic trajectory
for F' is an orbit {X,,} := {F™(X)} of a point X in the domain of F', such that {X,} converges to
the origin tangentially to a complex direction [v] € CPP~!, that is

The concepts of characteristic direction and characteristic trajectory are indeed linked as next
result shows. We shall use coordinates, following Hakim [Hal, z = (z,y) € C x CP~! and (xp, yn) :=
(f(x,y), fi(z,y)) € C x CP~L for the n-tuple iterate of . We have the following generalization of
Proposition 2.3 of [Ha] for the case k +1 > 2.

Proposition 4.3. Let F' € Diff(CP,0) be a tangent to the identity germ, and let {X,} be a charac-
teristic trajectory tangent to [v] at the origin. Then v is a characteristic direction. Moreover, if [v] is
non-degenerate, choosing coordinates so that [v] = [1 : wp), writing Pxi1(2) = (prs1(2), qrs1(2)) €
C x CP~L, we have
(4.1) xk’v—; asn — oo

' " nkpria(1,u)’ ’

where X, = (Tn, Yn).-
Proof. If Pyy1([v]) = 0, then [v] is a degenerate characteristic direction and there is nothing to

prove. Hence we may assume Py 1([v]) # 0, and, up to reordering the coordinates, we may assume
that [v] = [1 : up] and F is of the form

1 =T+ pr1(x,y) + prt2(z,y) + -,
(4.2)
Y1 =Y+ @1 (2, y) + Gryo(T,y) + - -,
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where z1, x, pj(z,y) € C and y1, y, ¢;(z,y) € CP~1. Since {X,} is a characteristic trajectory
tangent to [v], we have
. Yn
lim =— = uyg.
n—oo :L'n

Now we blow-up the origin and we consider a neighbourhood of [v]. If the blow-up is y = uz, with
u € CP~1, then the first coordinate of our map becomes

(4.3) w1 = 2(1+ prer1 (L, u)a” + pego(Lu)a ™ + -0,
whereas the other coordinates become
(4.4) up = L =yt r(u)z* + 0@k,

X1

where

r(u) == qrr1 (1, u) — prega (1, w)u.
As a consequence, the non-degenerate characteristic directions of F' of the form [1 : u| coincide with
the ones so that u is a zero of the polynomial map r(u):

pk-l—l(la u) =A
— r(u) = 1,u) — 1, u)u =0.
{ (1 u) = Au (u) = grra (L w) = prya (1, u)
It remains to prove that if u, = 2= ™ converges to up, then r(ugp) = 0. Since wu,, — ug, the series

[e.9]

(4.5) Z (Un+1 — un)

n=0

is convergent. Thanks to (4.4), assuming r(u,) # 0, we obtain
Up i1 — Up = T(Up)zE + O (mfﬂ'l) ~ r(ug)xk

We can now prove (4.1). In fact from

1 1
= (1 —pk+1(1,u)azk + O(xkﬂ)) ,

r1
we deduce
L (L + 0@
&k 7 ’
and hence
n—1
nalcn = % fbjzo Pi+1(1uz) + O (x5))

Setting a; := pr11(1,u;j) + O(x), since aj = pr1(1,ug), the average %Z?;ol a; converges to the
same limit. It follows that, as n — oo, ﬁ converges to —kpg4+1(1,uo) and
hy oL
nkpi+1(1, uo)
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If r(up) # 0, then we could find C' # 0 such that

Un4+1 — Un = E T(Uo),

and the series > 7 (un4+1 — upn) would not converge, contradicting (4.5); hence r(ug) = 0, and this
concludes the proof. O

Unless specified, thanks to the previous results, without loss of generality, we shall assume that
any given F' € Diff(CP,0) tangent to the identity germ of order k£ + 1 > 2, with a non-degenerate
characteristic direction [v] is of the form

{ r1 = (1 + pry1(1,u)z® + O(zF+1)),

4.6
(4.6) w1 =t (G (L,11) — pro (L wu) ek + O@+1),

Lemma 4.4. Let F' € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2, of the form
(4.6), with a non-degenerate characteristic direction [v] = [1 : up]. Then there exists a polynomial
change of coordinates holomorphically conjugating F to a germ with first component of the form

1
T = — %l,k-ﬁ—l +0 (xk—i—lHuH’ka—l—l) )

Proof. We shall first prove that it is possible to polynomially conjugate F' to a germ whose first
coordinate has no terms in z" for h = k +2,...,2k. Thanks to (4.3), expanding pj;1(1,u) in ug,
we obtain

21 = fla,u) = 2 + prga (L, ug)z" L + O (HukaH, W?) .

Now we use the same argument one can find in [Be, Theorem 6.5.7, p.122], conjugating f to
polynomials fp, for 1 < h < k, of the form

Fala,u) = & + prot (1, u0)at L 4 bpa® i+l £ 0 (Hu|’$k+1’xk+h+2) :
that is, changing polynomially the first coordinate x and leaving the others invariant, up to get

fe(w,u) = 2+ prya(1,u0)a™ ' + O <|]uHmk+17x2k+1> '

Let us consider g(z) = = + Ba"*!, with g := (k,_h)pf:—il(l%), and set ® = (g,idp—1): (z,u) —

(g(z),u). Then, conjugating Fj, = (fr, Vp) via ®, we have Fj, 11 0 ® = ® o Fj, which is equivalent to

f (g(:c),u) :g(f (x7u))7
(47) { o (9(x), ) = Wno,u).

Since ®(0) = 0 and the Taylor expansion of ® up to order k + 1 only depends on d®(, we must
have

Fra(mw) = 2+ 300 50 Ama™ + O ([Juf]2*+),

\I’h+1<x, 'LL) =u-+ T(U)mk -+ O (wk+1) )

and in particular these changes of coordinates do not interfere on W in the order that we are
considering.
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Let us consider the terms up to order k + h 4 2 in the first equation of (4.7). We obtain

g(fn(x, 1) = 2 + pray1 (1, ug)z" Tt 4 bzttt

i 5(xh+1 +(h+ 1)$k+h+1) s) (‘|u’xk+1’$k+h+2> ’

and
Frr1(g(x),u) = x4 Bz Ayttt 4

+Ak+h+1$k+h+1 + Ay Bk + 1)xk+h+1 L0 (xk+h+2’ ||uka+1>‘
Hence the coefficients A,, satisfy

Ak,‘-i—l = pk‘-i-l(]-a u0)7 Ak+2 = Oa ey Ak+h = 07
by + (h+ 1)pry1(1,uo)B = Bk + 1) App1 + Apsnss

yielding Ax1p11 = 0. In particular there exists by,y1 such that
Fr1 (2,0) = 2 + Py (1, u0)2* L 4 b2 1 0 (||u||xk+1’xk+h+3> ‘

Repeating inductively this procedure up to h = k — 1 we conjugate with a polynomial (and
hence holomorphic) change of coordinates our original F to a germ with no terms in 2" for h =
k+2,...,2k, ie.,

(4.8) T = f(x7u) = +pk+1(1,U0)l‘k+1 +0 (Hunk—‘rl’ka—‘rl) )

Finally, using the change of coordinates acting as = +— X = {/—pry1(1,up)kz on the first
coordinate, and as the identity on the other coordinates, the germ (4.8) is transformed into

1
Xl - X — EX]C-‘FI + 9] <||U”Xk+1,X2k+1> ,
in the first component, whereas the other components, become

Xk

—U—r(U)—
Ui=U-r >/€Pk+1(17uo)

+0 ( Xk—i—l).
O
Up to now, we simply acted on the first component of F', mainly focusing on the characteristic

direction [v]. We shall now introduce a class of (p — 1) x (p — 1) complex matrices which takes care
of the remaining p — 1 components of F. We consider the Taylor expansion of r in ug, and we have

k
x / 2,k o k+1
U =u— ——— 1 (ug)(u — ug +O(u—u0 . x ),
oy )= )+ 0 (Ju =l
where r’(ug) = Jac(r)(ug). It is then possible to associate to the characteristic direction [v] = [1 : uy]

the matrix
1
A(w) = ——————7'(ug),
(@) k pr41(1, uo) (o)
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and hence, assuming without loss of generality ug = 0, after the previous reductions, the germ F
has the form
(4.9) xy =z — 22" 4+ O (||ul|la™ L, 22* 1) |

| uy = (I — 2 Ayu + O (|Jul2*, 24+1)
The next result gives us a more geometric interpretation of this matrix.

Lemma 4.5. Let F' € Diff(CP,0) be a tangent to the identity germ of order k +1 > 2 and let
[v] € CPP~! be a non-degenerate characteristic direction for F with associate matriz A(v). Then

the projection Pyy1 in CPP~1 of the homogeneous polynomial Pj1 of degree k+ 1 in the expansion
of F' as sum of homogeneous polynomials induces Py,1: CPP~! — CPP~1, defined by

Piir: [z] = [Prga (@),
which is well-defined in a neighbourhood of v. Moreover, [v] is a fixed point of §k+1 and A(v) is the
matrixz associated to the linear operator

1 ~ .
E (d(Pk+1)[U] — Id) .
Proof. The germ F' can be written as
F(z)=z+4+ Pyi1(2) + Peya(z) + -+,

where P is homogeneous of degree h. Let [v] be a non-degenerate characteristic direction for
F. The p-uple P41 of homogeneous polynomials of degree k + 1 induces a meromorphic map
Pyy1: CPP~1 — CPP~! given by

Py [z] = [Prga(@)],
and it is clear that the non-degenerate characteristic directions correspond to the fixed points of
such a map, and the degenerate characteristic directions correspond to the indeterminacy points.

We may assume without loss of generality, v = (1,ug). Then

U={[x1: 2y € CPP™! | 21 £ 0}
is an open neighourhood of [v] and the map ¢1: U — CP~! defined as
i) i
(211 xp] — <3617 ’9611)) = (u1,...,up—1),

is a chart of CPP~! around [v].
The differential d(PkH)[U]:T[U](C]P’p_l — T[U}(C]P’p_l is a linear map, and it is represented, in
uo = ¢1([v]), by the Jacobian matrix of the map
9= 910 Py 097 101(U) = 01(Pesa(U))
given by

Q1,1 (L, up1) Qot1,p—1(1, w1, - - ,Up1)>
pk—i—l(laula"'aup—l) ’ ’ pk+1(1au17"‘7up—1)
We can associate to [v] the linear endomorphism

1

Ap([]) = 7 (d(Pea)py — id) T CPP ™! — T CP Y,

u:(ul,...,up_l)b—>(
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and we can then prove that the matrix of Ap([v]) coincides with A(v). In fact, let g1,...,g,—1 be
the components of g. Since g(ug) = ug, we have

dg; 1 011, Opp1

5 \Uo) = : 17 ug) — 17 (] U/O, ]

Ou; Pry1(Luo) | Ouy ( ) Ouj ( Juos

fori,5 =1,...,p — 1. Therefore, it follows from 7;(u) = gx+1,i(1,u) — pr+1(1, w)u; that

or; Oq11,i Opk+1
Ouj (ug) = 8uj (1,up) — auj UO,iUO,i—pk—l—l(lauO)éi,ja

and hence

concluding the proof. a

Lemma 4.6. Let F' € Diff(CP,0) be a tangent to the identity germ and let ¢ € C[X]? be an
invertible formal transformation of CP. If F = I + thkﬂ Pnoand ¢ = Q1 + 222 Qj are the
expansion of F an ¢ as sums of homogeneous polynomials, then the expansion of F* = ¢!

is of the form I+ 3 <y Py, and:
(4.10) Py = Q1 o PioQr

Proof. Tt is obvious that the linear term of F* is the identity. It then suffices to consider the
equivalent condition F oy = ¢po F* and to compare homogeneous terms up to order &+ 1, writing

F* =Y s P 0

We are now able to prove , as in Proposition 2.4 of [Ha], that we can associate to [v] the class of
similarity of A(v) .

oFop

Proposition 4.7. Let F' € Diff(CP,0) be a tangent to the identity germ of order k +1 > 2 and
let [v] = [1 : ug] € CPP~! be a non-degenerate characteristic direction for F. Then the class of
similarity of A(v) is invariant under formal changes of the coordinates.

Proof. We may assume without loss of generality [v] = [1 : 0], and hence r(0) = 0. Up to a linear
change of the coordinate we have

uy = u + 2z (0)u + O <Hu||2xk, :ckﬂ) .

It suffices to consider linear changes of the coordinates. Indeed, writing F' in its expansion as sum
of homogeneous polynomials F = I + Py 1 + ZjZkJrQ P;, if F is conjugated by ¢ € Diff(CP,0) of
the form ¢ = L + 2]22 Q;, by Lemma 4.6 we have

Fr=¢ploFop=I+L"1 oP 0L+,

and hence the expansion of F* up to order k + 1 only depends on dyy.

The projection of Py ; on CPP~! is, with the notation of Lemma 4.5, ﬁljﬂ =L1'o ]Skﬂ oL,

where L is just the linear transformation of CPP~! induced by L and ﬁk-s—l is the projection of Py 1.
Note that [v*] is a characteristic direction for F* if and only if [Lv*] is a characteristic direction for
F. Since we have

d(ﬁ/:—i-l)[v*] = L_l o d(ﬁk—l—l)[v} ol,
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we obtain .
d(Ppi1)pe) = I} =L""o z (d(Pk-i-l)[v} - I) oL,

el e

yielding, by Lemma 4.5,
A*(v*) = LY A(v)L,
which is the statement. O

As a corollary, we obtain that the eigenvalues of A(v) are holomorphic (and formal) invariants
associated to [v], and so the following definition is well-posed.

Definition 4.8. Let F' € Diff(CP,0) be a tangent to the identity germ of order k£ + 1 > 2 and let
[v] € CPP~! be a non-degenerate characteristic direction for F. The class of similarity of the matrix
A(v) is called (with a slight abuse of notation) the matriz associated to [v] and it is denoted by
A(v). The eigenvalues of the matrix A(v) associated to [v] are called directors of v. The direction
[v] is called attracting if all the real parts of its directors are strictly positive.

5. CHANGES OF COORDINATES

We proved in the previous section that in studying germs F' € Diff (CP, 0) tangent to the identity
in a neighbourhood of a non-degenerate characteristic direction [v], we can reduce ourselves to the
case v = (1,0) and F of the form:

o r1 = flaw) = @ = Lo+ O(ullat 2%,

. ur = U(z,u) = (I — 2" Aju + O(|Jul*2*, [Jul]a**) + 2"+ 14y (2),

where A = A(v) is the (p — 1) x (p — 1) matrix associated to v, and %; is a holomorphic function.
Moreover, we may assume A to be in Jordan normal form.

In this section we shall perform changes of coordinates to find F-invariant holomorphic curves,
tangent to the direction u = 0, that is, we want to find a function » holomorphic in an open set U
having the origin on its boundary, and such that

w:U — CP7L,
u(0) =0, v/(0) =0,
u(f(z,u(x))) = ¥(z,u(z)).
If we have such a function, the F invariant curve will just be ¢(x) = (z, u(x)).

We now give precise definitions, that generalize Definition 1.2 of [Ha] and Definition 1.5 of [Ha2]
for the case k +1 > 2.

Definition 5.1. Let F' € Diff(CP,0) be a tangent to the identity germ. A subset M C CP is a
parabolic manifold of dimension d at the origin tangent to a direction V if:
(1) there exist a domain S in C?%, with 0 € 95, and an injective map 1: S — CP such that
P(S) = M and lim,_,0¢(z) = 0;
(2) for any sequence {Xp} C S so that X;, — 0, we have [¢(X},)] — [V];
(3) M is F-invariant and for each p € M the orbit of p under F' converges to 0.

A parabolic manifold of dimension 1 will we called parabolic curve.
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We shall search for a function 1) = (idc, u), defined on the k connected components of D, = {x €
C | |#¥ — 7| < r}, and taking values in CP, verifying
u(f(z, u(x))) = ¥(z,u(x)),
and, taking r sufficiently small, we shall obtain parabolic curves.

The idea is to first search for a formal transformation, and then to show its convergence in a
sectorial neighbourhood of the origin. The general obstruction to this kind of procedure is given by
the impossibility of proving directly the convergence of the formal series.

As we said, in this section we shall change coordinates to further simplify F', by means of changes
defined in domains of CP, with 0 on the boundary, and involving square roots and logarithms in
the first variable x.

Following Hakim [Ha|, we shall first deal with the 2-dimensional case (p = 2), generalizing
Propositions 3.1 and 3.5 of [Ha| for the case k + 1 > 2, to better understand the changes of
coordinates that we are going to use. The equations (5.1) for p = 2 are the following:

x1 = f(z,u) =2 — %Ik—H + O(uxk+1,x2k+1)
up = V(z,u) = (1 — 2Fa)u + 2" () + O(u?a?, ugk ),

where a € C is the director, and we shall need to consider separately the case ka € N and the case
ka ¢ N.

5.1. Case p =2 and ka ¢ N*.

Proposition 5.2. Let F' = (f, ¥) € Diff(C2,0) be of the form (5.2). If ka ¢ N, then there exists a
unique sequence {Pp}nen C Clz] of polynomials with deg(Pr) = h for each h € N, such that

{ P(0) =0,

(5.2)

>3 W (2, Pu(@) = Pa (F(r Pu(@) + 2541 (1),

_ Fknga(0)
= ka—(htl)"

h+1

Moreover Ppi1(x) = Pp(x) + cpp12"h, where cpqq

Proof. We shall argue by induction on h.
If h =1, we have to search for P; = c;x satifying (5.3). We have

U(z, Pi(2)) = 12 (1 ~azk + O(xk“)) + bl ()

and

Py (f(z,Pi(2))) =1 (x - %xkﬂ + O(wk+2)> .

Hence

W(z, Py(x)) — Py (f(z, Pi(2))) = erat*! (; ot g‘”) + O(*+?),

kklilfq) , which is possible since ka ¢ N*.

Let us now assume that we have a unique polynomial P, of degree h satisying (5.3). We search
for a polynomial P}, 1 of degree h 4+ 1 and such that

U (2, Pog1(2)) = Pagr (f (2, Paga () + 25200 o (2).

To delete the terms of order less than k+2, we must set ¢; =
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We can write Py as Pyi1(x) = pp(z) + cpp12™tL, where pj, is a polynomial of degree < h and
pr(0) = 0 . In particular,

Pyt (f (@, Pry1(2))) = pi (f (@, Prg1 (@) + e (f (2, P (2))"
Let z1 = f(z,u) = x — ;2" 4+ 2F (2, u), with o(z,u) € O (z,u). We have

pu (f(z, Phy1(z))) = pa (w - %mkﬂ + :vk“s&(:c,ph(fﬂ))) + Oz 2)

= pn (f(x,pn(2))) + O(«"F*2),

and
(f(x, Paga(2))" ! = 2P [1 - %xk + O(:Ek+1)]
— pht! [1 _ h_]:lxk] + Oz,
It thus follows
Prir (f (@, Phya(2)))
= pn (f(x, pp(x))) + chpr2™™ — cpyy h‘]: 1mh+k+l + O(ah ),

By the second equation of (5.2), u; = u[l — ax® + 2F¢(z,u)] + xF 1y (x), with ¢(x,u) € Oz, u),
and hence

¥ (@, Pua (@) = |pa(@) + cnpna* | - [1 - aak 4 ¥ (e, P ()| + 24 e (@)

(5.4)
= U (f(z,pa(2))) + chr12"™ — acppr " 4 O(2"TF2),
Therefore
W (2, Phy1(x)) — Phyr (f (2, Prya()))
O WU )+ (T - a) a0 0

To have Py satisying (5.3), we need
h+1
U (f(z,pn(x))) = pn (f(@.pn(2))) + cpaa" L ( _

k

that is, pp has to solve (5.3); and this implies, by our induction hypothesis, py, = Pj,. Substituting
Py, to pp, in (5.5) and expanding 111 in a neighbourhood of 0 we get

W (2, Prya(2)) = Pryr (f (2, Prya(2)))
h+1

= ghtht [¢h+1(0) + Cht1 (k: - 05)] +O(a ),

a) — O(xh+k+2)7

and so we have to set the leading coefficient of Pj,11 to be

o = ki (0)
h+1 kO[ — (h + 1)7
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which is possible since ka € N*, and then we are done. O

The following reformulation of Corollary 3.2 of [Ha] for the case k + 1 > 2, shows that we can
rewrite the equations of F' in a more useful way, with a suitable change of coordinates.

Corollary 5.3. Let F = (f,¥) € Diff(C2,0) be of the form (5.2), with kaw ¢ N. Then, for any

h € N, there exists a holomorphic change of coordinates conjugating F' to
(5:6) v = flz,u) = @ — 2P 4 O(uzh+t, 22641,
' uy = U(z,u) = (1 — az®)u + 2"y, (z) + O(u2ak, uak+h).

Proof. 1t is clear that the change of coordinates will involve only u. Let h € N, and let P,_1 be the
polynomial of degree h — 1 of Proposition 5.2 and consider the change of coordinates

X =uz,
U:U—Ph_l(.iv).

The first equation of (5.2) does not change, whereas the second one becomes
Ur = u1 — Ppq(21)
=V (X,U+ Pp1(X)) = Po1 (f(X,U + Pra (X)),
where we have
U(X,U+ Pp1(X)) =U[l — aX¥] + ¥(X, P,_1(X)) + OU* X", UXF.

Analogously to the previous proof, we can expand Pj,_1 (f(X,U + P,_1(X))) at the first order in
U obtaining

P (f(X,U + Pr1(X)))
= Py <X - %Xﬂl + XF o (X, P (X)) + O(UXkH))

= Pyt (f(X, Pra(X)) + O(UX™M).
Therefore we have
Uy = X' e, (X) + U (1 — Xk O(UX*, Xk“)) ,
and this concludes the proof. O

5.2. Case p = 2 and ka € N*. We now consider the case ka € N*, ka > 1. Proposition 3.3 of
[Ha] becomes the following.

Proposition 5.4. Let F = (f,¥) € Diff(C2,0) be of the form (5.2), with ka € N. Then there
exists a sequence { Pp(x,t)}hen of polynomials in two variables (x,t) such that

ap(x) = Py (x, 2 log x) ,
has degree < h in x (where consider as constant the terms in logx ). Moreover,

(5.7) U (,an(x) = ap (f (2, an(2))) = 2" g (@),
where Y41 satisfies
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(1) a"tkapy, 1 is holomorphic in x and x**logx;
(2) Ypy1(x) = Rpp1(logzx) + O (x), with Ryy1 a polynomial of degree ppi1 € N, ppy1 < h+ 1.

Proof. The proof is done by induction on h.

If h < ka, then the same argument of Proposition 5.2 holds, since the polynomials P, are still
well-defined. As a consequence, also the change of variables u — u — Pyo—1(x) is well-defined an
hence we can assume that the second component of F' is of the form

UL =u (1 — azk + O(uzt, :ckH)) + 2P R0 (2).

It is clear that, for h < ka, the functions ¢ are holomorphic in =z and thus they satisfy the
conditions (1) and (2) of the statement.
We can then assume that F' is of the form

(5.8) 1 = f(z,u) =2 — %x’”l + 2kl (2, u),
' up = U(z,u) = u (1 — az® + 2hpy(z, u)) + 2Py, (2),

where 1 and @9 are holomorphic functions or order at least 1 in x and wu.
If h = ka, it suffices to consider Ppo(x,t) = ct, where ¢ = —ktpq(0). In fact g (x) = cz¥*logx
verifies (5.7) if

U (2, Uka () — ko (f (2, Uga(z)))
= a(@) [1 - aa® + 256 (2, lpa())] + 25 hra (@)
— Ukq (:L' — %xkﬂ + 2F o (z, ﬂka(x))>
=0 (a:ko‘+k+1(log x)ph> ,
for some py, € N. Recall that

Of _ k+10p1 _ k+1
8u_x 8’U,_O(x )’

(5:9) %—‘5 =1—oazk+a* <cp2(x,u) + u%) =1-azkF + O (2!, ua®) .
We have
iha(@) |1 = az® + 2¥ oo (@, fna (@) | + 254t )
= cz*log x — acz®*Flog x 4+ 2 Flogx - o (:r, 2" log :z) + zFotRy . (2),
and

. 1 .
Uka (96‘ — %SUHI + $k+1901($,uka(l‘))>

k+1 ka k+1
= C( T - + O($ka+k+1 log , $2k+1)> log <$ _ T - + O(l,ka-i—k—l-l log , $2k+1)>

= ca¥log x — caz®Floga — %mk‘”k + O(x?Ftk (log x)2, 2F+2F Jog 2).
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Therefore
U (fL’, ﬁka(m)) - aka (f((l,‘, aka(x)))

_ $ka+k¢ka(0) + %:Ek:aJrk + IkaJrkJrlO (xkafl(log .58)2, log x) )
If ¢ = —kira(0), then

U (2, liga(2)) — pa (f(2, Gpa(@))) = 2 TFH i (@) = O(@F* T (log 2)?).
In particular, note that
Vrkat1(T) = Riay1(logz) + O(x),

where Rj,11 is a polynomial of degree 1 or 2, depending on whether kv = 1 or kaw > 1. Also in
this case 1pq+1 satisfies the conditions (1) and (2) of the statement. Indeed, since ka + k > 2, we
have that 2**** Ry, 1(logx) is holomorphic in 2**logz and .

We are left with the case h > ka. The inductive hypothesis ensures that (5.7) holds for h — 1
and there exists a polynomial Ry, (t) of degree < h so that ¢y (z) = Rp(logxz) + O(x). We search for
uy, of the form

(5.10) () = g1 (x) + 2"Qp(log x),

where @, is a polynomial, and we shall prove that 4y, of the form (5.10), satisfies (5.7) if and only
if @y, is the unique polynomial solution of the following differential equation

(h = ka)Qn(t) — Q(t) = kRp(1).

In fact we have

W, ()~ (o, in(2)) = O (2,81 (2) + 2" Qullog 2) ) — i1 (F(, (1))
— (f(a, (@) Qullog(f (. it ())))-

Thanks to the inductive hypothesis, in @, for h > ka, the term of lower degree is cz*® log x. We
have

(z, i1 (x) + 2"Qp(log x))
= (a:,ﬂh_l(:c) + 2"Qp,(log x))

= U(z,Up-1(x)) + g%(xaﬂh—l(x))thh(IOg z)

#3020 (@) (" Qullog )

n>2
= U(x,up_1(x)) + thh(log x) — akathh(log x)

10 <$h+k+ka(log x)deth+17 xh—i—k—&-l(log :C)deg Qh> .
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Analogously to the previous proof, using the first equation in (5.9), we have
f <m, i1 () + 2"Qp(log :c))
= f(z,tp-1( +Z ! 8"f f(@,ip-1(x))) (thh(logiﬂ))n

n'@"

= f(ma ah—l(ﬂf)) + 0 <$h+k+1(10g 1;)deth> .

Therefore

’[Lh_l(f(l‘, ah(x))) Up—1 (f(ZE, ah_l(l’)) + O <$h+k+l(10g :l:)deth>)
tp—1 (f (2, Up-1(7))) + O (xh+k+ko‘(log m)deth+1> .

Finally, expanding @5, in a neighbourhood of log z, and considering the terms of degree h + k we
obtain

(£ n(@))]" Qn (108 (f (@, n(2))) )

h
B [ $kz+1 $k+1

r- n O(xk—&-lﬂh(gc)’xk—ﬂ)] On (10g <;,; - + O (), $k+2)>)

h
_ [xh _ %thrk L0 (warhﬂh(x)’kath)]

k
% [Qh(loé’; z)— %QZ(IOg z)+ 0 (mkﬂh(x)(log )38 Qn=1 gk+l(1og 5)des th)}

N xh—&-kz , h btk
=2"Qp(logx) — TQh(lOg r) — 77 Qn(logx)

+0 ($h+k+ka(10g l,)deg Qh—&-l’ $h+k+1(10g li)deg Qh) )

The inductive hypothesis implies

\Il(xa ah*l('r)) - ah*l(f(wa ﬂ'h*l(x») - $k+hwh(x)a
with ¢y, (z) = Rp(logx) + o(z). Reordering the terms, we then obtain

U(z, up(x)) — p (f(z, an(2)))
(5.11) — otk [Ryfloga) + (1 — ) Qulloga) + 1@} g )|
+0 (.C[:h+k+ka(10g x)deth-H’ :L'h+k+1(10g $)deg Qh> ’

where Rp,(t) is the polynomial of degree p, < h. Hence 1wy, satisfies (5.7) if and only if @), is the
unique solution of

(5.12) (ka — h)Qn(t) — Qu(t) = kRn(t).

Therefore Ry is a polynomial so that deg Rp4+1 < h+ 1, and we can have deg Ry+1 = h+ 1 only
if kae = 1. Moreover, if ka = 1, deg Ry, 1 can be more that h + 1.
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We finally have to verify that ¢4 is holomorphic, and that 4y, is a polynomial in x and zF log x
of degree < h in z. Since @, solves the differential equation (5.12), it has to be a polynomial of
the same degree as Rj. Moreover, since 2" Rj,(logz) is a polynomial in = and z**logz, we have
pn < % We thus conclude that @y, is a polynomial in 2 and z**logx of degree < h. Thanks to
(5.11), %4y, (x) is holomorphic in z and z** log .

Summarizing, the sequence of polynomials is the following

Sy et o= O i h < ka,

Pp(x,t) = Ve (0)t if h = ka,
Py_q(x,t) + 2"Qp(logz)  if h > ka.
O

Similarly to the case ka ¢ N*, we deduce the following reformulation of Corollary 3.4 of [Ha] for
the case kK +1 > 2.

Corollary 5.5. Let F = (f,¥) € Diff(C2,0) be of the form (5.2), with kaw € N. Then for any
h € N so that h > max{k, ka} it is possible to choose local coordinates in which F has the form

21 = flz,u) = 2 — 28 + O(uah 1, 2%+ log z),
uy = VU(z,u) =u (1 — az® + O(uz®, 2" log z)) + 2" hyy,(2),
where f, U and "Rl (z) are holomorphic in z, 2**logx and u.

Proof. Consider h > max{k, ka}, and let %i,_1 be the polynomial map in x and 2**logz given by
the previous result. With the change of coordinates

X =z,
U:U—ah_l,

the first equation becomes
1
Xi=X - X140 (UX’““,X%“ log X) .

In particular the term 22**!logz appears only if ko = 1. The second equation becomes
Uy = uy — tp—1(21)

—U (1 - an) i) <U2Xk, UX 1 og a:) X Ry, (X,

Again, the term UXF ! logz appears only if ka = 1, otherwise we have UX* 1. O

Remark 5.6. Note that if ka € N*, due to the presence of the logarithms, all the changes of
coordinates used are not defined in a full neighbourhood of the origin, but in an open set having
the origin on its boundary.
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5.3. General case: p > 2. Now we deal with the general case of dimension p > 2. Also in this
case, the allowed changes of coordinates will depend on the arithmetic properties of the directors
associated to the characteristic direction.

Proposition 5.7. Let F = (f, V) € Diff(CP,0) be of the form (5.1), let [v] = [1 : 0] be a non-

degenerate characteristic direction, and let {a1,...,as} be the directors of [v] so that ka; € N.
Then, for all h € N, there exists @,: C — CP™! so that its components are polynomials in
z, zF logx, ..., xF% logx of degree < h in x, and the change of coordinates u > u — iy (x)

conjugates F' to
21 = f(2,U) = 2 — +2*1 + O(||U || 2"+, 22+ og 2),
Ui = U(z,U) = (I — Az®)U + O (||U|22*, |U||2"+ log x) + a* Py, (z),

with Yp(x) = Rp(logx) + O (z), where Ry(t) = (R,lz(t),...,Ri_l(t)) is a polynomial map with
deg Ri :pz <h, foreachi=1,...,p—1.

(5.13)

Proof. We may assume without loss of generality that A is in Jordan normal form. For each fixed
h, the j-th component of 4y, is determined by the components from p—1 to j+ 1, and each of them
is determined with the results proved in dimension 2.

It suffices to prove the statement when A is a unique Jordan block of dimension p — 1 with
eigenvalue o and with elements out of the diagonal equal to «. The equations of F' are

= fe) =2 = Fat 0 @ (o) o).
wy = ()= = ke — ahausp + O (ula®, fulla"t) + 2y )
11 = Wy (,0) = (1= ha)ups + O (2", Julle*+1) + 2105, (@),

for j =1,...,p— 2 and where 1,...,1,-1 are holomorphic bounded functions.
We proceed by induction on h. If h = 0, it suffices to consider @y = 0. In fact,

Uz, o) — doj (f(x, 1)) = 2" y(x), forj=1,...,p—1.

Let us then assume by inductive hypothesis, that there exist @1 such that

(5.14) \I/j(:L‘, ah_l) - ah—l,j (f(l‘, ﬂh—l)) = $k+h1/)h7j(x), for ] = 1, oD — 1.
As in the 2-dimensional case, we want to find polynomials Qp 1, ..., Qnp—1 so that

Upj(z) = p—1,(x) + Qn;(log x)xh, forj=1,...,p—1,

verify (5.14) for h. Proposition 5.4 gives us that @y p—1 is a solution if and only if Q1 verifies

(/{Oé - h)Qh,p—l(t) - (Qh,p—l(t)),(t) = th,p—l(t)'

Moreover, we have deg Ry -1 = pnp—1 < h. We proceed in the same way for the remaining y, ;’s,
except for the fact that the equations are a bit different from the ones used before. In particular

ov,;

—L(z,u)=1—0azF+0 (:ckﬂ, Huka) ,

8’&]'
ov;
(9uj_1

(z,u) = —azf + O (:1:’““, HuHazk) .
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Hence
Uj(x,dp) = Uj(z, iip_1 + 2" Qn(log z))
= U;(z,idp1) + (1 — ax¥)2"Qy j(log ) — ax*"Qy, ;11 (log x)
+0 (a4 log o) [y " (log ) )
where pj, = max deg @y, and
i (f(yin)) = oy (f(z,n)) + [f (2, d0)]" Qn (log(f(z, ).

We have
ﬂh—l (f(l‘,ﬂh)) = ﬂh—l (f(l‘,ﬂh_l)) +0 (:L,h—I—k-‘rl logm, HﬂhH:Uh—I—klogac) ’

and

)" Qn o) = [z (1 o +.0 (a2 Janlo*) )| h

1
X Qn (10»?;56 + log (1 - %ﬂfk +0 (»’U%a HﬂhHl‘k)))

= 2"Qy(log z) — zFH" <]1§Q§L(log z) + %Qh(log x))
% O (" (log )", [ }a**" (10g )" )
for some integer [; and . It follows
U(x, ap) — an,;i(f(x, 0n))
— ghth [T/Jh,j (z) + %Q’h’j(log x)+ %thj (log z) — aQp, j(logz) — aQp j+1(log x)]
+0 (s (log ), [[a ]|+ (l0g )12 )
Hence uy, solves the equations if and only if ()}, ; solves

[h — ka] Qnj(t) + Qp ;(t) = kaQp j11(t) — kRyj(t), forj=1,...,p—2

and moreover deg Ry, j < h.

g

Remark 5.8. It is clear that in the previous proposition that we have no restrictions on h, and

hence we can choose h = kh, obtaining F of the form
{ z1 = f(z,u) = 2 — $2*1 + O(|Jul|z* 1, 22 log 2)

wp = W(x,u) = (I = Az¥)u + O (Jula*, |[ulla* log ) + &k gy (),

where 9 (z) = Ryj(z) + O (x). Then, up to changing the degree of the polynomials in logx, for

any h € N we can write

up = V(z,u) = (I — Axk)u +0 (Hu||2:vk, ||u|]:15k'H 10g3:> + xk(h+1)wh(x).
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6. EXISTENCE OF PARABOLIC CURVES

From now on, without loss of generality, we shall assume that non-degenerate characteristic
direction is [1 : 0] € CPP~!. Moreover, thanks to Proposition 5.7 and to Remark 5.8, after blowing-
up the origin, it is possible to change coordinates, in a domain having the origin on its boundary,
such that F, in the coordinates (x,u) € C x CP~!, has the form

x1 = f(z,u) = 2 — t2*1 + O(|Jul|zF+L, 22 log z)
(6.1) k 2.k k+1 k(h+1)
up = U(z,u) = (I — Az")u+ O (|JullP®, ulla* ! (log )P") + = Ui (),

for an arbitrarily chosen h € N, and with p, € N\ {0} depending on h.

Remark 6.1. The existence of parabolic curves Sy, ..., Sk tangent to a given direction [v] at 0 is
equivalent to finding u defined and holomorphic on the k connected components II%, ... TI¥ of
D, := {z € C||2* — r| < r} and such that

u(f(z, u(z))) = ¥(z,u(z))
(6.2) lim u(z) = lim «/(z) = 0.
z—0 z—0
We are going to prove the existence of such curves finding a fixed point of a suitable operator
between Banach spaces. We shall then need to further simplify our equations via a change of coor-
dinates holomorphic that will be holomorphic on Re (z*) > 0. Let us consider the new coordinates
(z,w) € C x CP~!, where w € CP~! is defined, on Re (z*) > 0, by

u = zFw = exp (kAlog z)w.

Hence u; = x¥4w,. Starting from (6.1) we obtain
1
v — = _%xkﬂ L0 <”uka+17x2k+l logx>
and
(6.3) u— (I —a*Au=0 (HuHka, | w)|zF 1 log z, ¥ (log x)ph> :

Moreover, we have

¥ = exp (k:A <10gx + log (1 — %xk +0 (||u||xk, 22 logx))))
(6.4)
= k4 [(I - xkA) +0 (HUHIL‘k,ZEQk logx)} .

A kA kA,.—

Using kA = u, we have " wy = 2" x] kAx’wal = xkAxl_kAul. Set

(6.5) H(z,u) = 28w — wy) = u — a7,
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Thanks to (6.4), we have
H(z,u) =u— [(I —z*A)+0 (Huka,x%logxﬂ o uq
=— [(I —z*A)+0 <||u|\xk,m2k1°gx>} -
X {ul — [(I —zFA) 4+ 0 (HuHajk,x%logIﬂ u}

= O (Ilul®", lula* og 2, 250 log )™ )

(6.6)

Therefore we can write
w; =w —x FH(x, ).
Now we have all the ingredients to search for parabolic curves tangent to the direction [v]. For

the moment, we only impose that u is at least of order k + 1. We have the following generalization
of Lemma 4.2 of [Ha] .

Lemma 6.2. Let f be a holomorphic function defined as in the first equation of (6.1). For any u so
that uw(x) = **t14(x), for some bounded holomorphic map £: TI&. — CP~1, let {x,,} be the sequence
of the iterates of x via

I = fu('x) =f ('T’u(x)) :
Then, for v small enough, for any £ so that ||{|s < 1, and any n € N, if x € Il then x,, € 11X, and
moreover
2]

|z, | < 21/’“71.
(11 + na*|)x

Proof. Thanks to the hypothesis on u we can rewrite the first equation of (6.1), obtaining

1
T =T — %mkﬂ + k4 pg 2kl logz + O (x2k+2(log ;E)l, l’2k+2) )
By Proposition 5.7, we have the term baz?*t1log z only if 1 is an eigenvalue of kA. Moreover, we
have

1 [k
af =2 |1 — 2F + kaa® + kba®* log x + w2 <2>x2k +0 (x2k+1(log x)l>] .

Hence
1 1
il + 1+ (1 —ay)z® —bizflogz + Oz (log x)h),
1
where O(z*+1(log z)!) represents a function bounded by K |z|**!
u, because ||f||oo < 1. It is thus possible to write

1 1 2b
1

|10gm|l, with K not depending on

where the same considerations hold as before. We can now define the following change of variable
on RezF >0

11 )
P + alogx + b(log x)“.
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Therefore (6.7) becomes
1 1
— == 4+ 1+ 0" (logx)h),
Z1 z

where we used
1
logzy = logax — %ka + O(z** (log z)?)
and )
(logz1)* = (logz)* — %a:k log z + O(z** (log )?).

We then deduce

1 1 1
— = ——+1+0(@h_(logzn_1)) =+ = —+n+0(1).
Zn Zn—1 z

On the other hand

1 1 1
Pl + alog z, + blog? x, = o [1 +a$7’§10g$n +bx210g2$n} )

Z’Vl n n

and hence

1 1 k1] b log? i
;+n+0(1)zﬁ(1+mck) [1+ax ogx + bz"log”x + O(x )}

1 + nak

If r is small enough, f, is an attracting map from I in itself, and hence for any & > 0 there exists
n so that, for each n > n

‘axfl log z,, + bzFlog? 2, | < ¢,
and
az®logx + ba* log® x + O(z*) -
1 + nak ’
Therefore, for n > n and r small enough
k
E_ z k k. 2 1
|£L‘n| - ‘ 1+ nxk ’1 +azy, log T+ biL‘n log Tn 1 azk log z+bxk log? z+0(zk)
+ 1+nak
k
2|
=1+ nak|’
and hence we obtain the statement. O

Analogously to Corollary 4.3 in [Ha], for the case k + 1 > 2 we have the following very useful
inequality:.

Corollary 6.3. Let [ be a holomorphic function defined as in the first equation of (6.1). For any
u so that u(x) = x*T1(x), for some bounded holomorphic map £: TIL — CP~1 with ||{]|s < 1, let
{zn} be the sequence of the iterates of x via

Ty = fu(x) =f (x,u(a:)),
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and let v be sufficiently small. Then for any p > k (u € R) and for any q € N there exists a
constant C,, 4 such that, for any x € 1I}., we have

o0

—k
D | [log |7 < Cug |2~ [log |27
n=0

Proof. If z € TI%, then Re2* > 0, and hence
‘2

2
1+nxk ‘

2
:1+n$k+nik+n2‘xk‘ 21+‘nxk

Then the inequality of the previous lemma becomes

’xn’ < 21/k ‘$| - < 21/k |CC‘ )
1+ nalt /1 + nak

Recalling that, for z sufficiently small, |log x| < K |log |z||, for each u > k and each ¢ € N we have

o |, 2

¢/ (1 + [nak|*)m 21+ [nak)?

where Ky = K;2*/k. We then have that there exists K so that

|z ]" [log 2n|? < K || [log aa||* < Ky

q
I 91/k
Z |z, | |log 2, |7 < K/ \xL T log i dt
68) (1 + [tak]*)m /1 + [tak)?
00 1 91/k d
:K|m]“_k/ log ——1!
0 (1 + S2)u/2k /1 + g2
To conclude, it suffices the following estimate
21/k || |° <\ | Wirsf
— M < q -
1Og 2m = \log\xH jgo <]> IOg 21/k’
In fact, we have
) 1 91/k |$| 7
log —; ds
0 (1+82)M/2k} /1 +S2
q o) 2k 2 J
q V1+s 1
< |log |z||? ()/ log ds
H JZ:% j 0 21/k (1 4 sQ),u/Qk

that, together with (6.8) yields

o

—k
D | [log |7 < Cug |2 [log |27,
n=0
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where .
q [e'e) 2k 2 J
V1 1
Chg =K g (q) / log 1+ s ds,
’ — \J/ Jo 21/k (1 4 s2)u/2k
J_
concluding the proof. O

We have the following analogous of Lemma 4.4 of [Ha].

Lemma 6.4. Let f be a holomorphic function defined as in the first equation of (6.1). For any u so
that u(z) = 2**1(z), for some bounded holomorphic map £: T — CP~Y, let {x,} be the sequence
of the iterates of x via

1 = fulz) = f(z,u(x)).
Then, if r is sufficiently small, for any ¢ so that ||{|lcc < 1 and ||2l'||cc < 1, for each n € N and
each x € II¢

L, we have

dz,, k1

dx

|z |
k+1 -

]
Proof. Arguing as in the proof of Lemma 6.2, we have
1 1
(6.9) — +alogzy + b(log x1)? = — + 1+ alogz + b(log )2 + p(z,u),
xy x
where ¢ is holomorphic in z, u, 2% log x and

e(@,u) = O (s (log ), |lul}) = O (s (10gx)', "] )
By (6.9) we therefore have

1 1 n—1
ok + alog z, + b(log z,)? = Etnt alogx + b(log )% + z;) o(xp, u(zp)).
p:
Differentiating, we obtain
k —axk — 2bzk logx, ] dx, B k — az® — 2ba*log x
%lyLJrl dr oht+1
(610) n—1

We shall now proceed by induction on n. We first have to estimate the sum of the remainders
o(xp, u(zp)). From the hypotheses for £ and the form of ¢ we deduce the existence of a constant
K so that

d
oo < K (toglell + 1] + ') o]
For n =1 we have

dﬂ?l

dzy k — az® — 2bx* logx + w’”l%(p(x, u(z)) ' it Erkas
dx

k — axk — 202} log 1 xht+l

for a constant D € R, that can be chosen to be D = 2, if r is small enough.
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k+1
+ for any p < n. Then, by the previous

dxp
dx

Let us assume, by inductive hypothesis, < 2‘96”"

x|
corollary, we have

|
—

n

d dx
T% [p(zp, u(zp))] T;
p=0
e’} k+2 00 k+2
/ || |zp[” " [log ||
SRR+ 1) D R + D =
p=0 p=0
Cri20  Cry21 K
S2K(L+|le) + e l)—5r + e =
|z| |z| |z
Therefore, we obtain
dzy, - |k — axk — 2ba*log x| + K1 |z|? . |2, |FH |z, [P
do | — |k — axk — 202k log x| R P L
for r small enough, and we are done. O

6.1. The operator T. To find our desired holomorphic curve, we shall use, as announced, a certain
operator acting on the space of maps u of order k+1 > 2. We saw that, given a map u(-) = F (),
with £: 11X — CP~1, the iterates {x,,} of z¢ € II* defined via

Tjv1 = ful®g) = f(z5,u(zy))

are well-defined for r sufficiently small. With this choice for u, the operator

o0
Tu(z) = 2M Z MY H (2, u(y,))
n=0
where A is the matrix associated to the non-degenerate characteristic direction we are studying,

kA, —kA
-:Ul ul,

H(z,u) = 2" (w—w)=u—z
and {x,} is the sequence of the iterates of x under f,, is well-defined, since the series converges
normally. We shall now restrict the space of definition of T, to obtain a contracting operator. In
particular, we are going to search for positive constants r, Cy and C4, so that T is well-defined on
a closed subset of the Banach space of the maps of order £ + 1 > 2.

We have the following analogous of Definition 4.7 of [Ha].

Definition 6.5. Let k£ € N\ {0}. Let h,q € N be such that hk > 3 and h > 1, and let r > 0. For
any 1 = 1,...,k, let B,il’w be the space of maps u:IT: — CP~1, of the form u(-) = 2"~ (log z)t(-)
with ¢ holomorphic and bounded. The space B

space.

Definition 6.6. Let k € N\ {0}, and let h, g € N be such that hk > 3 and h > 1. Let 7, Cp and Cy
be positive real constants and let E5.(r, Co, C1) C By, o be the closed subset of By, . given by the
maps so that

(1) [lu(@)]| < Co """ log[«[|, for any = € IT;

(2) |/ @)]| < C | [log |z]|%, for any = € TT:.

i

h.q €ndowed with the norm |[ul| = [|¢[|~ is a Banach
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Let T be the operator defined as

o0
(6.11) Tu(z) = 2" " 2 M H (2, u(zn)),
n=0
where A is the matrix associated to the non-degenerate characteristic direction we are studying, as
in (6.5) we have
H(z,u) = 2" (w — wy) = u — 2" a7,
and {z,} is the sequence of the iterates of z under f,.
We shall devote the rest of the section to proving that the restriction of T to E%(r, Cp, C1) is
a continuous operator and a contraction. It will thus admit a unique fixed point u, and we shall
prove that the unique fixed point is a solution of the functional equation (6.2).
We shall need the following reformulation of Lemma 4.1 of [Ha] for the case k + 1 > 2.

Lemma 6.7. Let {a1,a0,...,a,-1} be the directors of A, and let A = max;j{Rea;}. If e > 0, then
for any x € TI%., with r small enough, we have

fokAH < |$|7k()\+s) )

Proof. We may assume without loss of generality that A is in Jordan normal form, that is A = D+ N
where

D = Diag(ay,az,...,ap_1), DN = ND, NP~! = 0.

kA _ ,—k(D+N) _

Since D and N commute, we have x~ 27*P exp (—kN log ), and so we have the

following estimate
™40 <l lllexp (~kN log2)|| < K |2] ™ log "™ < [a HA9),
for r small enough, and we are done. O

Remark 6.8. It follows from (6.10) that if u € B,il,w, then the operator H verifies
H(z,u(z)) =0 (:L‘k(h+1)(log 2)0H ZF ) (1og :L‘)ph) ,
mapping B}'L, g nto intself. We shall see that

(Tu)(z) = O (+""~ (1og 2)7),
for ¢ > pp.
We have the following generalization of Lemma 4.5 of [Ha| for the case k + 1 > 2.

Lemma 6.9. Let T be the operator defined in Definition 6.6. Let A = max;{Rea;}, where
ai,...,ap_1 are the directors of the non-degenerate characteristic direction [v], and let h be an
integer so that h > \+e. Let py, be as in (6.6). Then, for r sufficiently small, there exists a constant
Cy so that, for any u satisfying

(6.12) lu(@)]| < Co |z [log || ,

for each x € TI%., we have that Tu satisfies the same inequality in T1..
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Proof. By the definition, we have

n=0

Thanks to equation (6.6) we know that
H(z,u) =0 (Hu||2xk, |ul|zF+! log 2, zF( 1) (log :c)ph> .
Therefore there exist K1, Ko, K3 such that
1H G, w)| < Kalull? a” + Kolull o] log | + K 2" flog 2"

in a neighbourhood of 0. From the hypothesis [|u(z)|| < Co |z|*"~* [log |||P", it follows that for all
r € IIL

1 (2, w(@)|| < K |2V [log 2],
with K not depending on Cy provided that r is sufficiently small. Then we have
1H (20, u(@n)) | < K |20+ [log |2,]["
for € II%., and r small. By Lemma 6.7 we have
(xn) —kA
x

Applying all these inequalities to Tu(x), and using Corollary 6.3 (note that h > X\ + ¢), we obtain

< ‘wl‘_k(A+6).
Tl

—k(X

oo
T +e)
ITu@)l < &S [ 4D og a7 < K21 log a7
n=0

< K" || |log ||| ,
and we are done. O

For our estimates we shall need the following technical result, generalizing Lemma 4.6 of [Ha]
for the case k +1 > 2.

Lemma 6.10. Let T be the operator defined as in Definition 6.6. Let h, py, and Cy be as in Lemma
6.9. Then, for r sufficiently small, there exists a constant C1 such that for any u satisfying (6.12)
and

(6.13) I/ ()] < C1 " |log |||,
for each x € TI%, then (Tu)’ satisfies the same inequality in T1%.

Proof. By the definition of T we have

Tu(z) = 2" (@) H(zp, u(@n)).
n=0
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Then, differentiating, we obtain

d
%Tu(aﬂ)
_d pa OO—kA kAooa<kA )dud:nn
= (;xn H(zp,u(zy)) | +x nz:;)@u x, " H(xp, u(xy,)) P
S1 Sa
S dx
kA —kA n
+x 7;)(9%1(3:,1 H(wn,u(:cn)))%
S5
We then have to estimate Sq, S5, and S3. Since
dot” = kAz~12M4,
dx

we have

Sy = kAx 12k (Z :L',:kAH({L‘n,u(l‘n))) ,

n=0
and thus, using the same inequalities as in the previous proof, we obtain
k||A _ _
151l < B2 Gt o fog el = Dy a2 g ]

kd

where Dy = k|| A||Cy. For the second term, we have

o~ _paOH du dx,
SQ = .fL'kA ankA%(xn,u(l'n))%%
n=0 n

Since kh > 3 the hypotheses of Lemma 6.4 are satisfied, and hence
dxn k+1

dx

xr
< 2|4

X

Moreover, H(z,u) = O (||u|®z, |[ul|z*+! log x, zFD) (log z)Pr) implies that there exist constants
K, and K5 so that

3}
| | < Bl bt + K o o]
and, our hypothesis gives that there is Cg so that [|u(z)|| < Cp |z|*" ™! [log || |”*. Therefore
' OH

(et < KaColol ™ loglal " + Ko o loglel < C ol fog o]
for some constant C', not depending on Cy. If C'; is so that

ou
kh—2
[/ (2)|| < Ot =™ [log |||,
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then

Hau(x”’“(fc")) dzn,  dz )

dz,

OH dx,
- |t e 52|

<200, ‘x|7(k+1) ’xn’2k+kh |10g |xn”ph .

Analogously to the proof of the previous result, [|(£2)~F4| < ‘%"rk()‘ﬁ)

have

and, by Corollary 6.3, we

—k(A+e) k+1

€T
= Jznl

xT

o0
152/l <) " 20¢ MR og |, [P
n=0

Tn
X

< Dy [z[*" 2 |log |||,

with Dsy not depending on Cy and C}.
We are left with the third term

— 0G da
_ kA n
Sy = nEO 5 (T, u(zy)) T
where G (x,u) = 4 H(z,u), and hence

oG EA 14 _paOH
o M H el
5 T (r,u) +z 5
With the same computations as before, using

(z,u).

H(z,u) = O ([JulP ", [u]| "+ log 2, 2"+ (log 2)""
and |lu(z)|| < Co |z " |log |#||”*, we have that there exist constants K1, K5 and K3 so that
OH N g ilul® 12" + K. i K |z|FPD=1 ) Ph
oz || < Kullul® |27 + Kallull |o[* log z] + K || [log |z]

and thus there exists C, depending of Cy, so that

oG
197 2 ufa))|| < € a0 flog af P
x
Using again Corollary 6.3, we obtain
>° —k(Ate)+k+1
”S?)H < K4Z % ’xn’k(h-‘rl)—l \log\anth
n=0

< Dj |2|**7 [log |||,

with D3 independent of Cy. Summing up, we obtain
d _
Hd;cT“@) < ISl + [1Sa]l 4 11S51] < (D1 + Da + Da) &2 Jlog |7 .

and setting C1 = D1 + D9 4+ D3 we conclude the proof. O
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The previous two lemmas prove that T is an endomorphism of E%(r, Cy,C1). Now we have to
prove that T is a contraction. We shall need the following reformulation of Lemma 4.9 of [Ha] for
the case kK +1 > 2.

Lemma 6.11. Let u(-) = 2*"~1(log 2)Pr¢1(-) and v(-) = 2*"~(log x)Prly(+) be in EL(r,Cy,C1) and
let {zy,} and {x]} be the iterates of x via f, and f,. Then there exists a constant K so that

2], — ] < K |l [log o]I”* 12 — €1 o
for any n, and r small enough.
Proof. Let z and 2’ be in II¢. We estimate
fol@') = fulz) = £ 0(a") = (2, u(z)).
Thanks to (6.1), we can find constants a, b, c and m(z,u) so that
Fule!) = o = L+ (&) (0 + bloga!) + oa)+o(a!) + m(a,v),
{ fu(@) =z — 22" + 22 (a + blog z) + ca*Hlu(z) + m(z, u).

Therefore we have

k
Fula!) = fule) = (@' = 2) |14 3 3@y 4+ 0 ([ Jlog m”!)]
=0

+ (@) = u@)o (|2""*) |

| =

(6.14)

where z” = max{|2/|, |z|}. Lemma 6.2 implies ¥ ~ (2/,)¥ ~ L as n — oo, then we can replace

|2”|" with |z|®. Moreover, since '
(6.15) v(@') = v(z) + O (J:kh_Q(log :c)ph) (@ — ),
we obtain
v(2") —u(z) = v(@') —v(x) +v(z) — ulz)
= (' = )0 (Jal"* flog Ja] ) + O ([~ log |« ) 162 ~ 61|

Then, substituting in (6.14), we have

k
> (@)iah = 4 0 (ol log el o flog |x||)]

=0

T =

fo(@") = fu(z) = (2’ —2) [1 -

+ 0 (Ja™* log 2] ) [1£2 — 1]|.

We are left with estimating f,(z') — fu(x). For x and 2’ in IT®. and r small enough we have

1- ;gux’“ +0 (Jaf** log |:c||)‘ —1+0(ab) <1.

Moreover, there exists a constant K such that

[fo(@") = ful@)] < Jo’ — | + K |2 |log 2] & — £1]]oc.
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Iterating, we obtain

n—1

|f3(a') = fi@)] < Ja’ — x| + K i [log il | 162 = £ oo,
=0

for any n.
In particular, if z = 2/, we have

n—1
|2, — x| <K Jaa| " log [ P |62 — €100
=0
< K’ [2[*" [log [[[" || — £1]|oo,

where we used Corollary 6.3 to deduce the last inequality, and we put K/ = K Cr(h+1),pn- 0

We now have all the ingredients to prove, as in [Ha, Proposition 4.8], that T| Ei(1,Co,Ch) is a
contraction.

Proposition 6.12. Let T be the operator defined in Definition 6.6. Then for r small enough
T|EZF(T,CO,01) : EZF(T, Co, Cl) — E%(T, Co, Cl)
18 a contraction.

Proof. We have to prove that given u(-) = zFh=1(log x)Prly(-) and v(-) = 2*"1(logz)Prls(-) in
E%(r, Cy, C1), we have
[Tu = To|| < Cllu =]

with C < 1.
We have
D
Tua) - To(e) = o 3 (2, 4 H (@, u(wn)) - o H i, o))
n=0
hence

n’ n

Tu(z) — To(z) = 2F4 Z x kA [H (2, u(zy)) — H(z),,v(x;,))]
n=0

St

o0
+at Y et — a4 H g u(@))
n=0

Sa

For Sy, since H(z,u) = O (||ul/*a*, [ju||z**'logz, 2D (log z)Pn), for u(z) = 2= (log z)Prty (),
there exist a(x,u) and B(z,u) holomorphic in the variables z, u and x*(log z)P*, so that

H(z,u) = uz" ' (log z)a(z, u) + z*M ) (log 2)P B(z, u).
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Therefore, by the inequalities in the proof of Lemma 6.10, we obtain

OH

OH

< x| o=+ | Gl o) = ot

< K [lulen) = o) | lwal** Roglaall + |2n — ] a0 log 2]

Arguing as in the proof of Lemma 6.11, thanks to (6.15), there exist constants A’, B’ and K» such
that

() = u(an)l

< A/ ’x;b o xn} |xn|kh72

kh—1

log [ + B [zn | [log |z [ [1€2 = 1l

< K fon M2 [log ] [P {2 log [P + [z ] 11€2 = £1]]oc,
where the last inequality follows form the previous lemma. Then

IS1]l < K1)y

n=0

Ko [o D flog a1 [ log [l P+ [l | 162 — 1]l

Tn

PO llog [, | P2

—k(Xte) {

’xn — 33;1‘ |$n|k(

Moreover, setting

S = |n — 2| [2a|FPTI T log |2, | P2

+ Ko "D flog gl P |2/ 1og [z + [l 162 = €1]oc,
we have
S < K [an MM Jlog || [P [ [log |2][P [[62 — €1 /s
+ K o [*" D Jlog [ | P 2 [log [P [[€2 — 410
+ Ko [ MY [log [ | P (162 — 1o
and applying Corollary 6.3,
I1S1]l < C1 |2~ [log ] [*P* [|€2 — 1 ]loo + Ca [ Jlog ||+ 3 — £1]|oc
+ Cs [z |log || [P" 1 [|€2 — €100
< Ky [l log ][ 162 — 1 oo

We now consider S5. We can write

/
x;kA — xil_kA = x;kA (I — exp <—Alog x")) .

n
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Therefore

H (I —or ( - feblos ?))H(w;w(x;))

n

/
< C |kAlog 22| || H(x,, v(a))|

/ —_—
< O/’mn|x |:Un| |$n|k(h+1
n

< C"eMHD ™ |log |y | [P* [ [log ][ || €2 — 1] oc.

) [log |, |7

By Corollary 6.3 we have
1all < K 2> [log [2[[*P* ||z — £1]] o
Thus, for r small enough, there exists K such that
ITu(x) = To()|| < K [ [log ][ ||t = £1]oc.

From the definition of the norm in E%4(r, Cp,C1), we have then that for r small enough there is
¢ < 1 such that

ITu —Tol| < efju — o,
proving that T’E%(T,Co,cl) is a contraction. O

Corollary 6.13. Let T be the operator defined in Definition 6.6. Then there exists u:11. — CP~!
holomorphic and satisfying (6.2).

Proof. Thanks to the previous Proposition, T is a contraction, and hence it has a unique fixed
point u € EX(r, Cy, Ch). It suffices to prove that this u satisfies (6.2). The definition of H gives us
that f(z,u) " (2, u) = 2%y — 27* H(x,u), and hence

H(z,u(z)) = u(z) — 2" a7 ¥ (2, u(x)).
We therefore obtain
Tu(z) = D Z :C,_LkAH(J:n, u(xy))
n=0
= u(z) — a:kAxl_kA‘I/(a:, u(x)) + xkAxl_kA[u(ajl) — xlfoQ_kA\If(azl, u(z1))]
This implies that Tu = w if and only if
—xkAxl_kA[\I/(x, u(z)) —u(zr)] — xkAacQ_kA[\I/(xl, u(zy)) —u(z2)] + -+ =0,
that is
\Ij(xmu(xn)) = U(f(l‘n, u($n))) for any n > 0,
and this concludes the proof. O
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7. EXISTENCE OF ATTRACTING DOMAINS

In this section, we shall prove that given non-degenerate attracting characteristic direction [v]
it is possible to find not only a curve tangent to [v], but also a open connected set, containing the
origin on its boundary and so that each of its points is attracted by the origin tangentially to [v],
that is, the following generalization of Theorem 5.1 of [Ha] for the case k + 1 > 2.

Theorem 7.1. Let F € Diff(CP,0) be a tangent to the identity germ of order k +1 > 2, and
let [v] be a non-degenerate characteristic direction. If [v] is attracting, then there exist k parabolic
invariant domains, where each point is attracted by the origin along a trajectory tangential to [v].

Proof. Since [v] is a non-degenerate characteristic direction, we can find r,¢ > 0 so that we can
choose coordinates (x,y) € C x CP~! holomorphic in the sector

Sre={(z,y) eCxC ! [z e, |ly|| < clal},

where II% is one of the connected components of I, = {‘xk — 7" < r}, so that, after the blow-up
y = uzx, F is of the form

r1 = f(z,u) =2 — %xk“'l +0 (|]uka+1,x2k+1 logm) ,
uy = V(z,u) = (I — 2FA)u+ O (|Jul|z* log z, ||u|?zF) .
In particular, after the blow-up, [ju|] < c.
Without loss of generality, we may assume that A is in Jordan normal form. Let {a1,...,ap—1}
be the eigenvalues of A. Thanks to the hypthesis, we have
Rea; >0, j=1,...,p—1,

and hence there exists a constant A > 0 so that Rea; > X for all j = 1,...,p — 1. We can also
assume that the elements off the diagonal in the Jordan blocks are all equal €, with € < .

We shall now restrict our sectorial domain to obtain good estimates for x1 and u;. We define,
forj=1,...,p—1,

Aj:={zeC| ‘1 —aja;k‘ <1}
Consider the sector
Sypi={z € C|[Ima| < Rew, || < p}.

Since Rea;; > 0, there exist positive constants v and p so that, setting for each i = 1,...k,

wa, ={reclll |z* S, )}

we have
p—1
Si,C()A;ND, CII.
j=1
We want to check that, for any i = 1,...,k, the k sets
A:iy,p,c = {(z,u) € Cx crllze Si,p’ |lul| < c}

are invariant attractive domains.
Recalling that there is K so that

k k
lur — (I — a* A)ul| < K(|u] |2]** log 2| + [|ul]* |z*),
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for (x,u) € A , . we have
k
luall < (2 — 2* A)ul| + K Jull |2]" (|| og [«]| + [Jull),
and, provided that v, p and ¢ are small enough,
k
(7.1) ]l < Nfull I = Al < Jlull(1 = Az]") < Jlul],
where we used that
11— oF Al < max |1 — et | + fol e < 1= (A &)+ ela?].
J

Therefore ||u;|| < c.
To estimate 21, since we know that 21 = 2 — $2z**1 + O (|[uf|2*+1, 22* 1 log z), we have

11 N
(7.2) =R t1+0 (Ilull. 2" 10g 2) .

Therefore there is C', not depending on u, so that

1 1 ~ -
(7.3) e R Cllull + K |z|* [log ||| < Cc+ K |x|* [log |z]] .
1

We shall use this last inequality to prove that Aiyy p,c 18 an invariant domain. In particular, it suffices

to check
[u] < e

‘Imx’f‘ < yRez}

|25 < p.
We already estimated u; in (7.1). On the other hand, to prove that Sjy, pc 18 f-invariant it suffices
to prove that, for u small enough, (S! , .)* = {z € C | 1es ,}is ﬁ—invariant, which follows

from (7.3) using the same argument as in the proof of Leau-Fatou flower Theorem.

To finish, it remains to check that, given a point (z,u) € S,i% pco 1ts iterates converge to the

origin along the direction [1 : 0]. We shall first show that z¥ ~ L and [ju,| < C n%, for any fixed
0 < XA < max; Req;. It follows from (7.2) that

n—1

1 1 i
— = +tn+ ZO <||ul||,:1:Z log:ci) ,
TR T P
and hence
1 1 1= .
L 1 250 (Jul ot o)
nxk  nak T n; lusll, 27 log 2
where the sum is bounded. Therefore
—=0(1),
or =0
yielding
k

1
A
"o n
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Finally, take @ < A (where X is the positive constant so that max; Rea; > X). Then

k 1 e
xy = g [1 - %l’k +0 <z2k log x, ||u||xk)]

=gk [1 + px + 0 <$2k log x, ||u|\a:k)} ,
and hence
|2y | R < || T ‘1 + pxk 4+ 0 (Hu”ark,xzk loga;)’ < x| 7F (1 + A|z|7).
It thus follows that
o | a2 |5 < (1 = Ml ) Jae| ™5 (U4 A ]®) = [Jull 2]~ (1= 3 [2[**)
< Jlull a5
Therefore, there exists C so that

lan | | = < Jlull 2]~ < C,

implying
lunll < C lal™.
1 )
Then, |lu,|| = O <k)\> This shows that each (z,u) € A’ , . converges to the origin along the
n W
direction [1 : 0]. O

8. PARABOLIC MANIFOLDS

Let ® € Diff(CP,0) be a tangent to the identity germ of order k + 1 > 2, and let [V] = [1 : 0]
be a non-degenerate characteristic direction. We can divide the set of the directors of [V] into two
sets: the attracting directors, i.e., the set {A1,..., A} with ReX; > 0 for j = 1,...,a, and the
non-attracting directors, i.e., the set {u,...,pp} with Repp, < 0 for h = 1,...,b. Let d; be the
multiplicity of A\; for j = 1,...,a and let d := dy + - -- 4+ d,. We know that, after the blow-up, we
can assume that @ is of the form

f(z,u,v) =2 — %:z:kJrl + F(x,u,v),

g(.%', u, ’U) = (Id - xkA)u + G(JJ, u, U),

h($7 u, U) = (Il - ':UkB)U + H(:Ev U, U)a

where A is the d X d matrix in Jordan normal form associated to the attracting directors, B is the

[ x I matrix in Jordan normal form associated to the non-attracting directors (where [ := p—d—1),
and with F, G, H so that

z1
(8.1) (5%
U1

Plau,) = O (|, )}, 2%+ log z)
(82) Clar ) = O (|, )} log, [ () [2%)
H(xa U,U) =0 (H(U7U>ka+1 log z, ”(U,Q})HQI'k) :

Moreover F, G, H are holomorphic in an open set of the form

AW:{(x,u,v)e¢3xcdxcp—d—1 ‘ 2% —r| <, ||(u7v)||<p}»
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and therefore also in the set

Sy = {(@ 1) €Cx O | Imak] < yReak, lo] <5, U] < p} € A,

In the next result, the analogous of Proposition 2.2 of [Ha2], we shall see that it is possible to
further modify the last p — d — 1 components of ®.

Proposition 8.1. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 as in (8.1),
with [V] = [1 : 0] non-degenerate characteristic direction so that the matriz A(v) = Diag(A, B)
satisfies

ReX; > a >0, for any \; eigenvalue of A

Repu; <0, for any p; eigenvalue of B.
Then, for any choice of N,m > 2, it is possible to choose coordinates (x,u,v) in A, ,, with H
satisfying

H(z,u,0) = O (Jef* llul™ + |z jull)

Proof. Thanks to (8.2), it is possible to write H(z,u,v) in a more convenient form. Indeed, for any
N € N we have

(83) Hu0)= Y cpwa(loga)’ +0 (Jlull [z flog lal ')
k<s<N,tcE,

for some hy € N depending on N, where for any s we define E; as the (finite) set of integers ¢ so
that the series above contains the term x*(logz)!, and where ¢, ;(u) are holomorphic in |lul| < p
and ¢, ¢(0) = 0. We shall prove by induction on s, ¢t and the order of ¢, ¢(u), that, if s < N, using
changes of coordinates of the form o = v — ¢(z,u), it is possible to obtain ¢y, of order at least m.
We shall need the following reformulation of Lemma 2.3 of [Ha2] for the case k + 1 > 2.

Lemma 8.2. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 as in (8.1),
with [V] =[1:0] so that A(v) = Diag(A, B) satisfies

Re); > a >0, for any \; eigenvalue of A
Repu; <0, for any p; eigenvalue of B.

Let H be so that (8.3) holds, let 5 be the smallest integer in (8.3), and let m > 2; for such an 5, let
t be the greatest integer in Es so that csg has order d less than m. Then there exists a polynomial
map P(u), homogeneous of degree d, with values in C', such that, after changing v in

o =v—2°"logz) P(u),
cs.i(u) has order greater than d.

Proof. Since cg f(u) has order d, we can write
esi(1) = Q) + O (Jlul ™) |

where Q(u) is a homogeneous polynomial of degree d, and takes values in C'. Moreover, the term
csi(u)z®(logz)! in (8.3) is

(84)  H(w,u,0) = cys(w)a*(loga) + Y csr(w(loga) +O (|ull 2] [log ]| ) .
teE:S(z,St)N%(E,E)
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Using a change of coordinates of the form
7 =v—2°*logz)' P(u),
with P(u) homogeneous polynomial, we have
vy — x5 *(log 21) P (uy)
— 2*B) (5 4 2°*(log ) P(u)) + H (2, u,v) — 25 F(log 1) P(uy)
—2"B)o + H(z,u, D),

71 =
= ([
— (I
where f[(:c,zf, ?) == (I—z*B)x**(log z)' P(u) + H (2, u, v+ 2" *(log ) P(u)) — 25 F (log 1) P (uy).
Expanding H(x,u,0) we obtain

H(z,u,0) = z° *(logz) P(u) — Bax®(log 2)' P(u) + H(z,u, 2° *(log z)' P(u))

(8.5) _ _
— &y *(log 1) P(uy).
We have
H(z,u, 2 *(log z)! P(u))
= Q()a*(log )" + O (Jlu 2" (log 2", [ul "2 (1og 2)" ", lu] 2| [log || ")
and

i F(log z1)"P(uy)

sk o )
= {xSk -8 - z*+ 0 (Hu”azs,msHC logx)} (log ) P(uq)

+0 (xg(log x)f) P(uq)

_ . _ . S—k - .
= 25 *(log2)! P(u) — 25 *(log z)* (grad P; z* Au) — 5 z%(log z)'P(u)

k
+0 (ws(log x){, [|lu|lz®(log x)t,:):§+k(log :):)P(u1)> ,

where we used
P(u1) = P((I4 — 2*A)u) + O (2F)
= P(u) + (grad P, —z* Au) + O <x2k, acg) .
It is then clear that the terms of order s — k in (8.5) cancel each other, whereas we can put in

evidence the terms of order 5 in x and of order d in u. In particular, the [ homogeneous polynomials
of degree d of ;7 in (8.5) vanish identically if and only if P satisfies the following I equations

(8.6) (grad Py, Au) — <<B - 5;"”1,) P(u)) — Qi) i=1,... L

7

These equations form a square linear system in the coefficients of P. Therefore, to prove that such
a system has a solution it suffices to prove that

(8.7) (grad P;, Au) — ((B—i’%) P(u)):o i=1,..., = P=0.

7
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Moreovere, since B is in Jordan normal form, if we denote by ¢; ;11 the elements out of the diagonal,
we can rewrite the previous equation as

opP; oP; s—k
Au)g — | i — —— | B — &iiv1Piy1 =0,
Ouy * auq( e ('u k > S

recalling that, for any 1 < i < [, we have ¢;,41 = 0 or 1, and £;;41 = 0. Therefore, arguing by
decreasing induction over ¢ from [ to 1, we reduce ourselves to solve

(8.8)

(Au)i + -+

OR OR 5—k
. —_— A DY —_— A _— Z —_— — pr— = 3
(8.9) au1( u)1 + +8ud( u)g (/L A )R 0= R=0
for a homogeneous polynomial R of degree d. By Euler formula, we know that
= OR OR
=g 1| === e .
r |:8U1 ut * 8ud Ud:|
We can therefore reduce ourselves to solve
OR OR
1 —(C; o (O g = -0,
(8.10) Duy (Ciu)y + -+ By (Ciu)y=0=R=0

where C; = A — (u; — 5 + k)d—'I; is invertible, since from our hypotheses Re (o — ’“%i‘ﬂk) > 0. We
prove (8.10) with a double induction, on the dimension d and on the degree d of R. For any degree
d, if d = 1, then there exists a constant K; so that R = Kiucf; then, since o — “"_T‘—%k = 0, we have

i—S+k
OR <a_u 5+

Bur y >u1:0:>dKiqu:O:>Ki:0,

implying R = 0. Similarly, for any dimension d, if d = 1, then there exist constants a1,...,aq so
that R = aju; + - - - + aqug; hence
al(C'iu)l+---+ad(Ciu)d:0:>a1 =-..=aqq=0= R=0.

Assume, by inductive hypothesis, that (8.10) holds for any pair (d -1, d) and (d,d—1), with d > 1
and d > 1, and we shall prove that (8.10) holds also for (d,d). Assume that (grad R, Cu) = 0 for
a certain homogeneous polynomial R of degree d in ¢ variables. By inductive hypothesis, setting

R(uy,...,ug—1) := R(uq,...,uq_1,0), we have
(grad R, C - (u1,...,u4-1,0)) =0 = R =0,
and so R(u) = ugS(u), with S homogeneous polynomial of degree d — 1 in d variables. Therefore

(grad R, C'u)

” :0:>(gradS,Cu>+<)\d—W>S:0.
d

d

Again, by Euler’s formula, we can then write
(grad S,C"u) = 0,

with C' = C + %Wld, and applying the inductive hypothesis, we obtain S = 0, and thus
R=0. O
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We shall now apply the previous Lemma, for the integers s and ¢, until ¢5;(u) has order at least
m. Then either F5 = (), or the greatest ¢’ in Fy is less than ¢. In this last case, we can apply again
the Lemma, with integers s and ¢, until E5; = (). We can then apply the Lemma with s + 1 instead
of s, until we have s + 1 = N. This proves the proposition. O

We shall prove, analogously to the way we found a parabolic curve, that we can find parabolic
manifolds as fixed points of a certain operator between spaces of functions, proving the following
generalization of Theorem 1.6 of [Ha2] for the case k +1 > 2.

Theorem 8.3. Let ® € Diff(CP,0) be a tangent to the identity germ of order k +1 > 2. Let [V]
be a non-degenerate characteristic direction and let A = A(V) be its associated matriz. If A has
exactly d eigenvalues, counted with multiplicity, with strictly positive real parts, then there exists a
parabolic manifold of dimension d+ 1, with 0 on its boundary, and tangent to CV @ E in 0, where
E is the eigenspace associated to the attracting directors, and so that each of its points is attracted
to the origin along the direction [V]. Moreover, it is possible to find coordinates (x,u,v) in a sector
of C x C4 x CP=%=1 50 that the parabolic manifold is locally defined by {v = 0}.

Proof. We may assume that ® is of the form (8.1), with [V] = [1 : 0] so that A(v) = Diag(A, B)
satisfies
Re); > a >0, for any A; eigenvalue of A

Repu; <0, for any p; eigenvalue of B,
and
H(z,u,0) = O(|z[*|[ul| ™ + || [|ul)),
with m, N > 0.
We shall search for ¢(x,u), holomorphic in a sector
(8.11) Sysp = {(z,u) € Cx C? | [Imz¥| < yRex®, |z| < s, |Jul| < p},
so that, for

we have
(8.12) <Z>(:U”1b,u‘f) = h(z,u, d(z,u)).

Repeating the same changes of coordinates performed in the Section 6, we first transform vy, for
Rex > 0 by setting

and we define H; as
w—wy =z "B H(z,u,v).

From the definitions of x; and u; in (8.1), we have

a "B = kB {(I—}—ka) +0 (Hu”xk,x% logx)] ,
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and
wy = P [(I + ka) +0 (Huka,m% logx)} [(I — 2*B)a*Pw + H(x, u, v)}
- (1 +0 <||u|]xk, 2% 1og :c)) w+ 2B (1 + O(mk)) H(z,u,0).
Hence Hi(z,u,v) satisfies the same estimates as H(x,u,v):
Hy(,u.v) = O ([Jul*2*, [ufla** log )
and
(8.13) Hy (.0, 0) = O ([ llul™ + |2/ flul]) .

Therefore (8.12) is equivalent to
(8.14) "Bz, u) — :Ukaqﬁ(:B‘f, uf) = "B Hy (2, u, ¢(z, u)).
Operator T. Let {(z,,u,)} be the iterates defined by
x(f = flz,u,p(z,u)) =x — %xkﬂ + F(z,u, ¢(x,u)),
{ u‘f = g(z,u, ¢(z,u)) = (Ig — 2" A) u + G(z, u, $(z, u)),

with f and g as in (8.1), and ¢ holomorphic from the sector S, s ,, defined in (8.11), to CP~4-1,
Now we consider the operator

oo
To(x,u) := k8 Z 2 BB H (2, U,y ¢(0, Un)).
n=0
We shall prove that this operator, restricted to a suitable closed subset F of the Banach space of
bounded holomorphic maps ¢: S, s, — CP~?=1 is a contraction. Then there exists a unique fixed
point in F, and, by the definition of T, such a fixed point will be a solution of (8.14).
We shall proceed as follows:

(1) we shall prove that there exists a constant Ky > 0 such that

N—-k N—k
(815) o, wll < Ko (ull™ + 21" |lull ) = [T, wll < Ko (Jlull™ + 21" ~* ull) ;
(2) we shall prove that if Ky > 0 satisfies (8.15), then there exist positive constants K; and K»
such that
- 2| < wa(lul o)™+ N, (B2 < Kl gl YR,
’ d _ N—k aT — N—k
|52] < Ka(flul™ + 21N ), 52| < Kalllulm =t + 12l ¥ F;

(3) considering the Banach space (Fp, ||-||o) defined as
Fy = {68y, = €1 [ 8llo < +oc},

||¢||o:=suP{ o) }

N—k
ST G e e ]

with the norm
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we shall prove that the subset F of Fy, given by the maps ¢ satisfying (8.15) and (8.16)
with the constants Ky, Kj and K we found in (1) and (2) is closed;
(4) we shall finally show that T is a contraction.

We first prove the following analogous of Proposition 3.2 of [Ha2].

Proposition 8.4. If m and N are integers so that Hy satisfies (8.13), then there exists a positive
constant Ko such that, if

(8.17) (e, )l < Ko (lul™ + 2/Y 7 Ju])

then

(1) the seri:s defining the operator T is uniformly convergent in Sy, N {(z,u) € CP |
e J| 7 < 1}
(2) also ||To(x,u)| satisfies the same inequality

1T, wll < Ko (Jlull™ + 2] * flul])

Proof. Since all the eigenvalues of A have strictly positive real parts, as we saw in Theorem 7.1,
for any (z,u) € S, , we have

lim |up | |2, 75 = 0,

— 00
where o > 0 is strictly less then the real parts of the eigenvalues of A. Therefore, without loss of
generality, we may assume that ||u/| |z| ™ is bounded by 1. Let 8 < ka be a positive real number
so that each eigenvalue y; of B satisfies Re y; < 8. By Lemma 6.7, this implies that there exists a
constant C7 > 0 so that
Tn

—kp
la*Ba, kB < ¢y .

Moreover, choosing v, s, p small enough, if (z,u) € S, ,, then

2
k —k k
| < = Nunll < Jull |27 [2a]™ -

By the hypotheses on Hj(z,u,v), there exist positive constants K7 and K3 so that

k N
|y, )| < (Jlul™ ff + |2 ul])
(8.18) k+1 2.1k k
+ £ (Il o+ Pog ]| + [loll? 2/ + [[ul o] l2/*).

for a certain ¢ € N.
Let us assume that ||¢(z,u)|| < K <HuHm + x|V F HuH) for a constant K > 0. For v = ¢(x, u), we
have

k k k
log 2| + o]l |21* + [lul o] |«

k N
= O (Jull + Il Pog ) (Ja* ul™ + o)™ full)

[[of| ]

Hence, taking s and p small enough, we have

1 Gy, G )] < (1) (Ll + 21 )
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and therefore

T, )l < fjo (22)™ (ot )|

[o.¢]
T, | KB
<D Y| (ol ™ + o™ uall)
n=0
o0
€., | kB _ _
<EHD) D012 (leal T ul™ a7 4 o N a2 ).
n=0

Since ka > 8, the series is normally convergent in the set {||ul| || ** < 1}. By Corollary 6.3, there
exists a positive constant K, depending only on Hi, so that

N—k
1T, w)ll < Ko (lul™ + otV ull)
Then, to conclude the proof it suffices to take K = K. O

Let Fo be the set of holomorphic maps from S, , , to CP, satisfying (8.17) with the constant K
of Proposition 8.4. We just proved that T maps Fy into itself. Since we want T to be a contraction,
we need to restrict this set. We first do it by restricting the domain of definition of the maps in Fjy.

Choice of the domain of definition D. In the following, instead of S, ,, we shall use the
following domain of definition for the maps ¢

D= Sy N{(2,u) € C" | [Jul/ 2| < 1},

and we shall denote with Fy the set of maps ¢:D — C" satisfying (8.17). We shall prove a result
analogous to Proposition 8.4 for the partial derivatives of ¢. To do so, we shall need bounds for the

series
e 0 n —k
Z w{(i) BHl(xnaun7¢($n7un))} ’
n=0

and

> [ () e ton
Aun, Ozn

n=0
We thus have to control the partial derivatives ‘%”—; e }, 5o
Following Lemma 3.5 of [Ha2], we have the following estimates.

, and || % ||,

)

Lemma 8.5. Let § = min{ka, k}, and let € > 0, with € < 6. Then, for ~y, s and p small enough,
we have the following inequalities in D:

O | _ | & |1+0-2 Qun || _ Null leal’®
or |~ lx ’ oxr |l — |m’1+5725 )
Oz, ‘xn’1:6—25’ and Ou, < Ty |0-¢

ou || ¢ ou x
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Proof. We argue by induction over n. If n = 1, deriving z1 = z — 2% + O (2%+1, ||ul|z* ™ log z)
and u; = (I — 28 A)u+ O (|Ju|?z, ||ul|z* log 2) with respect to z and u, we obtain

dry| E+1 o )561 k+1—2¢
or | k
k+1—2¢
because | 2 = |1 — BH=E2k 4+ o(z*)|, and
|]
duy k-1
|52 < mhun .
Moreover
14+6—2¢ o—
Y g L it Haul 1-aat] < |22
ou 2|0~
for v, s and p small enough. By the definition of ® we deduce
833 +1 ]C+1 8$ k41 au
Pt < |1 e et |+ <t B
and
0 0 0
'“nﬂ <K||un||‘ n ‘1—04 ‘ i
Oz

Hence, by inductive hypothesis,

xT
<‘i

ox

O0Tn i1
x

Rezk + o(zF) + K||ul| \xn\HE)

1+6—2¢ (1 E+1

)

Ty |12 140—2 4 X
R

X

because 1 +§ — 2e < % On the other side, using the inductive hypothesis and the inequality
lwnll < [lull |21 4], we obtain

8u 1 u B B .
H 67;_ < |$|‘1‘+;|_25 | n‘ € (1—0(R€£L’2—|—0(1‘Z)+K|ZE’ a|xn| dka 5) ’
which is less than % |2ns1|%, because § — & < ka. Arguing analogously by induction, we

prove also the inequalities for the partial derivatives with respect to u. In fact,

O0%n 41 k+1 ka1 Ou
oot < 1= ek otaby| | G2 Kl 15
|Z17 |k+1 2e E+1 L . s
= Tx’(;fe L= T'I"n + O(xn) + K ‘ﬂfn‘ e
‘:B ’k+1—2€
n
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because 6 +1 — e < k + 1, and

0 0
’ Oun1 || KHunH‘ ‘1 — agzF “”H
ou
2k+ka—o
Ty |9—€ x
< ‘ L [1 aRexﬁ+0(fo)K||uH|n||I”m]
< [T,
x
because § — € < ka. This concludes the proof. O

We can now prove the following reformulation of Proposition 3.4 of [Ha2] for the case k+1 > 2.
Proposition 8.6. Let ¢ be in Fy. There exist positive constants K1 and Ko so that, if we have
8 < Ky (Nl fof = + 2N )

Ky (=t + o)) |

than the same inequalities hold for HBT¢H and HBT¢H

(8.19)

Proof. We first deal with the partial derivative of Hy. There exist positive constants C; and Cs so
that

k N
|y, 0) | < G (lull™ ol + oY ul])

k+1 k k
+Cs (Jloll a1 log 211 + [[o] o * + ull o]l |=/*) .

Then there exist positive constants C3 and Cy such that

OH,y k-1 N-1
%5 | = s (= a1 )

k k-1 k—1
+C4 (HUII | flog [2[| + o]l 21" + ul|[[o]l |] ) :
On the other side,

OH 1 — k N k
2008 < s (= ol + 101) + Gollol ol
U
for some positive constants C5 and Cy. Finally, there exist positive constants C7 and Cg such that
O0H;

k+1 k k k
< Cy (ol flog fo* + loll ol + lull l2/*) < Clal*.

ov

Let us assume that there exist positive constants K and K’ such that

-1 N—-k—1
(Il ol ="+ 2N 5 )

(hall™=t 4 2N ).
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Then we have

b

aax { (7)"“3 Hy(zn, tn, ¢(Tn, “">>} H

o0

0 Ty —kB

T, \ kB 0H;q axn 0H; 8un
e (5 15 )
()| (92] |92y |00 Oun

z ox || oz ou|| Ox ’

We now use Lemma 8.5 to give estimates. We have
8 Tn
T~ kB[ 1 |z,|1+0-2 1
<|[I=kB[ |- [ = }

-1 N—k—1
% (lall™ [z~ + loal Y™ lun )

X || O + CoKo (|| [log |7 + | (@, wn) || + [un )] -

Similarly
OH 8x _ ke
[ e Y (N e N e T [P
Tn 1+5—2¢
Ca -+ Calo (ol log el + )+ ) | [ 227,
and
OH 8u _ ke
1|52 | = Q™ bl el )
o Izl Jul "
X || TLH +C ’ n’ plto—2e
Finally
OH oz 0¢||0u _ ke
o 152 5]+ 2] Gz ) = 8 Cramt = a5 s ol

In

z lan | 072 |

14+6—2¢ X || |asn|1+57E ]
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By Corollary 6.3, we have the following estimate

oo

> Janl* flog 2n|? < Cg |2 log 2|,

n=0
for a constant C), 4, > 0, and hence there exists a positive constant K, depending only on Hj, so
that

OTo .
|52 < 0 (a1 + 1Y ).

Setting K = K7, we proved the first inequality. In a similar way, we estimate H%H obtaining

EME 2“8‘1 ((2)™) 1o

H Tp\ —kB
For the first term , we have

o (C)7)

5 (s, )

HHl(xna Un, (b(xnv un))”

1 0xy [xp\ kB _ _
o o I [ (R S [

Ty OU

< [Callun + Callwnll (1] g [ 1 + 6, )] + )

f((xn,un)
0%y | | Ty | KB _ _ -
<O\ S22 (lual™ " +l2al ™) ol & (@ny ).
U
The second term contains the partlal derivatives of Hy with respect to z,u and v, and we have
0
% (Hl(l’n, Un, ¢($N7 Un)))

< (™= + ¥ ) ]

‘xn‘é—a
|w’(5—€

14+6—2¢ §—
_ xT €
[ Kl "“| e D

x ([cguunu + Cao[unll (2] 108 ]| + (@ s )| + 1]} |

+|Cs + Cokolual | |22

< K (ny tny ) (Il + a7 ) lal*
Therefore

oT
|1 Z2] < o (= + 1217
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and the constant K5 only depends on H;. Taking K’ = K5 we conclude the proof. U

Definition of F. We are left with finding a suitable subset of maps, such that T is a contraction.
Let m and N be integers satisfying (8.13). Let Fy be the Banach space of the holomorphic maps

¢, defined on S, s ,, such that
[¢(z,w)||
[¢llo := Sup{ -
za | ful™ + 2 [fu]

is bounded, endowed with the norm ||¢||o. Define F as the closed subset of Fj given by the maps
satisfying (8.17) and (8.19), with the constants Ko, K; and K3 given by Propositions 8.4 and 8.6.

Proposition 8.7. If F is the subset defined above, then T|x is a contraction.
Proof. Let ¢ and ¢ be in F. We need to control

00 T _kB 00 z! —kB
— 1\ Tn, Up, P(Tn, Un)) — —_ Ty Uy, P\T; Upy
S (%) o dlen ) - X () Halah i vt )

X xr
n=0 n=0

S =

)

where (x,,,u,) and (2], u}) are the iterates of (x,u) via (8.1) respectively with ¢ and 1. We can

bound S with the sum of S7 and S5, where

$ o= 30 (X)) o wn ot ) = 32 (2) 7 B, w(xmun»‘ :
n=0 n=0
and
g\ —kB X/l \TFB
Sy = Z (?) Hy(2n, Un, ¥ (T, un)) — Z (;) Hl(x/mu;ww(x;vu;l)) ' :
n=0 n=0

It is easy to control the term S;. From (8.18), we have S; bounded above by
S
oy ™
2|5
n=0
for some integer ¢. By Corollary 6.3, since |Ju, || < ||u |2.]* 2| 7%, we obtain

$1.<C (™ + 121" ull) (1o [log 2l + [[ull) 6 — lo-

To estimate Sz, we have to estimate the dependence of {(x,,u,)} on ¢ in (8.1). We have the
following reformulation of Lemma 3.7 of [Ha2] .

—kB B
(™ + L2 ¥ * Y]l ) (J2al* ™ log@al? + 2l unll) 16 = o,

Lemma 8.8. Let § = min{ka, k}. Let € be a positive real number, with € < §, and ReA\; > a + ¢
for each eigenvalue \; of A. Let ¢ and ¢ be in F, and let {(xn,un)} and {(z),,u,)'} be the iterates
via (8.1) associated to ¢ and 1. Then for v,s and p small enough, the following estimates hold in

S’Y:S:P"
1+6— -4 N—k—1
|20 — | < | 07 270 (Jull™ + |2 [ul) I — %llos
and
1 -0 N—k—1
Jtn =y || < Janl” 27 ([[ull™ + |2| [ulDll¢ = ¥llo-
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Proof. We use the following notation: Az, := |z, — 2|, Au, = |Ju, — ul,||, and A¢(z,u) =
(leel|™ + |2V 7%= ju]))||¢ — ©]lo. We argue by induction over n. If n = 1, thanks to (8.1), there
exists K > 0 such that

Az, < K |2 Ag(a, u),

Auy < K (|2 +Jaf" lu] ) Ag(a, w),

for v and s small enough. Let us assume that the inequalities hold for n, and we prove that they
hold also for n+ 1. Since 2% and (z],)* are equivalent to <, we have (z],)¥ = 2% + o(z¥). From the
definition of ® it follows

Axn—f—l
wh (1= 2+ 0 (a2, Junlleh ) ) = @) (1= @) + O ((@h)™, lunli ) )|
+ K |2 M Auy, + K [z [T Ap (2, u),

< Az, |1 —2F 4 o(aF)

and
Atupt1 < K||lup||Azy, + |1 — (a+€)zpy + o(xy)| Auy,

+ K (loal™ + unll ral*) (@, un).

Thanks to [|un|| < ||u| |%” ka, we have

80(znrua) < (Jull™ + 1o ) (

X

ka+N—-k—1
: ) 1ol

and, since ’%”P < ‘%”‘6 when v > §, we have

|$|6 AP(zp,un) <2 ‘xn‘d A¢p(z,u).

By inductive hypothesis, we may bound |z|° Azi*;;’l and |z|° Azi’;;”. We thus obtain
Az 1 _
ol =R < 1= cak - of@h) | lam a7 4 K o0+ 2K [P
< [1 = e + o) [eia |97 < fanga 0%,
and
Au 1 _
ol = < Klunll eal 07 41— e+ o(ah) e

146
+ K (|2a] + [lun ) Jza|

< (1 eap +o(ah)| lznsl” < lznra ]

Since |[un || |20 F* = 0(1), we can now prove the last inequality

1+0—¢ 1+ka+575)

é
= o(|zn] = [zn]" o|znl),

for € small enough. O

[[un| [2n]
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We can now estimate Sy as follows.

> —kB—e b
$ <Y K (lan ™ + kol V5 ) A
n=0

Tn
X

—kp—e o
+ Ky (™" el + o N 471 A,

Tn
xr

By Lemma 8.8, Corollary 6.3 and the fact that ||uy]|| [z,]”° = o(1), we thus obtain
So < K (Il + fon N7 (™ + 21¥ 7 ful) llg = lo-
Therefore T is a contraction. O

Taking ¢ the unique fixed point of T, we can use the following change of coordinates: v =
v — ¢(z,u). Then

0 =v1 — P(x1,u1) = (I — ka)v + H(xz,u,v) — ¢(x1,u1)
= (I —2"B)(0 + ¢(x,u) + H(z,u, 0+ ¢p(x,u)) — ¢(x1,u1)
=(I— ka)ﬁ + (I - ka)¢($,u) + H(z,u,¢(z,u))

=¢(a] uf)

+ Z { 1 "H (x,u, p(z,u)0" | — p(x1,u1)

o
=1l ovn

= (I - 2*B)o + ¢(a?, uf) — p(af, uf) + -

= (I —z*B)o + H(z,u,?),

with H (z,u,?) = O(||#]|), and hence H(z,u,0) = 0. Therefore we can apply Theorem 7.1 to |50y
and this concludes the proof of Theorem 8.3. 0

We then deduce the following reformulation of Corollary 3.8 of [Ha2] .

Corollary 8.9. Let ® € Diff(CP,0) be a tangent to the identity germ of order k + 1 > 2 and let
[V] be a non-degenerate characteristic direction. Let {\1,...,\n} be the directors associated to [V]
with strictly positive real parts and assume that

ap > ag > > ap >0,
where a; = Re \;j. Then there exists an increasing sequence
My C My C---C My

of parabolic manifolds, defined in a sector, attracted by the origin along the direction [V]. Moreover,
for any 1 < i < h, the dimension of M; is 1+ g, Aj>ai Malg(Aj) and M; is tangent at the origin
to CV Pre Ao E\;, where Ey; is the eigenspace associated to the eigenvalue Aj.

We can also deduce a partial converse of Theorem 7.1, using the following result, which holds
for germs of biholomorphisms and hence also for global biholomorphisms.
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Lemma 8.10. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2. If X =
(z,y) € CP\ {(0,0)} is so that X,, = ®"(x,y) converges to the origin and [X,] converges to [1 : 0],
then there exist constants v, s and p so that, for any n > ng, with ng large enough, we have x,, # 0
and Xy, = (Tn,Yn) € Sy,s,p, where, for x#0 and U = £, we set

Sysp = {(x,U) €C x P! ‘ lIm 2| < yRe ¥,

2| < s, U] < p}.

Proof. Since X,, = (zy,yn) converges to 0 and [X,,] converges to [1 : 0], we have that z,, is defini-
tively different from 0. Moreover X, definitively lies in D, , := {(z,U) | || < s, ||U]| < p}. Thanks
to Proposition 4.3, the first component of @ is of the form 1 = z—$2*1+0 (||U||2*+!, 221), and
zk % Therefore, for any ~ arbitrarily small and any n large enough, we have ‘Im :cffL‘ < yRezk,
and hence X, definitively lies in S, ; ,.

Corollary 8.11. Let ® € Diff(CP,0) be a tangent to the identity germ of order k +1 > 2, and
let [V] be a non-degenerate characteristic direction. If there exists an attracting domain 2 where
all the orbits converge to the origin along [V], then all the directors of [V] have non-negative real
parts.

Remark 8.12. It is not true that if [V] is a non-degenerate characteristic direction and there exists
an attracting domain € where all the orbits converge to the origin along [V], then all the directors
of [V] have strictly positive real parts. In fact, as shown by Vivas in [V2], it is possible to find
examples of germs having attracting domains along non-degenerate characteristic direction even
when the directors have vanishing real parts.

9. FAToU COORDINATES

We have the following analogous of Theorem 1.9 of [Ha2].

Theorem 9.1. Let ® € Diff(C?,0) be a tangent to the identity germ. Let [V] be an attracting non-
degenerate characteristic direction. Then there is an invariant domain D, with 0 € 0D, so that every
point of D is attracted to the origin along the direction [V], and such that ®|p is holomorphically
conjugated to the translation

1 1
— =41,
Il X
U, =10,
with (z,U) € C x CP~L,
We may assume that [V] = [1 : 0], and that its associated matrix A is in Jordan normal form,
with the non-zero elements out of the diagonal equal to € > 0 small.
Let Aq,..., Ay be the distinct eigenvalues of A, and up to reordering, we may assume that, setting

a; = Re(};), we have
ar > a9 > >ap>a> 0.

Let Ji,...,J, be the Jordan blocks of A, where J; is the block relative to \; for 1 <[ < h, and let
u=(u',...,u) € CP~! be the splitting of the coordinates of CP~! associated to the splitting of A
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in Jordan blocks. Therefore we can write
(z1 =z — 32" + F(z,u),

ul = (I' — 2% J))ut + Gz, u),
(9.1) Pz, u) = u? = (I? — 2% Jo)u? + G%(z,u),

ul = (I" — 2% Jp)ul + GM (),
where I' is an identity matrix of same dimension of the block J; for 1 <[ < h, and
G (,u) = O(|[ul*a®, [ul|z** | log z]).
Set
uS = (ul,. .. w/) and v = (T, ,uh),

and analogous definitions for «</ and u=7.
Given N € N with N > k + 1, thanks to (8.3), for every 1 < j < h, we can write

(9.2 G (2,) = Py () + O (Jlull [2]" flog Ja )

with ‘ ‘
Pllwwy = Y d(u(loga),
k<s<N,tcEs
for some hy € N depending on N, where for any s we defined Ey as the (finite) set of integers ¢
so that the series above contains the term z*(log )¢, and where cs¢(u) are holomorphic in ||ul| < p
and ¢;+(0) = 0.
The following result is the analogous of Proposition 4.1 of [Ha2].

Proposition 9.2. Let & € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 as in
(9.1), with [V] = [1 : 0] attracting non-degenerate characteristic direction. For any positive integers

N > k+ 1 and m, there ezist local holomorphic coordinates (defined in a sector) such that (9.2)
holds, and moreover

(9.3) P (x,(0,u™)) = O@*|u™7|™)

for1 < j <h.

Proof. We want to change coordinates holomorphically in order to remove the terms in w7 with
degree less than m from P (z, (0,u>7)). We use holomorphic changes of coordinates of the form
@ = w — gj(z,u>7), where the ¢;’s are polynomials in z, logz and u>’ with g;(z,0) = 0; if we
obtain (9.3) for j = 1,..., jo, then changing the variables u’ for j > jo will provide no effect on
the first jy variables. We shall then perform the construction by induction on j, considering only

changes on u~7/ with 4~/ = 0, which allow us to forget about the first j — 1 coordinates.
Let v = u~7, and let us consider the matrix B; defined as

Bj == Diag(Aj_H, N ,Ah).

We now have to prove a statement similar to the one in Proposition 8.1 but with the opposite
notation, i.e., we look for changes of coordinates of the form @ = u — ¢(z,v) such that

G (@, 0,v) = O(lz[*[|v]|™ + [V [[v]]),
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and hence the roles of A(= J;) and B(= Bj) are here exchanged.

Note that, if 1, A1,..., A, are rationally mdependent, then we can prove the statement exactly
as in the proof of Proposition 8.1. ‘

Otherwise, let Q(v)z*(logz)" be the lower degree term in P (z, (0,v)), with Q(v) homogeneous
polynomial of degree d in v. The change of coordinates

W =uw — ¥ F(logx)' P(v),
deletes the term Q(v)z*(logx)t if P solves

s—k

P((I, - &*B)v) - (I, — " J)) P(v) — “—~a* P(v) = 2% Q(v) + O([Jol|e*+1),

where r and ¢ are the dimensions, respectively, of u/ and v. Therefore, by decreasing induction on
the indices of the components of u’/, we may reduce ourselves to solve, for the r components P; of
P, equations of the form

0P, OP; s—k ~
9.4 B B N — —— | P, = Qi(v),
(94) GBS, - (4 - ) P= Q)
that is, by Euler formula, of the form

oP; OP; ~

9.5 C =
(95) Gur (OO G, = Qi)
where C = B — MI . We solve these equations component by component, by comparing

the coefficients of the monomials v”, where T' € NY in both sides. For any T := (1, ... ,tq) € N9
we define the weight of T" as

w(T) =t +2ts + - - - + qty.
If Pi(v) = av” and Q;(v) = cv”, equation (9.5) is reduced, modulo terms of greater weight, to
a(vity + -+ ygty) = c,

where 1v1,...,v, are the eigenvalues of C. Now, if v1t1 + - + v4t, # 0, then we can solve the
equation; otherwise, we can consider the change of coordinates

sz—k(

@ =u! —av Yt

log x

under which the terms in v72° *(logz)**! and in vT2*(logz)!*!(logz)!™! in the left-hand side

vanish and the equation is reduced to a(t+1) = —c¢; this change introduces new terms in z*(log z)'*!,
but it can happen only finitely many times, and hence it is not a problem. Iterating this procedure
on the weight of T, given a degree d, we have to solve the case of T of maximal weight, i.e., v’ +vg.
In this case, the equation is simply av,d = ¢, and it is solvable if v, # 0; if v, = 0, as before, we
can consider the change

)t—i—l

W =l — avq:v *(logz

and we are done. O

We can then deduce the following reformulations of Corollaries 4.2, 4.3, and 4.4 of [Ha2] for the
case k+1 > 2.
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Corollary 9.3. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 as in

(9.1), with [V] = [1 : 0] attracting non-degenerate characteristic direction. For any positive integers
N > k+1 and m, there exist local holomorphic coordinates such that

(9.6) G (2, (0.u7)) = O (e [ + [ ¥ 0] )

for1 <35 <h.

Corollary 9.4. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 as in (9.1),
with [V] = [1 : 0] attracting non-degenerate characteristic direction. Let 0 < € < «, and assume

that the local coordinates are chosen so that the non-zero coefficients out of the diagonal in A are
equal to g9 > 0 small enough, and (9.6) is satisfied with m and N such that

(9.7) map —a; > 1 and N+k(ap—a1) > k+ 1.

Then, for every j and for each (xz,u) € S, with v,s,p small enough, there exists a constant
K > 0 such that

(9.8) 7 || < a7 (u 2] 7M7) + K |2)*),
and moreover, ||us?|||zn| (%) converges to zero as n tends to infinity.
Proof. From the proof of Theorem 7.1, we know that, taking a« = a, — € we have
et < fan ™ ] ||~
Hence, from (9.6) and (9.7) we obtain
|21 | TFO |G (2, (0,u™)) || < KilwalFT

Arguing as in the proof of Theorem 7.1, choosing ¢ and £y small enough, since the eigenvalues of
J; — k(a; — )17 have positive real parts, for each « € S, 5 , with v, s, p small enough, we have

|~ (Jj — k(aj — )I)a* + ofab)] < 1.

We have
(@1 | TN < 1 = () = k(g — )P )a® + o(a®) [l 7M™ |lui |
|z | OGS (@, (0,u7)) -
Hence, setting Vi := |z, | 7@ ~9)||lus? ||, we obtain

<j <j k+1
qul S Vn_J +Kl’$n’ + .

n

IN

Since for any (z,u) € S, s, for 7,s, p small enough, there exists 0 < ¢ < 1 such that T 1|F
|2, |¥(1 — ¢|zn|), we have
o1 < ol = lenal®
n =
c
implying that there exists a positive constant K > 0 such that

Vi + KlanmF <V + Klaa < - <V 4 K,

9

proving (9.8). Moreover, this proves that there exists eg << £ < € such that |Jus|||z,] (@i~

LI IA

e1, and so [Jus? |||z, | 7@ ~2) converges to zero as n — 4oc.
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Thanks to the last corollary, we may assume without loss of generality that our germ ® is of the
form (9.1) and in the hypotheses of Corollary 9.4. Define the set

(9.9) D i= {(5,0) € Sy o]0 < 11,
To prove Theorem 9.1, we shall need this reformulation of Lemma 4.5 of [Ha2] .

Lemma 9.5. Let ® € Diff(CP,0) be a tangent to the identity germ. Let [V] be an attracting
non-degenerate characteristic direction. Consider local holomorphic coordinates where ® satisfies
the hypotheses of Corollary 9.4 with € such that 3¢ < min(aq,1). Then the sequence {x;kAun}
converges normally on the set D defined by (9.9).

Proof. Given (z,u) € D, we shall bound Hx;_lﬁ‘lljule - xnk‘]jum, for each j =1,...,h. We have
—kJ; j —kJ; —k.J; j k k
o ey = o ) < K™ W | (Nunllznl* + 20 | 1og 2a])
—kJ; ; ;
+ K'|lan " IG (2, (0, u” ),

for some positive integer ¢. Since (z,u) € D, we have |[us?|| < |o,|*(® =), and hence, using the

inequality ||z, || < |zn| %%, we obtain

—kJ; j —kJ;
[ECATEE A

< K1‘$n’—kaj—ka (’wn’k(l—&—a—&-aj—k) + ‘xn‘k—&—l—&-kaj—ka’ 1ngn’q> + KQ’l‘n’k—H,
and hence there exists K > 0 such that
o wh iy — Pl < K (Joal 02 [ log 1)

and hence we are done. O

We now have all the ingredients to prove Theorem 9.1.

Proof of Theorem 9.1. Thanks to the previous lemma, we can define in D the following holomorphic
bounded map

o

(9.10) H(w,u) =Y (anktunes = o7 )
n=0
which satisfies
(011) [ H (@l < K (27 4 fo, 724 log wy |7) < K (Jaf 07 4 |z, [
Therefore, the holomorphic map
(9.12) Ulz,u) =z *u+ H(z,u) = lim z,*u,

n—-+0o

is invariant. The main term near to the origin is 27%4u, and the level sets {U (2, u) = ¢} with ¢ € C
are complex invariant analytic curves. Therefore, taking (x,U) as new coordinates, ® becomes

{ xlzx—%xk"‘l—kﬁ(x,U),

9.13
(9.13) U=
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where F is a holomorphic function of order at least k + 2 in z, and U behaves as a parameter. We
can thus argue as in Fatou [Fa], and change coordinates, in D, in the first coordinate z, with a
change depending on U, to obtain @ of the form

1 1

Z1 z

and this concludes the proof. O
We thus deduce the following reformulation of Corollary 4.6 of [Ha2] .

Corollary 9.6. Let ® € Diff(CP,0) be a tangent to the identity germ of order k+1 > 2 and let [V'] be
a non-degenerate characteristic direction. Assume that [V'] has exactly d (counted with multiplicity)
directors with positive real parts. Let M be the parabolic manifold of dimension d + 1 provided by
Theorem 8.3. Then there exist local holomorphic coordinates (z,u,v) such that M = {v = 0}, and
®|rr is holomorphically conjugated to:

1 1
7:,_'_1’
Z1 z
U, ="U.

Proof. Thanks to Theorem 8.3 there exist local holomorphic coordinates (x, u,v) defined in a sector
Sy,s,p such that the parabolic manifold M is defined by M = {v = 0}, and ® is defined by (8.1)
with F', G, and H satisfying (8.2), and H(z,u,0) = 0. Then @[,/ is given by

T =% — %xkﬂ + F(z,u,0),

up = (Ig — 2" A)u + G(z,u,0),
where all the eigenvalues of A have positive real parts. Let A1,..., A, be the distinct eigenvalues of
A, and let a; = Re ();). Up to reordering, we may assume oy > --- > oy, > a > 0.

Let m and N > k + 1 be positive integers such that maj, —a; > 1 and N + k(ap, —a1) > k+ 1.
We can thus write the Taylor expansion of G as

Gla,u,00= Y cop(w)a®(loga) + O(al*[lul™ + |z ul)),

1<s<N
teEg

where ¢, () is a polynomial and deg(c, ¢(u)) < m. Therefore we can apply Theorem 9.1 to ®(x, u, 0)
and we are done. O

10. FATOU-BIEBERBACH DOMAINS

In this section we shall assume that ® is a global biholomorphism of CP fixing the origin and
tangent to the identity of order k + 1 > 2.

Definition 10.1. Let ® be a global biholomorphism of CP fixing the origin and tangent to the
identity of order k + 1 > 2. Let [V] be a non-degenerate characteristic direction of ® at 0. The
attractive basin to (0,[V]) is the set

(10.1) Qo)) = {X €T\ {0} : ®"(X) = 0, [8"(X)] — [V]}.
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We shall study the attractive basin Qg ) when some of the directors of [V] have positive real
parts.
We can assume that, writing X = (x,y) € C x CP~1, [V] =[1:0] and @ is of the form

{ Il = +pk+1(a:7y) +Pk+2($ay) + - )
Y1 =Y+ @1(2,Y) + Gey2(z,y) + -,
with pr41(1,0) = —1/k and gx41(1,0) = 0.
Thanks to Lemma 8.10, we have
(10.2) Q(O,[V]) = U " (Q(O,[V]) N Sﬂ/’S’p) ,
n>0

and we can restrict ourselves to study Q1) N Sy.s,p-

Since Sy ,N{z = 0} = 0, we can use the blow-up y = zu and we can assume that, in the sector,
® has the form

(10 3) T =x— %xk+1+O(Huka+1,xk+2),
' ur = (Ip-1 — 2P A)u+ O(||ull2", [Jull2*+1),
where A = A([V]) is the matrix associated to [V], and we can perform all the changes of coordinates
used to prove Theorem 8.3 and Theorem 9.1.

We thus can prove the following generalization of Theorem 5.2 of [Ha2] for the case k+1 > 2.
Theorem 10.2. Let ® be a global biholomorphism of CP fizing the origin and tangent to the
identity of order k +1 > 2 and let [V] be a non-degenerate characteristic direction of ® at 0. If

[V] is attracting, then the attractive basin Qo,v)) C CP is a domain isomorphic to CP, i.e., it is a
Fatou-Bieberbach domain.

Proof. We can reduce ourselves to consider ® as in (10.3), with A in Jordan normal form. Let

A1, ..., Ay be the distinct eigenvalues of A, and let a; = Re (\;). Up to reordering, we may assume

a1 >+ >ap > a> 0. Let € > 0 be small and such that
ap>ar—E€E>ap>a—€6 > >ap >ap—e > 0.

Thanks to Theorem 9.1 and Corollary 9.4, the coordinates u = (u!,...,u") adapted to the structure
in blocks of A can be chosen such that, for n large enough, we have

(10.4) || < fan 1979,
and we know that on
(10.5) D= {(z,u) € Sy, |Ul]| <|za¥9~9) for j =1,...,h},
we can conjugate holomorphically ® to the translation
1 1
P + ]_’
Z1 z
Uy =U,

with a change of the form (z(z,u),U(z,u)) such that
(10.6) Ulz,u) = 2 *u+ 0(z"),
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k

for some positive 7, and z(z,u) = z" as ¢ — 0.

Let ¢: D — CP be defined by

bloa) = (2o, Vo) = (S0 Ul

and let 7: CP — CP be the translation 7(Z,U) := (Z + 1,U). We know that D is ®-invariant
(10.7) ToY =1o0d.

Let us consider W := (D). For v small enough, and R > 0 big enough, the projection Z(W) of
W on C contains the set

(10.8) Y.r={Z€C:|ImZ| <yReZ,|Z| > R}.

1

z(x,u)

For any fixed Z € C and r > 0, consider the generalized polydisc
Pz =1{(Z,U)eCV: |U7|| <7 for j=1,...,h}.

The definition (10.5) of D, and the form (10.6) of U(x,u) imply that for Z € ¥, r and R big
enough, W contains the generalized polydisc P( Z,1Z|%/2)" For |Z| tending to infinity, the fiber of W
above Z contains generalized polydisc Pz, of radius arbitrarily large. Hence we have

(10.9) Uw)=cr
n>0

The end of the argument is then as in Fatou [Fa2, Fa3|, as follows.
Since D C Q(q,[v]), and, thanks to (10.4), for n large enough, for every X € Qg ), Xn € D, we
also have

(10.10) Qo = J 27(D).
n>0

Therefore, we can extend the isomorphism ¢: D — W to

¢: Q(O,[V]) — CP
as follows: given X € Qg ), consider ng such that "°(X) € D, and define
&(X) =7 Moo d"(X).

Thanks to (10.7), the definition does not depend on n. It is immediate to check that 1; is injective,
whereas its surjectivity follows from (10.10). O

This last result is the generalization of Theorems 1.10 and 1.11 of [Ha2] for the case k + 1 > 2.

Theorem 10.3. Let ® € Diff(CP,0) be a tangent to the identity germ. Let [V'] be a non-degenerate
characteristic direction, and assume it has exactly d directors, counted with multiplicities, with
strictly positive real parts, greater than o > 0. Then
(1) if the remaining directors have strictly negative real parts, the attractive basin g vy is
biholomorphic to CH1;
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(2) otherwise, considering coordinates such that [V] = [1: 0], the set

Qo) = {X € Qo) : nll)grrloo X ke, =0}

is biholomorphic to CT1, and moreover its definition does not depend on o.

Proof. Thanks to the previous results we can apply Lemma 8.10 and property (10.2). We can thus
choose local holomorphic coordinates in a sector, such that, after the blow-up, ® has the form

1 = f(z,u,v) = — %xkﬂ + F(z,u,v),
up = g(z,u,v) = (Ig — ¥ A)u + Gz, u,v),
v = h(z,u,v) = (Ip—g-1 — ¢ B)v 4+ H(z,u,v),
where A, and B are in Jordan normal form, A has eigenvalues with strictly positive real parts, B
has eigenvalues with non-positive real parts, and F', G, and H satisfying (8.2). Moreover, thanks
to Theorem 8.3, we may assume H(z,u,0) = 0.
If X € Q,vy), for v, s, p arbitrarily small positive numbers, then X, € Sy 5, for n big enough.
Assume that B has only eigenvalues with strictly negative real parts. Therefore, thanks to the
previous equations, we have ||vn11|| > ||v, || for n big enough, so v, cannot converge to 0 unless we
have v,, = 0. Hence

Q(O,[V]) ns s.p C {’U = 0},
and we can apply the same argument as in Theorem 10.2 to @[5 ~fy—0}-

If B has eigenvalues with non-positive real parts, since in Qq y}), for n big enough, we have

k

Hx;ﬁ‘fvnHH > ||z *v,||, we cannot have x,**v, converging to 0 unless v, = 0. Therefore we

argue as before, but considering Qg v))-
O
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