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ON ÉCALLE-HAKIM'S THEOREMS IN HOLOMORPHIC DYNAMICS

In this survey we provide detailed proofs for the results by Hakim regarding the dynamics of germs of biholomorphisms tangent to the identity of order k + 1 ≥ 2 and fixing the origin.

Introduction

One of the main questions in the study of local discrete holomorphic dynamics, i.e., in the study of the iterates of a germ of a holomorphic map of C p at a fixed point, which can be assumed to be the origin, is when it is possible to holomorphically conjugate it to a "simple" form, possibly its linear term. It turns out (see [START_REF] Abate | Discrete local holomorphic dynamics[END_REF], [START_REF] Abate | Discrete local holomorphic dynamics[END_REF], [Br], [CC], [IY], [Yo] and Chapter 1 of [Ra] for general surveys on this topic) that the answer to this question strongly depends on the arithmetical properties of the eigenvalues of the linear term of the germ.

It is not that useful to search for a holomorphic conjugacy in a full neighborhood of the origin in the so-called tangent to the identity case, that is, when the linear part of the germ coincides with the identity, but the germ is not the identity. Nevertheless, it is possible to study the dynamics of such germs, which is indeed very interesting and rich, using the conjugacy approach in smaller domains having the origin on their boundaries. The one-dimensional case, was first studied by Leau [Le] and Fatou [Fa] who provided a complete description of the dynamics in a pointed neighbourhood of the origin. More precisely, in dimension 1, a tangent to the identity germ can be written as (1.1) f (z) := z + az k+1 + O(z k+2 ),

where the number k + 1 ≥ 2 is usually called the order of f . We define the attracting directions {v 1 , . . . , v k } for f as the k-th roots of -|a| a , and these are precisely the directions v such that the term av k+1 points in the direction opposite to v. An attracting petal P for f is a simply-connected domain such that 0 ∈ ∂P , f (P ) ⊆ P and lim n→∞ f n (z) = 0 for all z ∈ P , where f n denotes the n-th iterate of f . The attracting directions for f -1 are called repelling directions for f and the attracting petals for f -1 are repelling petals for h. Then the Leau-Fatou flower theorem is the following result (see, e.g., [START_REF] Abate | Discrete local holomorphic dynamics[END_REF], [Br], [Mi]). We write a ≈ b whenever there exist constants 0 < c < C such that ca ≤ b ≤ Ca.

Theorem 1.1 (Leau-Fatou, [Le, Fa]). Let f be as in (1.1). Then for each attracting direction v of h there exists an attracting petal P for f (said centered at v) such that for each z ∈ P the following hold:

(1) f n (z) = 0 for all n and lim n→∞ f n (z)

|f n (z)| = v, (2) |f n (z)| k ≈ 1
n . Moreover, the union of all k attracting petals and k repelling petals for f forms a punctured open neighborhood of 0.

By the property (1), attracting [resp. repelling] petals centered at different attracting [resp. repelling] directions must be disjoint.

For dimension p ≥ 2 the situation is more complicated and a general complete description of the dynamics in a full neighborhood of the origin is still unknown (see [AT] for some interesting partial results). Analogously to the one-dimensional case, we can write our germ as sum of homogeneous polynomials F (z) = z + P k+1 (z) + O( z k+2 ), where k + 1 ≥ 2 is the order of F .

Very roughly, Écalle using his resurgence theory [Ec], and Hakim with classical tools [Ha] proved that generically, given a tangent to the identity germ of order k + 1, it is possible to find onedimensional "petals", called parabolic curves, that is one-dimensional F -invariant analytic discs having the origin on the boundary and where the dynamics is of parabolic type, i.e., the orbits converge to the origin tangentially to a particular direction, called characteristic (see Definition 4.1). Abate, in [START_REF] Abate | The residual index and the dynamics of holomorphic maps tangent to the identity[END_REF], then proved that in dimension 2 such parabolic curves always exist. Hakim also gave sufficient conditions, that here we call attracting (see Definition 4.8) for the existence of basins of attraction along non-degenerate characteristic directions (see Definition 4.1) modeled on such parabolic curves, proving the following result: Theorem 1.2 (Hakim, [Ha]). Let F be a tangent to the identity germ fixing the origin of order k + 1 ≥ 2, and let [v] be a non-degenerate characteristic direction. If [v] is attracting, then there exist k parabolic invariant domains, where each point is attracted by the origin along a trajectory tangential to [v].

Hakim's techniques have been largely used in the study of the existence of parabolic curves (see [START_REF] Abate | The residual index and the dynamics of holomorphic maps tangent to the identity[END_REF], [BM], [Mo], [R1]), basins of attraction and Fatou-Bieberbach domains, i.e., proper open subset of C p biholomorphic to C p , (see [BRZ], [Ri], [R2], [V1]).

The aim of this survey is to make available important results and very useful techniques, that were included, up to now, only in [START_REF] Hakim | Transformations tangent to identity[END_REF], a preprint which is not easily retrievable, and where the case k > 1 was stated with no detailed proofs.

We shall provide, from Section 3 up to Section 7, the reformulations for any order k + 1 ≥ 2, with detailed proofs, of the results published by Hakim in [Ha] (Hakim gave detailed proofs of her results for k = 1 only), and, in the last three sections, again reformulating definitions, lemmas, propositions and theorems for any order k + 1 ≥ 2, we shall provide detailed proofs for the unpublished results, including her construction of Fatou-Bieberbach domains, obtained by Hakim in [START_REF] Hakim | Transformations tangent to identity[END_REF].

Acknowledgments. We would like to thank the anonymous referee for useful comments and remarks which improved the presentation of the paper.

Notation

In the following we shall work in C p , p ≥ 2 with the usual Euclidean norm

z = p i=1 |z i | 2 1 2 .
We shall denote by D r,k the following subset of C D r,k = z ∈ C | |z k -r| < r , which has exactly k connected components, that will be denoted by Π 1 r,k , . . . , Π k r,k . Let F : C p → C p be a holomorphic map. We shall denote with F (z 0 ) the Jacobian matrix of F in z 0 . If, moreover, we write C p = C s × C t , then ∂F ∂x and ∂F ∂y will be the Jacobian matrices of F (•, y) and F (x, •).

Given f, g 1 , . . . , g s : C m → C k , we shall write f = O (g 1 , . . . , g s ) ,

if there exist C 1 , . . . , C s > 0 so that

f (w) ≤ C 1 g 1 (w) + • • • + C s g s (w) ;
and moreover, with f = o(g) we mean f (w) g(w) → 0 as w → 0.

Similarly, given a sequence w n ∈ C p , we shall write

w = O 1 n ⇐⇒ ∃C > 0 : |w n | ≤ C n ; w = o 1 n ⇐⇒ w n 1/n → 0 as n → ∞.
Given {x n } a sequence in a metric space(M, d), by x n x we mean that, for n sufficiently large, d(x n , x) → 0.

Finally, we shall denote with Diff(C p , 0) the space of germs of biholomorphisms of C p fixing the origin.

Preliminaries

One of the main tools in the study of the dynamics for tangent to the identity germs is the blow-up of the origin. In our case, it will suffice one blow-up to simplify our germ.

Definition 3.1. Let F ∈ Diff(C p , O) be tangent to the identity. The order ν 0 (F ) of F is the minimum ν ≥ 2 so that P ν ≡ 0, where we consider the expansion of as sum of homogeneous polynomials

F (z) = k≥1 P k (z),
where P k is homogeneous of degree k (P 1 (z) = z). We say that F is non-degenerate if P ν 0 (F ) (z) = 0 if and only if z = 0.

Let C p ⊂ C p × CP p-1 be defined by

C p {(v, [l]) ∈ C p × CP p-1 : v ∈ [l]}.
Using coordinates (z 1 , . . . , z p ) ∈ C p and [S 1 : • • • : S p ] ∈ CP p-1 , we obtain that C p is determined by the relations z h S k = z k S h for h, k ∈ {1, . . . , p}. It is well-known that C p is a complex manifold of the same dimension as C p . Given σ : C p → C p the projection, the exceptional divisor E := σ -1 (0) is a complex submanifold of C p and σ| C p \E : C p \ E → C p \ {0} is a biholomorphism. The datum ( C p , σ) is usually called blow-up of C p at the origin.

Note that an atlas of C p is given by {(V j , ϕ j )} 1≤j≤p , where

V i = {(z, [S]) ∈ C p | S j = 0},
and ϕ j : V j → C p is given by ϕ j (z 1 , . . . , z p , [S 1 : • • • : 1 : • • • : S p ]) = (S 1 , . . . , z j , . . . , S p ) , since the points in {S j = 1} satisfy z k = z j S k for k ∈ {1, . . . , p} \ {j}. Moreover we have ϕ -1 j (z 1 , . . . , z p ) = (z 1 z j , . . . , z j , . . . , z p z j , [z 1 :

• • • : 1 : • • • : z p ]) ∈ V j .
The projection σ : C p → C p is given by σ(z, [S]) = z, and in the charts (V j , ϕ j ) it is given by σ • ϕ -1 j (z 1 , . . . , z p ) = (z 1 z j , . . . , z j , . . . , z p z j ).

Proposition 3.2. Let F ∈ Diff(C p , 0) be tangent to the identity, and let ( C p , σ) be the blow-up of C p at the origin. Then there exists a unique lift F ∈ Diff( C p , E) so that

F • σ = σ • F .
Moreover, F acts as the identity on the points of the exceptional divisor , i.e., F (0, [S]) = (0, [S]).

We omit the proof of the previous result, which can be found in [START_REF] Abate | Diagonalization of non-diagonalizable discrete holomorphic dynamical systems[END_REF]. It is also possible to prove that there exists a unique lift for any endomorphism G of (C p , 0) so that G(z) = k≥h P k (z), where h is the minimum integer such that P h ≡ 0 and so that P h (z) = 0 if and only if z = 0, and in such a case the action on the exceptional divisor is G(0, [S]) = (0, [P h (S)]).

Characteristic directions

We shall use the following reformulation of Definition 2.1 and Definition 2.2 of [Ha] for the case k + 1 ≥ 2. Definition 4.1. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1, and let P k+1 be the homogeneous polynomial of degree k + 1 in the expansion of F as sum of homogeneous polynomials (that is, the first non-linear term of the series). We shall say that v ∈ C p \ {0} is a characteristic direction if P k+1 (v) = λv for some λ ∈ C. Moreover, if P k+1 (v) = 0, we shall say that the characteristic direction is non-degenerate, otherwise, we shall call it degenerate.

Since characteristic direction are well-defined only as elements in CP p-1 , we shall use the notation

[v] ∈ CP p-1 . Definition 4.2. Let F ∈ Diff(C p , 0) be a tangent to the identity germ. A characteristic trajectory for F is an orbit {X n } := {F n (X)} of a point X in the domain of F , such that {X n } converges to the origin tangentially to a complex direction [v] ∈ CP p-1 , that is lim n→∞ X n = 0, lim n→∞ [X n ] = [v].
The concepts of characteristic direction and characteristic trajectory are indeed linked as next result shows. We shall use coordinates, following Hakim [Ha], z = (x, y) ∈ C × C p-1 and (x n , y n ) := (f n 1 (x, y), f n 2 (x, y)) ∈ C × C p-1 for the n-tuple iterate of F . We have the following generalization of Proposition 2.3 of [Ha] for the case k + 1 ≥ 2.

Proposition 4.3. Let F ∈ Diff(C p , 0) be a tangent to the identity germ, and let {X n } be a characteristic trajectory tangent to [v] 

at the origin. Then v is a characteristic direction. Moreover, if [v] is non-degenerate, choosing coordinates so that [v] = [1 : u 0 ], writing P k+1 (z) = (p k+1 (z), q k+1 (z)) ∈ C × C p-1 , we have (4.1) x k n ≈ - 1 nkp k+1 (1, u 0 ) , as n → ∞,
where X n = (x n , y n ).

Proof.

If P k+1 ([v]) = 0, then [v]
is a degenerate characteristic direction and there is nothing to prove. Hence we may assume P k+1 ([v]) = 0, and, up to reordering the coordinates, we may assume that [v] = [1 : u 0 ] and F is of the form (4.2)

x 1 = x + p k+1 (x, y) + p k+2 (x, y) + • • • , y 1 = y + q k+1 (x, y) + q k+2 (x, y) + • • • ,
where x 1 , x, p j (x, y) ∈ C and y 1 , y, q j (x, y)

∈ C p-1 . Since {X n } is a characteristic trajectory tangent to [v], we have lim n→∞ y n x n = u 0 .
Now we blow-up the origin and we consider a neighbourhood of [v]. If the blow-up is y = ux, with u ∈ C p-1 , then the first coordinate of our map becomes

x 1 = x(1 + p k+1 (1, u)x k + p k+2 (1, u)x k+1 + • • • ), (4.3)
whereas the other coordinates become

u 1 = y 1 x 1 = u + r(u)x k + O(x k+1 ), (4.4) where r(u) := q k+1 (1, u) -p k+1 (1, u)u.
As a consequence, the non-degenerate characteristic directions of F of the form [1 : u] coincide with the ones so that u is a zero of the polynomial map r(u):

p k+1 (1, u) = λ q k+1 (1, u) = λu ⇐⇒ r(u) = q k+1 (1, u) -p k+1 (1, u)u = 0.
It remains to prove that if u n = yn xn converges to u 0 , then r(u 0 ) = 0. Since u n → u 0 , the series

(4.5) ∞ n=0 (u n+1 -u n )
is convergent. Thanks to (4.4), assuming r(u n ) = 0, we obtain

u n+1 -u n = r(u n )x k n + O x k+1 n ≈ r(u 0 )x k n .
We can now prove (4.1). In fact from

1 x 1 = 1 x 1 -p k+1 (1, u)x k + O(x k+1 ) , we deduce 1 x k 1 = 1 x k -kp k+1 (1, u) + O (x) ,
and hence

1 nx k n = 1 nx k - k n n-1 j=0 (p k+1 (1, u j ) + O (x j )) .
Setting a j := p k+1 (1, u j ) + O(x j ), since a j → p k+1 (1, u 0 ), the average 1 n n-1 j=0 a j converges to the same limit. It follows that, as n → ∞, 1 nx k n converges to -kp k+1 (1, u 0 ) and

x k n ≈ - 1 nkp k+1 (1, u 0 )
.

If r(u 0 ) = 0, then we could find C = 0 such that

u n+1 -u n ≈ C n r(u 0 ),
and the series ∞ n=0 (u n+1 -u n ) would not converge, contradicting (4.5); hence r(u 0 ) = 0, and this concludes the proof.

Unless specified, thanks to the previous results, without loss of generality, we shall assume that any given F ∈ Diff(C p , 0) tangent to the identity germ of order k + 1 ≥ 2, with a non-degenerate characteristic direction [v] is of the form (4.6)

x 1 = x(1 + p k+1 (1, u)x k + O(x k+1 )), u 1 = u + (q k+1 (1, u) -p k+1 (1, u)u)x k + O(x k+1 ),
Lemma 4.4. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2, of the form (4.6), with a non-degenerate characteristic direction

[v] = [1 : u 0 ].
Then there exists a polynomial change of coordinates holomorphically conjugating F to a germ with first component of the form

x 1 = x - 1 k x k+1 + O x k+1 u , x 2k+1 .
Proof. We shall first prove that it is possible to polynomially conjugate F to a germ whose first coordinate has no terms in x h for h = k + 2, . . . , 2k. Thanks to (4.3), expanding p k+1 (1, u) in u 0 , we obtain

x 1 = f (x, u) = x + p k+1 (1, u 0 )x k+1 + O u x k+1 , x k+2 .
Now we use the same argument one can find in [Be,Theorem 6.5.7,p.122], conjugating f to polynomials f h , for 1 ≤ h < k, of the form

f h (x, u) = x + p k+1 (1, u 0 )x k+1 + b h x k+h+1 + O u x k+1 , x k+h+2 ,
that is, changing polynomially the first coordinate x and leaving the others invariant, up to get

f k (x, u) = x + p k+1 (1, u 0 )x k+1 + O u x k+1 , x 2k+1 . Let us consider g(x) = x + βx h+1 , with β := b h (k-h)p k+1 (1,u 0 )
, and set Φ = (g, id p-1 ) : (x, u) → (g(x), u). Then, conjugating

F h = (f h , Ψ h ) via Φ, we have F h+1 • Φ = Φ • F h , which is equivalent to (4.7) f h+1 (g(x), u) = g(f h (x, u)), Ψ h+1 (g(x), u) = Ψ h (x, u).
Since Φ(0) = 0 and the Taylor expansion of Φ up to order k + 1 only depends on dΦ 0 , we must have

f h+1 (x, u) = x + ∞ m=k+1 A m x m + O u x k+1 , Ψ h+1 (x, u) = u + r(u)x k + O x k+1 ,
and in particular these changes of coordinates do not interfere on Ψ in the order that we are considering.

Let us consider the terms up to order k + h + 2 in the first equation of (4.7). We obtain

g(f h (x, u)) = x + p k+1 (1, u 0 )x k+1 + b h x k+h+1 + β(x h+1 + (h + 1)x k+h+1 ) + O u|x k+1 , x k+h+2 , and f h+1 (g(x), u) = x + βx k+1 + A k+1 x k+1 + • • • + A k+h+1 x k+h+1 + A k+1 β(k + 1)x k+h+1 + O x k+h+2 , u x k+1 .
Hence the coefficients A m satisfy

A k+1 = p k+1 (1, u 0 ), A k+2 = 0, . . . , A k+h = 0, b h + (h + 1)p k+1 (1, u 0 )β = β(k + 1)A k+1 + A k+h+1 ,
yielding A k+h+1 = 0. In particular there exists b h+1 such that

f h+1 (x, u) = x + p k+1 (1, u 0 )x k+1 + b h+1 x k+h+2 + O u x k+1 , x k+h+3 .
Repeating inductively this procedure up to h = k -1 we conjugate with a polynomial (and hence holomorphic) change of coordinates our original F to a germ with no terms in x h for h = k + 2, . . . , 2k, i.e., (4.8)

x 1 = f (x, u) = x + p k+1 (1, u 0 )x k+1 + O u x k+1 , x 2k+1 .
Finally, using the change of coordinates acting as x → X = k -p k+1 (1, u 0 )k x on the first coordinate, and as the identity on the other coordinates, the germ (4.8) is transformed into

X 1 = X - 1 k X k+1 + O u X k+1 , X 2k+1 ,
in the first component, whereas the other components, become

U 1 = U -r(U ) X k k p k+1 (1, u 0 ) + O(X k+1 ).
Up to now, we simply acted on the first component of F , mainly focusing on the characteristic direction [v]. We shall now introduce a class of (p -1) × (p -1) complex matrices which takes care of the remaining p -1 components of F . We consider the Taylor expansion of r in u 0 , and we have

u 1 = u - x k k p k+1 (1, u 0 ) r (u 0 )(u -u 0 ) + O u -u 0 2 x k , x k+1 ,
where r (u 0 ) = Jac(r)(u 0 ). It is then possible to associate to the characteristic direction [v] = [1 : u 0 ] the matrix

A(v) = 1 k p k+1 (1, u 0 ) r (u 0 ),
and hence, assuming without loss of generality u 0 = 0, after the previous reductions, the germ F has the form (4.9)

x 1 = x -1 k x k+1 + O u x k+1 , x 2k+1 , u 1 = (I -x k A)u + O u 2 x k , x k+1 .
The next result gives us a more geometric interpretation of this matrix.

Lemma 4.5. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 and let [v] ∈ CP p-1 be a non-degenerate characteristic direction for F with associate matrix A(v). Then the projection P k+1 in CP p-1 of the homogeneous polynomial P k+1 of degree k + 1 in the expansion of F as sum of homogeneous polynomials induces P k+1 : CP p-1 → CP p-1 , defined by

P k+1 : [x] → [P k+1 (x)],
which is well-defined in a neighbourhood of v. Moreover, [v] is a fixed point of P k+1 and A(v) is the matrix associated to the linear operator

1 k d( Pk+1 ) [v] -id .
Proof. The germ F can be written as

F (z) = z + P k+1 (z) + P k+1 (z) + • • • ,
where P h is homogeneous of degree h. Let [v] be a non-degenerate characteristic direction for F . The p-uple P k+1 of homogeneous polynomials of degree k + 1 induces a meromorphic map P k+1 : CP p-1 → CP p-1 given by P k+1 : [x] → [P k+1 (x)], and it is clear that the non-degenerate characteristic directions correspond to the fixed points of such a map, and the degenerate characteristic directions correspond to the indeterminacy points.

We may assume without loss of generality, v = (1, u 0 ). Then

U = [x 1 : • • • : x p ] ∈ CP p-1 | x 1 = 0
is an open neighourhood of [v] and the map ϕ 1 : U → C p-1 defined as

[x 1 : • • • x p ] → x 2 x 1 , • • • , x p x 1 = (u 1 , . . . , u p-1 ), is a chart of CP p-1 around [v]. The differential d( P k+1 ) [v] : T [v] CP p-1 → T [v]
CP p-1 is a linear map, and it is represented, in u 0 = ϕ 1 ([v]), by the Jacobian matrix of the map

g := ϕ 1 • P k+1 • ϕ -1 1 : ϕ 1 (U ) → ϕ 1 ( P k+1 (U )) given by u = (u 1 , . . . , u p-1 ) → q k+1,1 (1, u 1 , . . . , u p-1 ) p k+1 (1, u 1 , . . . , u p-1 ) , . . . , q k+1,p-1 (1, u 1 , . . . , u p-1 ) p k+1 (1, u 1 , . . . , u p-1
) .

We can associate to [v] the linear endomorphism

A F ([v]) = 1 k d( P k+1 ) [v] -id : T [v] CP p-1 → T [v] CP p-1 ,
and we can then prove that the matrix of A F ([v]) coincides with A(v). In fact, let g 1 , . . . , g p-1 be the components of g. Since g(u 0 ) = u 0 , we have

∂g i ∂u j (u 0 ) = 1 p k+1 (1, u 0 ) ∂q k+1,i ∂u j (1, u 0 ) - ∂p k+1 ∂u j (1, u 0 )u 0,i ,
for i, j = 1, . . . , p -1. Therefore, it follows from r i (u) = q k+1,i (1, u) -p k+1 (1, u)u i that

∂r i ∂u j (u 0 ) = ∂q k+1,i ∂u j (1, u 0 ) - ∂p k+1 ∂u j u 0,i u 0,i -p k+1 (1, u 0 )δ i,j ,
and hence

A(v) = 1 k (g (u 0 ) -id),
concluding the proof.

Lemma 4.6. Let F ∈ Diff(C p , 0) be a tangent to the identity germ and let ϕ ∈ C[[X]] p be an invertible formal transformation of C p . If F = I + h≥k+1 P h and ϕ = Q 1 + j≥2 Q j are the expansion of F an ϕ as sums of homogeneous polynomials, then the expansion of F * = ϕ -1 • F • ϕ is of the form I + h≥k+1 P * h , and: (4.10)

P * k+1 = Q -1 1 • P k+1 • Q 1 . Proof.
It is obvious that the linear term of F * is the identity. It then suffices to consider the equivalent condition F • ϕ = ϕ • F * , and to compare homogeneous terms up to order k + 1, writing F * = h≥1 P * h . We are now able to prove , as in Proposition 2.4 of [Ha], that we can associate to [v] the class of similarity of A(v) .

Proposition 4.7. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 and let [v] = [1 : u 0 ] ∈ CP p-1 be a non-degenerate characteristic direction for F . Then the class of similarity of A(v) is invariant under formal changes of the coordinates.

Proof. We may assume without loss of generality [v] = [1 : 0], and hence r(0) = 0. Up to a linear change of the coordinate we have

u 1 = u + x k r (0)u + O u 2 x k , x k+1 .
It suffices to consider linear changes of the coordinates. Indeed, writing F in its expansion as sum of homogeneous polynomials F = I + P k+1 + j≥k+2 P j , if F is conjugated by ϕ ∈ Diff(C p , 0) of the form ϕ = L + j≥2 Q j , by Lemma 4.6 we have

F * = ϕ -1 • F • ϕ = I + L -1 • P k+1 • L + • • • ,
and hence the expansion of F * up to order k + 1 only depends on dϕ 0 .

The projection of P * k+1 on CP p-1 is, with the notation of Lemma 4.5, P * k+1 = L-1 • P k+1 • L, where L is just the linear transformation of CP p-1 induced by L and P k+1 is the projection of P k+1 . Note that [v * ] is a characteristic direction for F * if and only if [Lv * ] is a characteristic direction for F . Since we have

d( P * k+1 ) [v * ] = L-1 • d( P k+1 ) [v] • L, we obtain 1 k d( P * k+1 ) [v * ] -I = L-1 • 1 k d( Pk+1 ) [v] -I • L, yielding, by Lemma 4.5, A * (v * ) = L -1 A(v)L, which is the statement.
As a corollary, we obtain that the eigenvalues of A(v) are holomorphic (and formal) invariants associated to [v], and so the following definition is well-posed.

Definition 4.8. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 and let [v] ∈ CP p-1 be a non-degenerate characteristic direction for F . The class of similarity of the matrix A(v) is called (with a slight abuse of notation) the matrix associated to [v] and it is denoted by A(v). The eigenvalues of the matrix A(v) associated to [v] are called directors of v. The direction [v] is called attracting if all the real parts of its directors are strictly positive.

Changes of coordinates

We proved in the previous section that in studying germs F ∈ Diff(C p , 0) tangent to the identity in a neighbourhood of a non-degenerate characteristic direction [v], we can reduce ourselves to the case v = (1, 0) and F of the form:

(5.1)

x 1 = f (x, u) = x -1 k x k+1 + O( u x k+1 , x 2k+1 ), u 1 = Ψ(x, u) = (I -x k A)u + O( u 2 x k , u x k+1 ) + x k+1 ψ 1 (x),
where A = A(v) is the (p -1) × (p -1) matrix associated to v, and ψ 1 is a holomorphic function. Moreover, we may assume A to be in Jordan normal form.

In this section we shall perform changes of coordinates to find F -invariant holomorphic curves, tangent to the direction u = 0, that is, we want to find a function u holomorphic in an open set U having the origin on its boundary, and such that

   u : U → C p-1 , u(0) = 0, u (0) = 0, u(f (x, u(x))) = Ψ(x, u(x)).
If we have such a function, the F invariant curve will just be φ(x) = (x, u(x)).

We now give precise definitions, that generalize Definition 1.2 of [Ha] and Definition 1.5 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2. Definition 5.1. Let F ∈ Diff(C p , 0) be a tangent to the identity germ. A subset M ⊂ C p is a parabolic manifold of dimension d at the origin tangent to a direction V if:

(1) there exist a domain S in C d , with 0 ∈ ∂S, and an injective map ψ : S → C p such that ψ(S) = M and lim z→0 ψ(z) = 0; (2) for any sequence {X h } ⊂ S so that X h → 0, we have [ψ(X h )] → [V ];

(3) M is F -invariant and for each p ∈ M the orbit of p under F converges to 0. A parabolic manifold of dimension 1 will we called parabolic curve.

We shall search for a function ψ = (id C , u), defined on the k connected components of D r = {x ∈ C | |x k -r| < r}, and taking values in C p , verifying u(f (x, u(x))) = Ψ(x, u(x)), and, taking r sufficiently small, we shall obtain parabolic curves.

The idea is to first search for a formal transformation, and then to show its convergence in a sectorial neighbourhood of the origin. The general obstruction to this kind of procedure is given by the impossibility of proving directly the convergence of the formal series.

As we said, in this section we shall change coordinates to further simplify F , by means of changes defined in domains of C p , with 0 on the boundary, and involving square roots and logarithms in the first variable x.

Following Hakim [Ha], we shall first deal with the 2-dimensional case (p = 2), generalizing Propositions 3.1 and 3.5 of [Ha] for the case k + 1 ≥ 2, to better understand the changes of coordinates that we are going to use. The equations (5.1) for p = 2 are the following:

(5.2)

x 1 = f (x, u) = x -1 k x k+1 + O(ux k+1 , x 2k+1 ) u 1 = Ψ(x, u) = (1 -x k α)u + x k+1 ψ 1 (x) + O(u 2 x k , ux k+1 ),
where α ∈ C is the director, and we shall need to consider separately the case kα ∈ N and the case kα / ∈ N.

5.1. Case p = 2 and kα / ∈ N * .

Proposition 5.2. Let F = (f, Ψ) ∈ Diff(C 2 , 0) be of the form (5.2). If kα / ∈ N, then there exists a unique sequence {P h } h∈N ⊂ C[x] of polynomials with deg(P h ) = h for each h ∈ N, such that (5.3) P h (0) = 0, Ψ (x, P h (x)) = P h (f (x, P h (x))) + x h+k+1 ψ h+1 (x).

Moreover P h+1 (x) = P h (x) + c h+1 x h+1 , where c h+1 = kψ h+1 (0)

kα-(h+1) . Proof. We shall argue by induction on h.

If h = 1, we have to search for P 1 = c 1 x satifying (5.3). We have

Ψ(x, P 1 (x)) = c 1 x 1 -αx k + O(x k+1 ) + x k+1 ψ 1 (x)
and

P 1 (f (x, P 1 (x))) = c 1 x - 1 k x k+1 + O(x k+2 ) . Hence Ψ(x, P 1 (x)) -P 1 (f (x, P 1 (x))) = c 1 x k+1 1 k -α + ψ 1 (0) c 1 + O(x k+2 ).
To delete the terms of order less than k +2, we must set c 1 = kψ 1 (0) kα-1 , which is possible since kα / ∈ N * . Let us now assume that we have a unique polynomial P h of degree h satisying (5.3). We search for a polynomial P h+1 of degree h + 1 and such that Ψ (x, P h+1 (x)) = P h+1 (f (x, P h+1 (x))) + x h+k+2 ψ h+2 (x).

We can write P h+1 as P h+1 (x) = p h (x) + c h+1 x h+1 , where p h is a polynomial of degree ≤ h and p h (0) = 0 . In particular,

P h+1 (f (x, P h+1 (x))) = p h (f (x, P h+1 (x))) + c h+1 (f (x, P h+1 (x))) h+1 . Let x 1 = f (x, u) = x -1 k x k+1 + x k+1 ϕ(x, u), with ϕ(x, u) ∈ O (x, u). We have p h (f (x, P h+1 (x))) = p h x - 1 k x k+1 + x k+1 ϕ(x, p h (x)) + O(x k+h+2 ) = p h (f (x, p h (x))) + O(x k+h+2 ),
and

(f (x, P h+1 (x))) h+1 = x h+1 1 - h + 1 k x k + O(x k+1 ) = x h+1 1 - h + 1 k x k + O(x h+k+2 ).
It thus follows

P h+1 (f (x, P h+1 (x))) = p h (f (x, p h (x))) + c h+1 x h+1 -c h+1 h + 1 k x h+k+1 + O(x h+k+2 ).
By the second equation of (5.2),

u 1 = u[1 -αx k + x k φ(x, u)] + x k+1 ψ 1 (x), with φ(x, u) ∈ O(x, u),
and hence

Ψ (x, P h+1 (x)) = p h (x) + c h+1 x h+1 • 1 -αx k + x k φ(x, P h+1 (x)) + x k+1 ψ 1 (x) = Ψ (f (x, p h (x))) + c h+1 x h+1 -αc h+1 x h+k+1 + O(x h+k+2 ).
(5.4)

Therefore Ψ (x, P h+1 (x)) -P h+1 (f (x, P h+1 (x))) = Ψ (f (x, p h (x))) -p h (f (x, p h (x))) + c h+1 h + 1 k -α x h+k+1 + O(x h+k+2 ). (5.5)
To have P h+1 satisying (5.3), we need

Ψ (f (x, p h (x))) -p h (f (x, p h (x))) + c h+1 x h+k+1 h + 1 k -α = O(x h+k+2 ),
that is, p h has to solve (5.3); and this implies, by our induction hypothesis, p h = P h . Substituting P h to p h in (5.5) and expanding ψ h+1 in a neighbourhood of 0 we get

Ψ (x, P h+1 (x)) -P h+1 (f (x, P h+1 (x))) = x h+k+1 ψ h+1 (0) + c h+1 h + 1 k -α + O(x h+k+2 ),
and so we have to set the leading coefficient of P h+1 to be

c h+1 = kψ h+1 (0) kα -(h + 1)
, which is possible since kα ∈ N * , and then we are done.

The following reformulation of Corollary 3.2 of [Ha] for the case k + 1 ≥ 2, shows that we can rewrite the equations of F in a more useful way, with a suitable change of coordinates.

Corollary 5.3. Let F = (f, Ψ) ∈ Diff(C 2 , 0) be of the form (5.2), with kα / ∈ N. Then, for any h ∈ N, there exists a holomorphic change of coordinates conjugating F to (5.6)

x 1 = f (x, u) = x -1 k x k+1 + O(ux k+1 , x 2k+1 ), u 1 = Ψ(x, u) = (1 -αx k )u + x h+k ψ h (x) + O(u 2 x k , ux k+1 ).
Proof. It is clear that the change of coordinates will involve only u. Let h ∈ N, and let P h-1 be the polynomial of degree h -1 of Proposition 5.2 and consider the change of coordinates

X = x, U = u -P h-1 (x).
The first equation of (5.2) does not change, whereas the second one becomes

U 1 = u 1 -P h-1 (x 1 ) = Ψ (X, U + P h-1 (X)) -P h-1 (f (X, U + P h-1 (X))),
where we have

Ψ (X, U + P h-1 (X)) = U [1 -αX k ] + Ψ(X, P h-1 (X)) + O(U 2 X k , U X k+1 ).
Analogously to the previous proof, we can expand

P h-1 (f (X, U + P h-1 (X))) at the first order in U obtaining P h-1 (f (X, U + P h-1 (X))) = P h-1 X - 1 k X k+1 + X k+1 ϕ 1 (X, P h-1 (X)) + O(U X k+1 ) = P h-1 (f (X, P h-1 (X))) + O(U X k+1 ).
Therefore we have

U 1 = X h+k ψ h (X) + U 1 -αX k + O(U X k , X k+1 ) ,
and this concludes the proof.

5.2. Case p = 2 and kα ∈ N * . We now consider the case kα ∈ N * , kα ≥ 1. Proposition 3.3 of [Ha] becomes the following.

Proposition 5.4. Let F = (f, Ψ) ∈ Diff(C 2 , 0) be of the form (5.2), with kα ∈ N. Then there exists a sequence {P h (x, t)} h∈N of polynomials in two variables (x, t) such that ũh (x) := P h x, x kα log x , has degree ≤ h in x (where consider as constant the terms in log x). Moreover,

(5.7) Ψ (x, ũh (x)) -ũh (f (x, ũh (x))) = x h+k+1 ψ h+1 (x),
where ψ h+1 satisfies

(1) x h+k ψ h+1 is holomorphic in x and x kα log x;

(2)

ψ h+1 (x) = R h+1 (log x) + O (x), with R h+1 a polynomial of degree p h+1 ∈ N, p h+1 ≤ h + 1.
Proof. The proof is done by induction on h. If h < kα, then the same argument of Proposition 5.2 holds, since the polynomials P h are still well-defined. As a consequence, also the change of variables u → u -P kα-1 (x) is well-defined an hence we can assume that the second component of F is of the form

u 1 = u 1 -αx k + O(ux k , x k+1 ) + x kα+k ψ kα (x).
It is clear that, for h < kα, the functions ψ h are holomorphic in x and thus they satisfy the conditions ( 1) and ( 2) of the statement.

We can then assume that F is of the form (5.8)

x 1 = f (x, u) = x -1 k x k+1 + x k+1 ϕ 1 (x, u), u 1 = Ψ(x, u) = u 1 -αx k + x k ϕ 2 (x, u) + x kα+k ψ kα (x),
where ϕ 1 and ϕ 2 are holomorphic functions or order at least 1 in x and u.

If h = kα, it suffices to consider P kα (x, t) = ct, where c = -kψ kα (0). In fact ũkα (x) = cx kα log x verifies (5.7) if

Ψ (x, ũkα (x)) -ũkα (f (x, ũkα (x))) = ũkα (x) 1 -αx k + x k ϕ 2 (x, ũkα (x)) + x kα+k ψ kα (x) -ũkα x - 1 k x k+1 + x k+1 ϕ 1 (x, ũkα (x)) = O x kα+k+1 (log x) p h , for some p h ∈ N. Recall that    ∂f ∂u = x k+1 ∂ϕ 1 ∂u = O x k+1 , ∂Ψ ∂u = 1 -αx k + x k ϕ 2 (x, u) + u ∂ϕ 2 (x,u) ∂u = 1 -αx k + O x k+1 , ux k . (5.9) We have ũkα (x) 1 -αx k + x k ϕ 2 (x, ũkα (x)) + x kα+k ψ kα (x) = cx kα log x -αcx kα+k log x + x kα+k log x • ϕ 2 x, x kα log x + x kα+k ψ kα (x), and ũkα x - 1 k x k+1 + x k+1 ϕ 1 (x, ũkα (x)) = c x - x k+1 k + O x kα+k+1 log x, x 2k+1 kα log x - x k+1 k + O x kα+k+1 log x, x 2k+1 = cx kα log x -cαx kα+k log x - c k x kα+k + O(x 2kα+k (log x) 2 , x kα+2k log x). Therefore Ψ (x, ũkα (x)) -ũkα (f (x, ũkα (x))) = x kα+k ψ kα (0) + c k x kα+k + x kα+k+1 O x kα-1 (log x) 2 , log x . If c = -kψ kα (0), then Ψ (x, ũkα (x)) -ũkα (f (x, ũkα (x))) = x kα+k+1 ψ kα+1 (x) = O(x kα+k+1 (log x) 2 ).
In particular, note that

ψ kα+1 (x) = R kα+1 (log x) + O(x),
where R kα+1 is a polynomial of degree 1 or 2, depending on whether kα = 1 or kα > 1. Also in this case ψ kα+1 satisfies the conditions ( 1) and ( 2) of the statement. Indeed, since kα + k ≥ 2, we have that x kα+k R kα+1 (log x) is holomorphic in x kα log x and x.

We are left with the case h > kα. The inductive hypothesis ensures that (5.7) holds for h -1 and there exists a polynomial R h (t) of degree ≤ h so that ψ h (x) = R h (log x) + O(x). We search for ũh of the form

(5.10) ũh (x) = ũh-1 (x) + x h Q h (log x),
where Q h is a polynomial, and we shall prove that ũh , of the form (5.10), satisfies (5.7) if and only if Q h is the unique polynomial solution of the following differential equation

(h -kα)Q h (t) -Q h (t) = kR h (t).
In fact we have

Ψ(x, ũh (x))-ũh (f (x, ũh (x))) = Ψ x, ũh-1 (x) + x h Q h (log x) -ũh-1 (f (x, ũh (x))) -(f (x, ũh (x))) h Q h (log(f (x, ũh (x)))).
Thanks to the inductive hypothesis, in ũh for h ≥ kα, the term of lower degree is cx kα log x. We have

Ψ(x, ũh-1 (x) + x h Q h (log x)) = Ψ x, ũh-1 (x) + x h Q h (log x) = Ψ(x, ũh-1 (x)) + ∂Ψ ∂u (x, ũh-1 (x))x h Q h (log x) + n≥2 1 n! ∂ n Ψ ∂u n (x, ũh-1 (x)) x h Q h (log x) n = Ψ(x, ũh-1 (x)) + x h Q h (log x) -αx k+h Q h (log x) + O x h+k+kα (log x) deg Q h +1 , x h+k+1 (log x) deg Q h .
Analogously to the previous proof, using the first equation in (5.9), we have

f x, ũh-1 (x) + x h Q h (log x) = f (x, ũh-1 (x)) + n≥1 1 n! ∂ n f ∂x n (f (x, ũh-1 (x))) x h Q h (log x) n = f (x, ũh-1 (x)) + O x h+k+1 (log x) deg Q h . Therefore ũh-1 (f (x, ũh (x))) = ũh-1 f (x, ũh-1 (x)) + O x h+k+1 (log x) deg Q h = ũh-1 (f (x, ũh-1 (x))) + O x h+k+kα (log x) deg Q h +1 .
Finally, expanding Q h in a neighbourhood of log x, and considering the terms of degree h + k we obtain

f (x, ũh (x)) h Q h log(f (x, ũh (x))) = x - x k+1 k + O(x k+1 ũh (x), x k+2 ) h Q h log x - x k+1 k + O(x k+1 ũh (x), x k+2 ) = x h - h k x h+k + O x k+h ũh (x), x k+h+1 × Q h (log x)- x k k Q h (log x) + O x k ũh (x)(log x) deg Q h -1 , x k+1 (log x) deg Q h -1 = x h Q h (log x) - x h+k k Q h (log x) - h k x h+k Q h (log x) + O x h+k+kα (log x) deg Q h +1 , x h+k+1 (log x) deg Q h .
The inductive hypothesis implies

Ψ(x, ũh-1 (x)) -ũh-1 (f (x, ũh-1 (x))) = x k+h ψ h (x), with ψ h (x) = R h (log x) + o(x).
Reordering the terms, we then obtain (5.11) where R h (t) is the polynomial of degree p h ≤ h. Hence ũh satisfies (5.7) if and only if Q h is the unique solution of (5.12)

Ψ(x, ũh (x)) -ũh (f (x, ũh (x))) = x h+k R h (log x) + h k -α Q h (log x) + 1 k Q h (log x) + O x h+k+kα (log x) deg Q h +1 , x h+k+1 (log x) deg Q h ,
(kα -h)Q h (t) -Q h (t) = kR h (t).
Therefore R h+1 is a polynomial so that deg R h+1 ≤ h + 1, and we can have deg

R h+1 = h + 1 only if kα = 1. Moreover, if kα = 1, deg R h+1 can be more that h + 1.
We finally have to verify that ψ h+1 is holomorphic, and that ũh is a polynomial in x and x kα log x of degree ≤ h in x. Since Q h solves the differential equation (5.12), it has to be a polynomial of the same degree as R h . Moreover, since x h R h (log x) is a polynomial in x and x kα log x, we have p h ≤ h kα . We thus conclude that ũh is a polynomial in x and x kα log x of degree ≤ h. Thanks to (5.11), x h+k ψ h+1 (x) is holomorphic in x and x kα log x.

Summarizing, the sequence of polynomials is the following

P h (x, t) =        h i=1 c i x i , c i = kψ i (0) kα-(i+1) if h < kα, ψ kα (0)t if h = kα, P h-1 (x, t) + x h Q h (log x) if h > kα.
Similarly to the case kα / ∈ N * , we deduce the following reformulation of Corollary 3.4 of [Ha] for the case k + 1 ≥ 2.

Corollary 5.5. Let F = (f, Ψ) ∈ Diff(C 2 , 0) be of the form (5.2), with kα ∈ N. Then for any h ∈ N so that h ≥ max{k, kα} it is possible to choose local coordinates in which F has the form

x 1 = f (x, u) = x -1 k x k+1 + O(ux k+1 , x 2k+1 log x), u 1 = Ψ(x, u) = u 1 -αx k + O(ux k , x k+1 log x) + x h+k ψ h (x),
where f , Ψ and x h+k-1 ψ h (x) are holomorphic in x, x kα log x and u.

Proof. Consider h ≥ max{k, kα}, and let ũh-1 be the polynomial map in x and x kα log x given by the previous result. With the change of coordinates

X = x, U = u -ũh-1 , the first equation becomes X 1 = X - 1 k X k+1 + O U X k+1 , X 2k+1 log X .
In particular the term x 2k+1 log x appears only if kα = 1. The second equation becomes

U 1 = u 1 -ũh-1 (x 1 ) = U 1 -αX k + O U 2 X k , U X k+1 log x + X k+h ψ h (X).
Again, the term U X k+1 log x appears only if kα = 1, otherwise we have U X k+1 .

Remark 5.6. Note that if kα ∈ N * , due to the presence of the logarithms, all the changes of coordinates used are not defined in a full neighbourhood of the origin, but in an open set having the origin on its boundary.

5.3. General case: p > 2. Now we deal with the general case of dimension p > 2. Also in this case, the allowed changes of coordinates will depend on the arithmetic properties of the directors associated to the characteristic direction.

Proposition 5.7. Let F = (f, Ψ) ∈ Diff(C p , 0) be of the form (5.1), let [v] = [1 : 0] be a nondegenerate characteristic direction, and let {a 1 , . . . , a s } be the directors of [v] so that ka j ∈ N.

Then, for all h ∈ N, there exists ũh : C → C p-1 so that its components are polynomials in x, x ka 1 log x, . . . , x kas log x of degree ≤ h in x, and the change of coordinates u → u -ũh (x) conjugates F to (5.13)

x 1 = f (x, U ) = x -1 k x k+1 + O( U x k+1 , x 2k+1 log x), U 1 = Ψ(x, U ) = (I -Ax k )U + O U 2 x k , U x k+1 log x + x k+h ψ h (x), with ψ h (x) = R h (log x) + O (x), where R h (t) = (R 1 h (t), . . . , R p-1 h (t)) is a polynomial map with deg R i h = p i h ≤ h, for each i = 1, . . . , p -1. Proof.
We may assume without loss of generality that A is in Jordan normal form. For each fixed h, the j-th component of ũh is determined by the components from p -1 to j + 1, and each of them is determined with the results proved in dimension 2.

It suffices to prove the statement when A is a unique Jordan block of dimension p -1 with eigenvalue α and with elements out of the diagonal equal to α. The equations of F are

     x 1 = f (x, u) = x -1 k x k+1 + O x 2k+1 , (u, v) x k+1 , u 1,j = Ψ j (x, u) = (1 -x k α)u j -x k αu j+1 + O u 2 x k , u x k+1 + x k+1 ψ j (x) u 1,p-1 = Ψ p-1 (x, u) = (1 -x k α)u p-1 + O u 2 x k , u x k+1 + x k+1 ψ p-1 (x),
for j = 1, . . . , p -2 and where ψ 1 , . . . , ψ p-1 are holomorphic bounded functions.

We proceed by induction on h. If h = 0, it suffices to consider ũ0 ≡ 0. In fact, Ψ j (x, ũ0 ) -ũ0,j (f (x, ũ0 )) = x k+1 ψ j (x), for j = 1, . . . , p -1.

Let us then assume by inductive hypothesis, that there exist ũh-1 such that (5.14) Ψ j (x, ũh-1 ) -ũh-1,j (f (x, ũh-1 )) = x k+h ψ h,j (x), for j = 1, . . . , p -1.

As in the 2-dimensional case, we want to find polynomials Q h,1 , . . . , Q h,p-1 so that ũh,j (x) = ũh-1,j (x) + Q h,j (log x)x h , for j = 1, . . . , p -1, verify (5.14) for h. Proposition 5.4 gives us that ũh,p-1 is a solution if and only if

Q h,p-1 verifies (kα -h)Q h,p-1 (t) -(Q h,p-1 (t)) (t) = kR h,p-1 (t).
Moreover, we have deg R h,p-1 = p h,p-1 ≤ h. We proceed in the same way for the remaining ũh,j 's, except for the fact that the equations are a bit different from the ones used before. In particular

           ∂Ψ j ∂u j (x, u) = 1 -αx k + O x k+1 , u x k , ∂Ψ j ∂u j-1 (x, u) = -αx k + O x k+1 , u x k . Hence Ψ j (x, ũh ) = Ψ j (x, ũh-1 + x h Q h (log x)) = Ψ j (x, ũh-1 ) + (1 -αx k )x h Q h,j (log x) -αx k+h Q h,j+1 (log x) + O x k+h+1 (log x) p h , ũh-1 x k+h (log x) p h ,
where p h = max deg Q h,j , and

ũh (f (x, ũh )) = ũh-1 (f (x, ũh )) + [f (x, ũh )] h Q h (log(f (x, ũh )). We have ũh-1 (f (x, ũh )) = ũh-1 (f (x, ũh-1 )) + O x h+k+1 log x, ũh x h+k log x ,
and

[f (x, ũh )] h Q h (log(f (x, ũh )) = x 1 - 1 k x k + O x 2k , ũh x k h × Q h log x + log 1 - 1 k x k + O x 2k , ũh x k = x h Q h (log x) -x k+h 1 k Q h (log x) + h k Q h (log x) × O x 2k+h (log x) l 1 , ũh x k+h (log x) l 2 ,
for some integer l 1 and l 2 . It follows

Ψ j (x, ũh ) -ũh,j (f (x, ũh )) = x k+h ψ h,j (x) + 1 k Q h,j (log x) + h k Q h,j (log x) -αQ h,j (log x) -αQ h,j+1 (log x) + O x 2k+h (log x) l 1 , ũh x k+h (log x) l 2 .
Hence ũh solves the equations if and only if

Q h,j solves [h -kα] Q h,j (t) + Q h,j (t) = kαQ h,j+1 (t) -kR h,j (t), for j = 1, . . . , p -2 and moreover deg R h,j ≤ h.
Remark 5.8. It is clear that in the previous proposition that we have no restrictions on h, and hence we can choose h = k h, obtaining F of the form

x 1 = f (x, u) = x -1 k x k+1 + O( u x k+1 , x 2k+1 log x) u 1 = Ψ(x, u) = (I -Ax k )u + O u 2 x k , u x k+1 log x + x k( h+1) ψ h (x), where ψ h (x) = R k h(x) + O (x).
Then, up to changing the degree of the polynomials in log x, for any h ∈ N we can write

u 1 = Ψ(x, u) = (I -Ax k )u + O u 2 x k , u x k+1 log x + x k(h+1) ψ h (x).

Existence of parabolic curves

From now on, without loss of generality, we shall assume that non-degenerate characteristic direction is [1 : 0] ∈ CP p-1 . Moreover, thanks to Proposition 5.7 and to Remark 5.8, after blowingup the origin, it is possible to change coordinates, in a domain having the origin on its boundary, such that F , in the coordinates (x, u) ∈ C × C p-1 , has the form (6.1)

x 1 = f (x, u) = x -1 k x k+1 + O( u x k+1 , x 2k+1 log x) u 1 = Ψ(x, u) = (I -Ax k )u + O u 2 x k , u x k+1 (log x) p h + x k(h+1) ψ h (x),
for an arbitrarily chosen h ∈ N, and with p h ∈ N \ {0} depending on h.

Remark 6.1. The existence of parabolic curves S 1 , . . . , S k tangent to a given direction [v] at 0 is equivalent to finding u defined and holomorphic on the

k connected components Π 1 r , . . . , Π k r of D r := {x ∈ C | |x k -r| < r} and such that (6.2) u(f (x, u(x))) = Ψ(x, u(x)) lim x→0 u(x) = lim x→0 u (x) = 0.
We are going to prove the existence of such curves finding a fixed point of a suitable operator between Banach spaces. We shall then need to further simplify our equations via a change of coordinates holomorphic that will be holomorphic on Re (x k ) > 0. Let us consider the new coordinates (x, w) ∈ C × C p-1 , where w ∈ C p-1 is defined, on Re (x k ) > 0, by u = x kA w := exp (kA log x)w.

Hence u 1 = x kA 1 w 1 . Starting from (6.1) we obtain

x 1 -x = - 1 k x k+1 + O u x k+1 , x 2k+1 log x and (6.3) u 1 -(I -x k A)u = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h .
Moreover, we have

x kA 1 = exp kA log x + log 1 - 1 k x k + O u x k , x 2k log x = x kA I -x k A + O u x k , x 2k log x .
(6.4) Using x kA w = u, we have

x kA w 1 = x kA x -kA 1 x kA 1 w 1 = x kA x -kA 1 u 1 . Set (6.5) H(x, u) := x kA (w -w 1 ) = u -x kA x -kA 1 u 1 .
Thanks to (6.4), we have

H(x, u) = u -(I -x k A) + O u x k , x 2k log x -1 u 1 = -(I -x k A) + O u x k , x 2k log x -1 × u 1 -(I -x k A) + O u x k , x 2k log x u = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h . (6.6)
Therefore we can write w 1 = w -x -kA H(x, u). Now we have all the ingredients to search for parabolic curves tangent to the direction [v]. For the moment, we only impose that u is at least of order k + 1. We have the following generalization of Lemma 4.2 of [Ha] . Lemma 6.2. Let f be a holomorphic function defined as in the first equation of (6.1). For any u so that u(x) = x k+1 (x), for some bounded holomorphic map : Π i r → C p-1 , let {x n } be the sequence of the iterates of x via

x 1 = f u (x) := f (x, u(x)) . Then, for r small enough, for any so that ∞ ≤ 1, and any n ∈ N, if x ∈ Π i r then x n ∈ Π i r , and moreover

|x n | ≤ 2 1/k |x| (|1 + nx k |) 1 k .
Proof. Thanks to the hypothesis on u we can rewrite the first equation of (6.1), obtaining

x 1 = x - 1 k x k+1 + ax 2k+1 + bx 2k+1 log x + O x 2k+2 (log x) l , x 2k+2 .
By Proposition 5.7, we have the term bx 2k+1 log x only if 1 is an eigenvalue of kA. Moreover, we have

x k 1 = x k 1 -x k + kax 2k + kbx 2k log x + 1 k 2 k 2 x 2k + O x 2k+1 (log x) l . Hence 1 x k 1 = 1 x k + 1 + (1 -a 1 )x k -b 1 x k log x + O(x k+1 (log x) l ),
where O(x k+1 (log x) l ) represents a function bounded by

K |x| k+1 |log x| l , with K not depending on u, because ∞ ≤ 1. It is thus possible to write 1 x k 1 = 1 x k 1 + x k + x 2k a k + 2b k log x + O(x 2k+1 (log x) l ) (6.7)
where the same considerations hold as before. We can now define the following change of variable on Re

x k > 0 1 z = 1 x k + a log x + b(log x) 2 .
Therefore (6.7) becomes

1 z 1 = 1 z + 1 + O(x k+1 (log x) l ),
where we used

log x 1 = log x - 1 k x k + O(x 2k (log x) 2 ) and (log x 1 ) 2 = (log x) 2 - 2 k x k log x + O(x 2k (log x) 2 ).
We then deduce 1

z n = 1 z n-1 + 1 + O(x k n-1 (log x n-1 ) l ) = • • • = 1 z + n + O(1).
On the other hand 1

z n = 1 x k n + a log x n + b log 2 x n = 1 x k n 1 + ax k n log x n + bx k n log 2 x n ,
and hence

1 z + n + O(1) = 1 x k 1 + nx k 1 + ax k log x + bx k log 2 x + O(x k ) 1 + nx k .
If r is small enough, f u is an attracting map from Π i r in itself, and hence for any ε > 0 there exists n so that, for each n > n

ax k n log x n + bx k n log 2 x n < ε, and 
ax k log x + bx k log 2 x + O(x k ) 1 + nx k < ε.
Therefore, for n > n and r small enough

|x n | k = x k 1 + nx k 1 + ax k n log x n + bx k n log 2 x n 1 1 + ax k log x+bx k log 2 x+O(x k ) 1+nx k ≤ 2 |x| k |1 + nx k | ,
and hence we obtain the statement.

Analogously to Corollary 4.3 in [Ha], for the case k + 1 ≥ 2 we have the following very useful inequality.

Corollary 6.3. Let f be a holomorphic function defined as in the first equation of (6.1). For any u so that u(x) = x k+1 (x), for some bounded holomorphic map : Π i r → C p-1 with ∞ ≤ 1, let {x n } be the sequence of the iterates of x via

x 1 = f u (x) := f (x, u(x)) ,
and let r be sufficiently small. Then for any µ > k (µ ∈ R) and for any q ∈ N there exists a constant C µ,q such that, for any x ∈ Π i r , we have

∞ n=0 |x n | µ |log x n | q ≤ C µ,q |x| µ-k |log |x|| q .
Proof. If x ∈ Π i r , then Re x k > 0, and hence

1 + nx k 2 = 1 + nx k + nx k + n 2 x k 2 ≥ 1 + nx k 2 .
Then the inequality of the previous lemma becomes

|x n | ≤ 2 1/k |x| |1 + nx| 1 k ≤ 2 1/k |x| 2k 1 + |nx k | 2 .
Recalling that, for x sufficiently small, |log x| ≤ K 1 |log |x||, for each µ > k and each q ∈ N we have

|x n | µ |log x n | q ≤ K 1 |x n | µ |log |x n || q ≤ K 2 |x| µ 2k (1 + |nx k | 2 ) µ log 2 1/k |x| 2k 1 + |nx k | 2 q ,
where K 2 = K 1 2 µ/k . We then have that there exists K so that

∞ n=0 |x n | µ |log x n | q ≤ K ∞ 0 |x| µ (1 + |tx k | 2 ) µ/2k log 2 1/k |x| 2k 1 + |tx k | 2 q dt = K |x| µ-k ∞ 0 1 (1 + s 2 ) µ/2k log 2 1/k |x| 2k √ 1 + s 2 q ds.
(6.8)

To conclude, it suffices the following estimate

log 2 1/k |x| 2k √ 1 + s 2 q ≤ |log |x|| q q j=0 q j log 2k √ 1 + s 2 2 1/k j .
In fact, we have

∞ 0 1 (1 + s 2 ) µ/2k log 2 1/k |x| 2k √ 1 + s 2 q ds ≤ |log |x|| q q j=0 q j ∞ 0 log 2k √ 1 + s 2 2 1/k j 1 (1 + s 2 ) µ/2k ds.
that, together with (6.8) yields

∞ n=0 |x n | µ |log x n | q ≤ C µ,q |x| µ-k |log |x|| q , where C µ,q := K q j=0 q j ∞ 0 log 2k √ 1 + s 2 2 1/k j 1 (1 + s 2 ) µ/2k ds, concluding the proof.
We have the following analogous of Lemma 4.4 of [Ha]. Lemma 6.4. Let f be a holomorphic function defined as in the first equation of (6.1). For any u so that u(x) = x k+1 (x), for some bounded holomorphic map : Π i r → C p-1 , let {x n } be the sequence of the iterates of x via

x 1 = f u (x) := f (x, u(x)) .
Then, if r is sufficiently small, for any so that ∞ ≤ 1 and x ∞ ≤ 1, for each n ∈ N and each x ∈ Π i r , we have

dx n dx ≤ 2 |x n | k+1 |x| k+1 .
Proof. Arguing as in the proof of Lemma 6.2, we have (6.9)

1 x k 1 + a log x 1 + b(log x 1 ) 2 = 1 x k + 1 + a log x + b(log x) 2 + ϕ(x, u),
where ϕ is holomorphic in x, u, x j log x and

ϕ(x, u) = O x 2k (log x) l , u = O x 2k (log x) l , x k+1 .
By (6.9) we therefore have

1 x k n + a log x n + b(log x n ) 2 = 1 x k + n + a log x + b(log x) 2 + n-1 p=0 ϕ(x p , u(x p )).
Differentiating, we obtain

- k -ax k n -2bx k n log x n x k+1 n dx n dx = - k -ax k -2bx k log x x k+1 + n-1 p=0 d dx p [ϕ(x p , u(x p ))] dx p dx .
(6.10)

We shall now proceed by induction on n. We first have to estimate the sum of the remainders ϕ(x p , u(x p )). From the hypotheses for and the form of ϕ we deduce the existence of a constant K so that

d dx ϕ(x, u(x)) ≤ K |log |x|| + + x |x| .
For n = 1 we have

dx 1 dx = k -ax k -2bx k log x + x k+1 d dx ϕ(x, u(x)) k -ax k 1 -2bx k 1 log x 1 • x k+1 1 x k+1 ≤ D |x 1 | k+1 |x| k+1 ,
for a constant D ∈ R, that can be chosen to be D = 2, if r is small enough.

Let us assume, by inductive hypothesis,

dxp dx ≤ 2 |xp| k+1
|x| k+1 for any p < n. Then, by the previous corollary, we have

n-1 p=0 d dx p [ϕ(x p , u(x p ))] dx p dx ≤ 2K(1 + + x ) ∞ p=0 |x p | k+2 |x| k+1 + ∞ p=0 |x p | k+2 |log |x p || |x| k+1 ≤ 2K(1 + + x ) C k+2,0 |x| k-1 + C k+2,1 |x| k-1 = K 1 |x| k-1 . Therefore, we obtain dx n dx ≤ k -ax k -2bx k log x + K 1 |x| 2 |k -ax k n -2bx k n log x n | • |x n | k+1 |x| k+1 ≤ 2 |x n | k+1
|x| k+1 , for r small enough, and we are done.

6.1. The operator T. To find our desired holomorphic curve, we shall use, as announced, a certain operator acting on the space of maps u of order k +1 ≥ 2. We saw that, given a map u(

•) = x k+1 (•), with : Π i r → C p-1 , the iterates {x n } of x 0 ∈ Π i r defined via x j+1 = f u (x j ) := f (x j , u(x j ))
are well-defined for r sufficiently small. With this choice for u, the operator

Tu(x) = x kA ∞ n=0 x -kA n H(x n , u(x n ))
where A is the matrix associated to the non-degenerate characteristic direction we are studying,

H(x, u) := x kA (w -w 1 ) = u -x kA x -kA 1 u 1 ,
and {x n } is the sequence of the iterates of x under f u , is well-defined, since the series converges normally. We shall now restrict the space of definition of T, to obtain a contracting operator. In particular, we are going to search for positive constants r, C 0 and C 1 , so that T is well-defined on a closed subset of the Banach space of the maps of order k + 1 ≥ 2.

We have the following analogous of Definition 4.7 of [Ha].

Definition 6.5. Let k ∈ N \ {0}. Let h, q ∈ N be such that hk ≥ 3 and h ≥ 1, and let r > 0. For any i = 1, . . . , k, let B i h,q,r be the space of maps u : Π i r → C p-1 , of the form u(•) = x kh-1 (log x) q t(•) with t holomorphic and bounded. The space B i h,q,r endowed with the norm u = t ∞ is a Banach space. Definition 6.6. Let k ∈ N \ {0}, and let h, q ∈ N be such that hk ≥ 3 and h ≥ 1. Let r, C 0 and C 1 be positive real constants and let E i T (r, C 0 , C 1 ) ⊂ B i h,q,r be the closed subset of B i h,q,r given by the maps so that

(1) u(x) ≤ C 0 |x| kh-1 |log |x|| q , for any x ∈ Π i r ;

(2) u (x) ≤ C 1 |x| kh-2 |log |x|| q , for any x ∈ Π i r .

Let T be the operator defined as (6.11)

Tu(x) = x kA ∞ n=0 x -kA n H(x n , u(x n )),
where A is the matrix associated to the non-degenerate characteristic direction we are studying, as in (6.5) we have H(x, u) = x kA (w -w 1 ) = u -x kA x -kA 1 u 1 , and {x n } is the sequence of the iterates of x under f u .

We shall devote the rest of the section to proving that the restriction of T to E i T (r, C 0 , C 1 ) is a continuous operator and a contraction. It will thus admit a unique fixed point u, and we shall prove that the unique fixed point is a solution of the functional equation (6.2).

We shall need the following reformulation of Lemma 4.1 of [Ha] for the case k + 1 ≥ 2.

Lemma 6.7. Let {α 1 , α 2 , . . . , α p-1 } be the directors of A, and let λ = max j {Re α j }. If ε > 0, then for any x ∈ Π i r , with r small enough, we have x -kA ≤ |x| -k(λ+ε) .

Proof. We may assume without loss of generality that A is in Jordan normal form, that is A = D+N where D = Diag(α 1 , α 2 , . . . , α p-1 ), DN = N D, N p-1 = 0.

Since D and N commute, we have x -kA = x -k(D+N ) = x -kD exp (-kN log x), and so we have the following estimate

x -kA ≤ x -kD exp (-kN log x) ≤ K |x| -kλ |log x| p-2 ≤ |x| -k(λ+ε) ,
for r small enough, and we are done.

Remark 6.8. It follows from (6.10) that if u ∈ B i h,q,r , then the operator H verifies H(x, u(x)) = O x k(h+1) (log x) q+1 , x k(h+1) (log x) p h , mapping B i h,q,r into intself. We shall see that (Tu)(x) = O x kh-1 (log x) q , for q ≥ p h .

We have the following generalization of Lemma 4.5 of [Ha] for the case k + 1 ≥ 2.

Lemma 6.9. Let T be the operator defined in Definition 6.6. Let λ = max j {Re α j }, where α 1 , . . . , α p-1 are the directors of the non-degenerate characteristic direction [v], and let h be an integer so that h > λ+ε. Let p h be as in (6.6). Then, for r sufficiently small, there exists a constant C 0 so that, for any u satisfying (6.12) u(x) ≤ C 0 |x| hk-1 |log |x|| p h , for each x ∈ Π i r , we have that Tu satisfies the same inequality in Π i r .

Proof. By the definition, we have

Tu(x) = ∞ n=0 x n x -kA H(x n , u(x n )).
Thanks to equation (6.6) we know that

H(x, u) = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h .
Therefore there exist K 1 , K 2 , K 3 such that

H(x, u) ≤ K 1 u 2 |x| k + K 2 u |x| k+1 |log x| + K 3 |x| k(h+1) |log x| p h , in a neighbourhood of 0. From the hypothesis u(x) ≤ C 0 |x| kh-1 |log |x|| p h , it follows that for all x ∈ Π i r H(x, u(x)) ≤ K |x| k(h+1) |log |x|| p h ,
with K not depending on C 0 provided that r is sufficiently small. Then we have

H(x n , u(x n )) ≤ K |x n | k(h+1) |log |x n || p h ,
for x ∈ Π i r , and r small. By Lemma 6.7 we have

x n x -kA ≤ x n x -k(λ+ε)
.

Applying all these inequalities to Tu(x), and using Corollary 6.3 (note that h > λ + ε), we obtain

Tu(x) ≤ K ∞ n=0 x n x -k(λ+ε) |x n | k(h+1) |log |x n || p h ≤ K |x| kh |log |x|| p h ≤ K |x| kh-1 |log |x|| p h ,
and we are done.

For our estimates we shall need the following technical result, generalizing Lemma 4.6 of [Ha] for the case k + 1 ≥ 2. Lemma 6.10. Let T be the operator defined as in Definition 6.6. Let h, p h and C 0 be as in Lemma 6.9. Then, for r sufficiently small, there exists a constant C 1 such that for any u satisfying (6.12) and

(6.13) u (x) ≤ C 1 |x| hk-2 |log |x|| p h ,
for each x ∈ Π i r , then (Tu) satisfies the same inequality in Π i r . Proof. By the definition of T we have

Tu(x) = x kA ∞ n=0 (x n ) -kA H(x n , u(x n )).
Then, differentiating, we obtain

d dx Tu(x) = d dx x kA ∞ n=0 x -kA n H(x n , u(x n )) S 1 + x kA ∞ n=0 ∂ ∂u x -kA n H(x n , u(x n )) du dx n dx n dx S 2 + x kA ∞ n=0 ∂ ∂x n x -kA n H(x n , u(x n )) dx n dx S 3
.

We then have to estimate S 1 , S 2 , and S 3 . Since

dx kA dx = kAx -1 x kA ,
we have

S 1 = kAx -1 x kA ∞ n=0 x -kA n H(x n , u(x n )) ,
and thus, using the same inequalities as in the previous proof, we obtain

S 1 ≤ k A |x| C 0 |x| kh-1 |log |x|| p h = D 1 |x| kh-2 |log |x|| p h ,
where D 1 = k A C 0 . For the second term, we have

S 2 = x kA ∞ n=0 x -kA n ∂H ∂u (x n , u(x n )) du dx n dx n dx .
Since kh ≥ 3 the hypotheses of Lemma 6.4 are satisfied, and hence

dx n dx ≤ 2 x n x k+1 .
Moreover, H(x, u) = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h implies that there exist constants

K 1 and K 2 so that ∂ ∂u (H(x, u)) ≤ K 1 u |x| k + K 2 |x| k+1 |log |x|| ,
and, our hypothesis gives that there is

C 0 so that u(x) ≤ C 0 |x| kh-1 |log |x|| p h . Therefore ∂H ∂u (x, u(x)) ≤ K 1 C 0 |x| kh+k-1 |log |x|| p h + K 2 |x| k+1 |log |x|| ≤ C |x| k+1 |log |x|| for some constant C, not depending on C 0 . If C 1 is so that u (x) ≤ C 1 |x| kh-2 |log |x|| p h , then ∂H ∂u (x n , u(x n )) du(x n ) dx n dx n dx = ∂H ∂u (x n , u(x n )) du(x n ) dx n dx n dx ≤ 2CC 1 |x| -(k+1) |x n | 2k+kh |log |x n || p h .
Analogously to the proof of the previous result, ( xn x ) -kA ≤ xn x -k(λ+ε) and, by Corollary 6.3, we have

S 2 ≤ ∞ n=0 2CC 1 x n x -k(λ+ε) x n x k+1 |x n | kh+k-1 |log |x n || p h +1 ≤ D 2 |x| kh-2 |log |x|| p h ,
with D 2 not depending on C 0 and C 1 .

We are left with the third term

S 3 = x kA ∞ n=0 ∂G ∂x (x n , u(x n )) dx n dx ,
where G(x, u) = x -kA H(x, u), and hence

∂G ∂x = - kA x x -kA H(x, u) + x -kA ∂H ∂x (x, u).
With the same computations as before, using

H(x, u) = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h
and u(x) ≤ C 0 |x| kh-1 |log |x|| p h , we have that there exist constants K 1 , K 2 and K 3 so that

∂H ∂x ≤ K 1 u 2 |x| k-1 + K 2 u |x| k |log x| + K 3 |x| k(h+1)-1 |log |x|| p h
and thus there exists C, depending of C 0 , so that

x kA ∂G ∂x (x, u(x)) ≤ C |x| k(h+1)-1 |log |x|| p h +1 .
Using again Corollary 6.3, we obtain

S 3 ≤ K 4 ∞ n=0 x n x -k(λ+ε)+k+1 |x n | k(h+1)-1 |log |x n || p h +1 ≤ D 3 |x| kh-2 |log |x|| p h ,
with D 3 independent of C 0 . Summing up, we obtain

d dx Tu(x) ≤ S 1 + S 2 + S 3 ≤ (D 1 + D 2 + D 2 ) |x| kh-2 |log |x|| p h ,
and setting C 1 = D 1 + D 2 + D 3 we conclude the proof.

The previous two lemmas prove that T is an endomorphism of E i T (r, C 0 , C 1 ). Now we have to prove that T is a contraction. We shall need the following reformulation of Lemma 4.9 of [Ha] for the case k + 1 ≥ 2. Lemma 6.11. Let u(•) = x kh-1 (log x) p h 1 (•) and v(•) = x kh-1 (log x) p h 2 (•) be in E i T (r, C 0 , C 1 ) and let {x n } and {x n } be the iterates of x via f u and f v . Then there exists a constant K so that

x n -x n ≤ K |x| kh |log |x|| p h 2 -1 ∞ .
for any n, and r small enough.

Proof. Let x and x be in Π i r . We estimate

f v (x ) -f u (x) = f (x , v(x )) -f (x, u(x)).
Thanks to (6.1), we can find constants a, b, c and m(x, u) so that

f v (x ) = x -1 k (x ) k+1 + (x ) 2k+1 (a + b log x ) + c(x ) k+1 v(x ) + m(x , v), f u (x) = x -1 k x k+1 + x 2k+1 (a + b log x) + cx k+1 u(x) + m(x, u). Therefore we have f v (x ) -f u (x) = (x -x) 1 + 1 k k i=0 (x ) i x k-i + O (x ) 2k log |x| + (v(x ) -u(x))O x k+1 , (6.14) 
where

x = max{|x | , |x|}. Lemma 6.2 implies x k n ≈ (x n ) k ≈ 1 n as n → ∞, then we can replace |x | k with |x| k . Moreover, since v(x ) = v(x) + O x kh-2 (log x) p h (x -x), (6.15) we obtain v(x ) -u(x) = v(x ) -v(x) + v(x) -u(x) = (x -x)O |x| kh-2 |log |x|| p h + O |x| kh-1 |log |x|| p h 2 -1 ∞ .
Then, substituting in (6.14), we have

f v (x )-f u (x) = (x -x) 1 - 1 k k i=0 (x ) i x k-i + O |x| kh+k-1 |log |x|| , |x| 2k |log |x|| + O |x| kh+k |log |x|| p h 2 -1 ∞ .
We are left with estimating f v (x ) -f u (x). For x and x in Π i r and r small enough we have

1 - 1 k k i=0 (x ) i x k-i + O |x| 2k |log |x|| = 1 + O x k ≤ 1.
Moreover, there exists a constant K such that

f v (x ) -f u (x) ≤ x -x + K |x| kh+k |log |x|| p h 2 -1 ∞ .
Iterating, we obtain

f n v (x ) -f n u (x) ≤ x -x + K n-1 i=0 |x i | kh+k |log |x i || p h 2 -1 ∞ ,
for any n.

In particular, if x = x , we have

x n -x n ≤ K n-1 i=0 |x i | kh+k |log |x i || p h 2 -1 ∞ ≤ K |x| kh |log |x|| p h 2 -1 ∞ ,
where we used Corollary 6.3 to deduce the last inequality, and we put K = KC k(h+1),p h .

We now have all the ingredients to prove, as in [START_REF] Hakim | Analytic transformations of (C p , 0) tangent to the identity[END_REF]Proposition 4.8], that T| E i T (r,C 0 ,C 1 ) is a contraction. Proposition 6.12. Let T be the operator defined in Definition 6.6. Then for r small enough

T| E i T (r,C 0 ,C 1 ) : E i T (r, C 0 , C 1 ) → E i T (r, C 0 , C 1 )
is a contraction.

Proof. We have to prove that given u(

•) = x kh-1 (log x) p h 1 (•) and v(•) = x kh-1 (log x) p h 2 (•) in E i T (r, C 0 , C 1 ), we have Tu -Tv ≤ C u -v with C < 1. We have Tu(x) -Tv(x) = x kA ∞ n=0 x -kA n H(x n , u(x n )) -x -kA n H(x n , v(x n )) ; hence Tu(x) -Tv(x) = x kA ∞ n=0 x -kA n H(x n , u(x n )) -H(x n , v(x n )) S 1 + x kA ∞ n=0 x -kA n -x -kA n H(x n , v(x n )) S 2 . For S 1 , since H(x, u) = O u 2 x k , u x k+1 log x, x k(h+1) (log x) p h , for u(x) = x kh-1 (log x) p h 1 (x),
there exist α(x, u) and β(x, u) holomorphic in the variables x, u and x k (log x) p h , so that

H(x, u) = ux k+1 (log x)α(x, u) + x k(h+1) (log x) p h β(x, u).
Therefore, by the inequalities in the proof of Lemma 6.10, we obtain

H(x n , u(x n )) -H(x n , v(x n )) ≤ K ∂H ∂x (x n , u(x n )) x n -x n + ∂H ∂u (x n , u(x n )) u(x n ) -v(x n ) ≤ K 1 u(x n ) -v(x n ) |x n | k+1 |log |x n || + x n -x n |x n | k(h+1)-1 |log |x n || p h .
Arguing as in the proof of Lemma 6.11, thanks to (6.15), there exist constants A , B and K 2 such that

v(x n ) -u(x n ) ≤ A x n -x n |x n | kh-2 |log |x n || p h + B |x n | kh-1 |log |x n || p h 2 -1 ∞ ≤ K 2 |x n | kh-2 |log |x n || p h |x| kh |log |x|| p h + |x n | 2 -1 ∞ ,
where the last inequality follows form the previous lemma. Then

S 1 ≤ K 1 ∞ n=0 x n x -k(λ+ε) x n -x n |x n | k(h+1)-1 |log |x n || p h + K 2 |x n | k(h+1)-1 |log |x n || p h +1 |x| kh |log |x|| p h + |x n | 2 -1 ∞ .
Moreover, setting

S := x n -x n |x n | k(h+1)-1 |log |x n || p h + K 2 |x n | k(h+1)-1 |log |x n || p h +1 |x| kh |log |x|| p h + |x n | 2 -1 ∞ , we have S ≤ K |x n | k(h+1)-1 |log |x n || p h |x| kh |log |x|| p h 2 -1 ∞ + K 2 |x n | k(h+1)-1 |log |x n || p h +1 |x| kh |log |x|| p h 2 -1 ∞ + K 2 |x n | k(h+1) |log |x n || p h +1 2 -1 ∞
and applying Corollary 6.3,

S 1 ≤ C 1 |x| 2kh-1 |log |x|| 2p h 2 -1 ∞ + C 2 |x| 2kh-1 |log |x|| 2p h +1 2 -1 ∞ + C 3 |x| kh |log |x|| p h +1 2 -1 ∞ ≤ K 1 |x| kh |log |x|| p h +1 2 -1 ∞ .
We now consider S 2 . We can write

x -kA n -x -kA n = x -kA n I -exp -A log x n x n . Therefore I -exp -kA log x n x n H(x n , v(x n )) ≤ C kA log x n x n H(x n , v(x n )) ≤ C |x n -x n | |x n | |x n | k(h+1) |log |x n || p h ≤ C x k(h+1)-1 |log |x n || p h |x| kh |log |x|| p h 2 -1 ∞ .
By Corollary 6.3 we have

S 2 ≤ K 2 |x| 2kh-1 |log |x|| 2p h 2 -1 ∞ .
Thus, for r small enough, there exists K such that

Tu(x) -Tv(x) ≤ K |x| kh |log |x|| p h 2 -1 ∞ .
From the definition of the norm in E i T (r, C 0 , C 1 ), we have then that for r small enough there is

c < 1 such that Tu -Tv ≤ c u -v ,
proving that T| E i T (r,C 0 ,C 1 ) is a contraction. Corollary 6.13. Let T be the operator defined in Definition 6.6. Then there exists u : Π i r → C p-1 holomorphic and satisfying (6.2).

Proof. Thanks to the previous Proposition, T is a contraction, and hence it has a unique fixed point u ∈ E i T (r, C 0 , C 1 ). It suffices to prove that this u satisfies (6.2). The definition of H gives us that f (x, u) -kA Ψ(x, u) = x -kA u -x -kA H(x, u), and hence

H(x, u(x)) = u(x) -x kA x -kA 1 Ψ(x, u(x)).
We therefore obtain

Tu(x) = x kA ∞ n=0 x -kA n H(x n , u(x n )) = u(x) -x kA x -kA 1 Ψ(x, u(x)) + x kA x -kA 1 [u(x 1 ) -x kA 1 x -kA 2 Ψ(x 1 , u(x 1 ))] + • • • .
This implies that Tu = u if and only if

-x kA x -kA 1 [Ψ(x, u(x)) -u(x 1 )] -x kA x -kA 2 [Ψ(x 1 , u(x 1 )) -u(x 2 )] + • • • = 0, that is Ψ(x n , u(x n )) = u(f (x n , u(x n ))) for any n ≥ 0,
and this concludes the proof.

Existence of attracting domains

In this section, we shall prove that given non-degenerate attracting characteristic direction [v] it is possible to find not only a curve tangent to [v], but also a open connected set, containing the origin on its boundary and so that each of its points is attracted by the origin tangentially to [v], that is, the following generalization of Theorem 5.1 of [Ha] for the case k + 1 ≥ 2.

Theorem 7.1. Let F ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2, and let [v] be a non-degenerate characteristic direction. If [v] is attracting, then there exist k parabolic invariant domains, where each point is attracted by the origin along a trajectory tangential to [v].

Proof. Since [v] is a non-degenerate characteristic direction, we can find r, c > 0 so that we can choose coordinates (x, y) ∈ C × C p-1 holomorphic in the sector

S i r,c = (x, y) ∈ C × C p-1 | x ∈ Π i r , y ≤ c |x| , where Π i
r is one of the connected components of D r = x k -r < r , so that, after the blow-up y = ux, F is of the form

x 1 = f (x, u) = x -1 k x k+1 + O u x k+1 , x 2k+1 log x , u 1 = Ψ(x, u) = (I -x k A)u + O u x k+1 log x, u 2 x k .
In particular, after the blow-up, u ≤ c.

Without loss of generality, we may assume that A is in Jordan normal form. Let {α 1 , . . . , α p-1 } be the eigenvalues of A. Thanks to the hypthesis, we have Re α j > 0, j = 1, . . . , p -1, and hence there exists a constant λ > 0 so that Re α j > λ for all j = 1, . . . , p -1. We can also assume that the elements off the diagonal in the Jordan blocks are all equal ε, with ε < λ.

We shall now restrict our sectorial domain to obtain good estimates for x 1 and u 1 . We define, for j = 1, . . . , p -1,

∆ j := {x ∈ C | 1 -α j x k ≤ 1}.
Consider the sector S γ,ρ := {x ∈ C | |Im x| ≤ γRe x, |x| ≤ ρ}. Since Re α j > 0, there exist positive constants γ and ρ so that, setting for each i = 1, . . . , k,

S i γ,ρ := {x ∈ Π i r | x k ∈ S γ,ρ } we have S i γ,ρ ⊂ p-1 j=1 ∆ j ∩ D r ⊂ Π i r .
We want to check that, for any i = 1, . . . , k, the k sets

A i γ,ρ,c := {(x, u) ∈ C × C p-1 | x ∈ S i γ,ρ , u ≤ c} are invariant attractive domains.
Recalling that there is K so that

u 1 -(I -x k A)u ≤ K( u |x| k+1 |log |x|| + u 2 |x| k ),
for (x, u) ∈ A i γ,ρ,c we have

u 1 ≤ (I -x k A)u + K u |x| k (|x| |log |x|| + u ) ,
and, provided that γ, ρ and c are small enough, (7.1)

u 1 ≤ u I -x k A ≤ u (1 -λ |x| k ) ≤ u ,
where we used that

I -x k A ≤ max j 1 -α j x k + |x| k ε ≤ 1 -(λ + ε )|x k | + ε|x k |.
Therefore u 1 ≤ c.

To estimate x 1 , since we know that

x 1 = x -1 k x k+1 + O u x k+1 , x 2k+1 log x , we have 1 x k 1 = 1 x k + 1 + O u , x k log x . (7.2)
Therefore there is C, not depending on u, so that

(7.3) 1 x k 1 - 1 x k -1 ≤ C u + K |x| k |log |x|| ≤ Cc + K |x| k |log |x|| .
We shall use this last inequality to prove that A i γ,ρ,c is an invariant domain. In particular, it suffices to check

     u 1 ≤ c Im x k 1 ≤ γRe x k 1
x k 1 ≤ ρ. We already estimated u 1 in (7.1). On the other hand, to prove that S i γ,ρ,c is f -invariant it suffices to prove that, for u small enough, (S i γ,ρ,c

) * = {x ∈ C | 1 x ∈ S γ,ρ } is 1 (f ) k -invariant
, which follows from (7.3) using the same argument as in the proof of Leau-Fatou flower Theorem.

To finish, it remains to check that, given a point (x, u) ∈ S i γ,ρ,c , its iterates converge to the origin along the direction [1 : 0]. We shall first show that x k n ≈ 1 n and u n ≤ C 1 n λ , for any fixed 0 < λ < max j Re α j . It follows from (7.2) that

1 x k n = 1 x k + n + n-1 i=0 O u i , x k i log x i ,
and hence

1 nx k n = 1 nx k + 1 + 1 n n-1 i=0 O u i , x k i log x i ,
where the sum is bounded. Therefore

1 nx k n = O (1) , yielding x k n ≈ 1 n .
Finally, take µ < λ (where λ is the positive constant so that max j Re α j > λ). Then

x -kµ 1 = x -kµ 1 - 1 k x k + O x 2k log x, u x k -kµ = x -kµ 1 + µx k + O x 2k log x, u x k ,
and hence

|x 1 | -kµ ≤ |x| -kµ 1 + µx k + O u x k , x 2k log x ≤ |x| -kµ (1 + λ |x| k ).
It thus follows that

u 1 |x 1 | -kµ ≤ u (1 -λ |x| k ) |x| -kµ (1 + λ |x| k ) = u |x| -kµ (1 -λ 2 |x| 2k ) < u |x| -kµ .
Therefore, there exists C so that

u n |x n | -kµ < u |x| -kµ ≤ C, implying u n ≤ C |x n | kµ .
Then, u n = O 1 n kλ . This shows that each (x, u) ∈ A i γ,ρ,c converges to the origin along the direction [1 : 0].

Parabolic manifolds

Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2, and let [V ] = [1 : 0] be a non-degenerate characteristic direction. We can divide the set of the directors of [V ] into two sets: the attracting directors, i.e., the set {λ 1 , . . . , λ a } with Re λ j > 0 for j = 1, . . . , a, and the non-attracting directors, i.e., the set {µ, . . . , µ b } with Re µ h ≤ 0 for h = 1, . . . , b. Let d j be the multiplicity of λ j for j = 1, . . . , a and let d := d 1 + • • • + d a . We know that, after the blow-up, we can assume that Φ is of the form

   x 1 = f (x, u, v) = x -1 k x k+1 + F (x, u, v), u 1 = g(x, u, v) = (I d -x k A)u + G(x, u, v), v 1 = h(x, u, v) = (I l -x k B)v + H(x, u, v), (8.1)
where A is the d × d matrix in Jordan normal form associated to the attracting directors, B is the l × l matrix in Jordan normal form associated to the non-attracting directors (where l := p -d -1), and with F, G, H so that

   F (x, u, v) = O (u, v) x k+1 , x 2k+1 log x , G(x, u, v) = O (u, v) x k+1 log x, (u, v) 2 x k , H(x, u, v) = O (u, v) x k+1 log x, (u, v) 2 x k . (8.2) Moreover F, G, H are holomorphic in an open set of the form ∆ r,ρ = (x, u, v) ∈ C × C d × C p-d-1 x k -r < r, (u, v) < ρ ,
and therefore also in the set

S γ,s,ρ := (x, U ) ∈ C × C p-1 Im x k ≤ γ Re x k , |x k | < s, U < ρ ⊂ ∆ r,ρ .
In the next result, the analogous of Proposition 2.2 of [START_REF] Hakim | Transformations tangent to identity[END_REF], we shall see that it is possible to further modify the last p -d -1 components of Φ.

Proposition 8.1. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k+1 ≥ 2 as in (8.1), with [V ] = [1 : 0] non-degenerate characteristic direction so that the matrix A(v) = Diag(A, B) satisfies Re λ j > α > 0, for any λ j eigenvalue of A Re µ j ≤ 0, for any µ j eigenvalue of B. Then, for any choice of N, m ≥ 2, it is possible to choose coordinates

(x, u, v) in ∆ r,ρ , with H satisfying H(x, u, 0) = O |x| k u m + |x| N u .
Proof. Thanks to (8.2), it is possible to write H(x, u, v) in a more convenient form. Indeed, for any N ∈ N we have

(8.3) H(x, u, 0) = k≤s≤N, t∈Es c s,t (u)x s (log x) t + O u |x| N |log |x|| h N ,
for some h N ∈ N depending on N , where for any s we define E s as the (finite) set of integers t so that the series above contains the term x s (log x) t , and where c s,t (u) are holomorphic in u ≤ ρ and c s,t (0) ≡ 0. We shall prove by induction on s, t and the order of c s,t (u), that, if s ≤ N , using changes of coordinates of the form ṽ = v -ϕ(x, u), it is possible to obtain c s,t of order at least m. We shall need the following reformulation of Lemma 2.3 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2.

Lemma 8.2. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 as in (8.1), with [V ] = [1 : 0] so that A(v) = Diag(A, B) satisfies Re λ j > α > 0, for any λ j eigenvalue of A Re µ j ≤ 0, for any µ j eigenvalue of B.

Let H be so that (8.3) holds, let s be the smallest integer in (8.3), and let m ≥ 2; for such an s, let t be the greatest integer in E s so that c s, t has order d less than m. Then there exists a polynomial map P (u), homogeneous of degree d, with values in C l , such that, after changing v in ṽ = v -x s-k (log x) tP (u), c s, t(u) has order greater than d.

Proof. Since c s, t(u) has order d, we can write

c s, t(u) = Q(u) + O u d+1 ,
where Q(u) is a homogeneous polynomial of degree d, and takes values in C l . Moreover, the term c s, t(u)x s(log x) t in (8.3) is

(8.4) H(x, u, 0) = c s, t(u)x s(log x) t + k≤s≤N, t∈Es, (s,t) =(s, t) c s,t (u)x s (log x) t + O u |x| N |log |x|| h N .
Using a change of coordinates of the form ṽ = v -x s-k (log x) tP (u), with P (u) homogeneous polynomial, we have

ṽ1 = v 1 -x s-k 1 (log x 1 ) tP (u 1 ) = (I l -x k B)(ṽ + x s-k (log x) tP (u)) + H(x, u, v) -x s-k 1 (log x 1 ) tP (u 1 ) = (I l -x k B)ṽ + H(x, u, ṽ), where H(x, u, ṽ) := (I l -x k B)x s-k (log x) tP (u)+H(x, u, ṽ +x s-k (log x) tP (u))-x s-k 1 (log x 1 ) tP (u 1 ). Expanding H(x, u, 0) we obtain H(x, u, 0) = x s-k (log x) tP (u) -Bx s(log x) tP (u) + H(x, u, x s-k (log x) tP (u)) -x s-k 1 (log x 1 ) tP (u 1 ). (8.5)
We have

H(x, u, x s-k (log x) tP (u)) = Q(u)x s(log x) t + O u d+1 x s(log x) t, u dx s(log x) t-1 , u |x| N |log |x|| h N , and x s-k 1 (log x 1 ) tP (u 1 ) = x s-k - s -k k x s + O u x s, x s+k log x (log x) tP (u 1 ) + O x s(log x) t P (u 1 ) = x s-k (log x) tP (u) -x s-k (log x) t grad P ; x k Au - s -k k x s(log x) tP (u) + O x s (log x) t, u x s(log x) t , x s+k (log x)P (u 1 ) ,
where we used

P (u 1 ) = P ((I d -x k A)u) + O x s = P (u) + grad P, -x k Au + O x 2k , x s .
It is then clear that the terms of order s -k in (8.5) cancel each other, whereas we can put in evidence the terms of order s in x and of order d in u. In particular, the l homogeneous polynomials of degree d of cs, t in (8.5) vanish identically if and only if P satisfies the following l equations

(8.6) grad P i , Au - B - s -k k I l P (u) i = -Q i (u) i = 1, . . . , l.
These equations form a square linear system in the coefficients of P . Therefore, to prove that such a system has a solution it suffices to prove that (8.7)

grad P i , Au - B - s -k k I l P (u) i = 0 i = 1, . . . , l =⇒ P = 0.
Moreovere, since B is in Jordan normal form, if we denote by ε i,i+1 the elements out of the diagonal, we can rewrite the previous equation as

(8.8) ∂P i ∂u 1 (Au) 1 + • • • + ∂P i ∂u q (Au) q -µ i - s -k k P i -ε i,i+1 P i+1 = 0,
recalling that, for any 1 ≤ i < l, we have ε i,i+1 = 0 or 1, and ε l,l+1 = 0. Therefore, arguing by decreasing induction over i from l to 1, we reduce ourselves to solve (8.9)

∂R ∂u 1 (Au) 1 + • • • + ∂R ∂u d (Au) d -µ i - s -k k R = 0 =⇒ R = 0,
for a homogeneous polynomial R of degree d. By Euler formula, we know that

R = d-1 ∂R ∂u 1 u 1 + • • • + ∂R ∂u d u d .
We can therefore reduce ourselves to solve

(8.10) ∂R ∂u 1 (C i u) 1 + • • • + ∂R ∂u d (C i u) d = 0 =⇒ R = 0,
where

C i = A -(µ i -s + k) d-1 I d is invertible, since from our hypotheses Re (α -µ i -s+k d ) > 0.
We prove (8.10) with a double induction, on the dimension d and on the degree d of R. For any degree d, if d = 1, then there exists a constant

K i so that R = K i u d 1 ; then, since α -µ i -s+k d = 0, we have ∂R ∂u 1 α - µ i -s + k d u 1 = 0 =⇒ dK i u d 1 = 0 =⇒ K i = 0,
implying R = 0. Similarly, for any dimension d, if d = 1, then there exist constants a 1 , . . . , a

d so that R = a 1 u 1 + • • • + a d u d ; hence a 1 (C i u) 1 + • • • + a d (C i u) d = 0 =⇒ a 1 = • • • = a d = 0 =⇒ R = 0.
Assume, by inductive hypothesis, that (8.10) holds for any pair (d -1, d) and (d, d -1), with d > 1 and d > 1, and we shall prove that (8.10) holds also for (d, d). Assume that grad R, Cu = 0 for a certain homogeneous polynomial R of degree d in q variables. By inductive hypothesis, setting R(u 1 , . . . , u d-1

) := R(u 1 , . . . , u d-1 , 0), we have grad R, C • (u 1 , . . . , u d-1 , 0) = 0 =⇒ R = 0, and so R(u) = u d S(u), with S homogeneous polynomial of degree d -1 in d variables. Therefore grad R, Cu u d = 0 =⇒ grad S, Cu + λ d - µ i -s + k d S = 0.
Again, by Euler's formula, we can then write grad S, C u = 0,

with C = C + λ d -(µ i -s+k)/ d d
I d , and applying the inductive hypothesis, we obtain S = 0, and thus R = 0.

We shall now apply the previous Lemma, for the integers s and t, until c s,t (u) has order at least m. Then either E s = ∅, or the greatest t in E s is less than t. In this last case, we can apply again the Lemma, with integers s and t , until E s = ∅. We can then apply the Lemma with s + 1 instead of s, until we have s + 1 = N . This proves the proposition.

We shall prove, analogously to the way we found a parabolic curve, that we can find parabolic manifolds as fixed points of a certain operator between spaces of functions, proving the following generalization of Theorem 1.6 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2.

Theorem 8.3. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2. Let [V ] be a non-degenerate characteristic direction and let A = A(V ) be its associated matrix. If A has exactly d eigenvalues, counted with multiplicity, with strictly positive real parts, then there exists a parabolic manifold of dimension d + 1, with 0 on its boundary, and tangent to CV ⊕ E in 0, where E is the eigenspace associated to the attracting directors, and so that each of its points is attracted to the origin along the direction [V ]. Moreover, it is possible to find coordinates (x, u, v) in a sector of C × C d × C p-d-1 so that the parabolic manifold is locally defined by {v = 0}.

Proof. We may assume that Φ is of the form (8.1), with [V ] = [1 : 0] so that A(v) = Diag(A, B) satisfies Re λ j > α > 0, for any λ j eigenvalue of A Re µ j ≤ 0, for any µ j eigenvalue of B, and

H(x, u, 0) = O(|x| k u m + |x| N u ),
with m, N > 0.

We shall search for φ(x, u), holomorphic in a sector (8.11)

S γ,s,ρ = {(x, u) ∈ C × C d | |Im x k | ≤ γRe x k , |x| ≤ s, u ≤ ρ},
so that, for

x φ 1 = f (x, u, φ(x, u)), u φ 1 = g(x, u, φ(x, u)), we have (8.12) φ(x φ 1 , u φ 1 ) = h(x, u, φ(x, u)).

Repeating the same changes of coordinates performed in the Section 6, we first transform v 1 , for Re x > 0 by setting w = x -kB v, and we define H 1 as w -

w 1 = x -kB H 1 (x, u, v).
From the definitions of x 1 and u 1 in (8.1), we have

x -kB 1 = x -kB I + x k B + O u x k , x 2k log x ,
and

w 1 = x -kB I + x k B + O u x k , x 2k log x (I -x k B)x kB w + H(x, u, v) = I + O u x k , x 2k log x w + x -kB I + O(x k ) H(x, u, v).
Hence H 1 (x, u, v) satisfies the same estimates as H(x, u, v):

H 1 (x, u, v) = O u 2 x k , u x k+1 log x ,

and

(8.13)

H 1 (x, u, 0) = O |x| k u m + |x| N u .
Therefore (8.12) is equivalent to

(8.14) x -kB φ(x, u) -x -kB 1 φ(x φ 1 , u φ 1 ) = x -kB H 1 (x, u, φ(x, u)).
Operator T. Let {(x n , u n )} be the iterates defined by , u, φ(x, u)), with f and g as in (8.1), and φ holomorphic from the sector S γ,s,ρ , defined in (8.11), to C p-d-1 . Now we consider the operator

x φ 1 = f (x, u, φ(x, u)) = x -1 k x k+1 + F (x, u, φ(x, u)), u φ 1 = g(x, u, φ(x, u)) = I d -x k A u + G(x
Tφ(x, u) := x kB ∞ n=0 x -kB n H 1 (x n , u n , φ(x n , u n )).
We shall prove that this operator, restricted to a suitable closed subset F of the Banach space of bounded holomorphic maps φ : S γ,s,ρ → C p-d-1 , is a contraction. Then there exists a unique fixed point in F, and, by the definition of T, such a fixed point will be a solution of (8.14).

We shall proceed as follows:

(1) we shall prove that there exists a constant K 0 > 0 such that

(8.15) φ(x, u) ≤ K 0 u m + |x| N -k u =⇒ Tφ(x, u) ≤ K 0 u m + |x| N -k u ;
(2) we shall prove that if K 0 > 0 satisfies (8.15), then there exist positive constants

K 1 and K 2 such that      ∂φ ∂x ≤ K 1 ( u m |x| -1 + u |x| N -k-1 ), ∂φ ∂u ≤ K 2 ( u m-1 + |x| N -k ), ⇒      ∂Tφ ∂x ≤ K 1 ( u m |x| -1 + u |x| N -k-1 ), ∂Tφ ∂u ≤ K 2 ( u m-1 + |x| N -k );
(8.16)

(3) considering the Banach space (F 0 , • 0 ) defined as

F 0 = {φ : S γ,s,ρ → C p-d-1 | φ 0 < +∞},
with the norm

φ 0 := sup x,u φ(x, u) u m + |x| N -k u ,
we shall prove that the subset F of F 0 , given by the maps φ satisfying (8.15) and (8.16) with the constants K 0 , K 1 and K 2 we found in (1) and ( 2) is closed; (4) we shall finally show that T is a contraction. We first prove the following analogous of Proposition 3.2 of [START_REF] Hakim | Transformations tangent to identity[END_REF].

Proposition 8.4. If m and N are integers so that H 1 satisfies (8.13), then there exists a positive constant K 0 such that, if

(8.17) φ(x, u) ≤ K 0 u m + |x| N -k u then (1) the series defining the operator T is uniformly convergent in S γ,s,ρ ∩ {(x, u) ∈ C p | u |x| -kα ≤ 1};
(2) also Tφ(x, u) satisfies the same inequality

Tφ(x, u) ≤ K 0 u m + |x| N -k u .
Proof. Since all the eigenvalues of A have strictly positive real parts, as we saw in Theorem 7.1, for any (x, u) ∈ S γ,s,ρ we have lim

n→∞ u n |x n | -kα = 0,
where α > 0 is strictly less then the real parts of the eigenvalues of A. Therefore, without loss of generality, we may assume that u |x| -kα is bounded by 1. Let β < kα be a positive real number so that each eigenvalue µ j of B satisfies Re µ j < β. By Lemma 6.7, this implies that there exists a constant C 1 > 0 so that

x kB x -kB n ≤ C 1 x n x -kβ
.

Moreover, choosing γ, s, ρ small enough, if (x, u) ∈ S γ,s,ρ , then

x k n ≤ 2 n , u n ≤ u |x| -kα |x n | kα .
By the hypotheses on H 1 (x, u, v), there exist positive constants K 1 and K 2 so that (8.18) for a certain q ∈ N.

H 1 (x, u, v) ≤K 1 u m |x| k + |x| N u + K 2 v |x| k+1 |log |x|| q + v 2 |x| k + u v |x| k ,
Let us assume that φ(x, u)

≤ K u m + |x| N -k u for a constant K > 0. For v = φ(x, u), we have v |x| k+1 |log |x|| q + v 2 |x| k + u v |x| k = O ( u + |x| |log |x|| q ) |x| k u m + |x| N u .
Hence, taking s and ρ small enough, we have

H 1 (x, u, φ(x, u)) ≤ (K 1 + 1) |x| k u m + |x| N u ,
and therefore

Tφ(x, u) ≤ ∞ n=0 x n x -kB H 1 (x n , u n , φ(x n , u n )) ≤ (K 1 +1) ∞ n=0 x n x -kβ |x n | k u n m + |x n | N u n ≤ (K 1 +1) ∞ n=0 x n x -kβ |x n | k+kαm u m |x| -kαm + |x n | N +kα u |x| -kα .
Since kα > β, the series is normally convergent in the set { u |x| -kα ≤ 1}. By Corollary 6.3, there exists a positive constant K 0 , depending only on H 1 , so that

Tφ(x, u) ≤ K 0 u m + |x| N -k u .
Then, to conclude the proof it suffices to take K = K 0 .

Let F 0 be the set of holomorphic maps from S γ,s,ρ to C p , satisfying (8.17) with the constant K 0 of Proposition 8.4. We just proved that T maps F 0 into itself. Since we want T to be a contraction, we need to restrict this set. We first do it by restricting the domain of definition of the maps in F 0 .

Choice of the domain of definition D. In the following, instead of S γ,s,ρ , we shall use the following domain of definition for the maps φ

D := S γ,s,ρ ∩ {(x, u) ∈ C r | u |x| -kα ≤ 1},
and we shall denote with F 0 the set of maps φ : D → C r satisfying (8.17). We shall prove a result analogous to Proposition 8.4 for the partial derivatives of φ. To do so, we shall need bounds for the series

∞ n=0 ∂ ∂x x n x -kB H 1 (x n , u n , φ(x n , u n )) , and ∞ n=0 ∂ ∂u x n x -kB H 1 (x n , u n , φ(x n , u n )) .
We thus have to control the partial derivatives ∂xn ∂x , ∂un ∂x , ∂xn ∂u , and ∂un ∂u . Following Lemma 3.5 of [START_REF] Hakim | Transformations tangent to identity[END_REF], we have the following estimates.

Lemma 8.5. Let δ = min{kα, k}, and let ε > 0, with ε < δ. Then, for γ, s and ρ small enough, we have the following inequalities in D:

∂x n ∂x ≤ x n x 1+δ-2ε , ∂u n ∂x ≤ u |x n | δ-ε |x| 1+δ-2ε , ∂x n ∂u ≤ |x n | 1+δ-2ε
|x| δ-ε , and

∂u n ∂u ≤ x n x δ-ε .
Proof. We argue by induction over n. If n = 1, deriving x 1 = x -1 k x k+1 + O x 2k+1 , u x k+1 log x and u 1 = (I -x k A)u + O u 2 x k , u x k+1 log x with respect to x and u, we obtain

∂x 1 ∂x = 1 - k + 1 k x k + o(x k ) ≤ x 1 x k+1-2ε , because |x 1 | |x| k+1-2ε = 1 -k+1-ε k x k + o(x k ) ,
and

∂u 1 ∂x ≤ K u |x| k-1 .
Moreover

∂x 1 ∂u ≤ K |x| k+1 ≤ |x 1 | 1+δ-2ε
|x| δ-ε , and

∂u 1 ∂u ≤ 1 -αx k ≤ x 1 x δ-ε
, for γ, s and ρ small enough. By the definition of Φ we deduce

∂x n+1 ∂x ≤ 1 - k + 1 k x k n + o(x k n ) ∂x n ∂x + K |x n | k+1 ∂u n ∂x ,
and

∂u n+1 ∂x ≤ K u n ∂x n ∂x + 1 -αx k n ∂u n ∂x .
Hence, by inductive hypothesis,

∂x n+1 ∂x ≤ x n x 1+δ-2ε 1 - k + 1 k Re x k n + o(x k n ) + K u |x n | 1+ε ≤ x n+1 x 1+δ-2ε = 1 - 1 + δ -2ε k x k n + o(x k n ) ,
because 1 + δ -2ε < k+1 k . On the other side, using the inductive hypothesis and the inequality u n ≤ u |x| -kα |x n | kα , we obtain

∂u n+1 ∂x ≤ u |x| 1+δ-2ε |x n | δ-ε 1 -αRe x k n + o(x k n ) + K |x| -kα |x n | 1+kα-ε , which is less than u |x| 1+δ-2ε |x n+1 | δ-ε , because δ -ε < kα.
Arguing analogously by induction, we prove also the inequalities for the partial derivatives with respect to u. In fact,

∂x n+1 ∂u ≤ 1 - k + 1 k x k n + o(x k n ) ∂x n ∂u + K |x n | k+1 ∂u n ∂u ≤ |x n | k+1-2ε |x| δ-ε 1 - k + 1 k x k n + o(x k n ) + K |x n | δ+ε ≤ |x n | k+1-2ε |x| δ-ε , because δ + 1 -ε < k + 1, and ∂u n+1 ∂u ≤ K u n ∂x n ∂u + 1 -αx k n ∂u n ∂u ≤ x n x δ-ε 1 -αRe x k n + o(x k n )K u |x n | 2k+kα-δ |x| kα ≤ x n+1 x δ-ε
, because δ -ε < kα. This concludes the proof.

We can now prove the following reformulation of Proposition 3.4 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2.

Proposition 8.6. Let φ be in F 0 . There exist positive constants K 1 and K 2 so that, if we have

(8.19)      ∂φ ∂x ≤ K 1 u m |x| -1 + |x| N -k-1 u , ∂φ ∂u ≤ K 2 u m-1 + |x| N -k ,
than the same inequalities hold for ∂Tφ ∂x and ∂Tφ ∂u . Proof. We first deal with the partial derivative of H 1 . There exist positive constants C 1 and C 2 so that

H 1 (x, u, v) ≤ C 1 u m |x| k + |x| N u +C 2 v |x| k+1 |log |x|| q + v 2 |x| k + u v |x| k .
Then there exist positive constants C 3 and C 4 such that

∂H 1 ∂x ≤ C 3 u m |x| k-1 + |x| N -1 u +C 4 v |x| k |log |x|| q + v 2 |x| k-1 + u v |x| k-1 .
On the other side,

∂H 1 ∂u ≤ C 5 u m-1 |x| k + |x| N + C 6 v |x| k ,
for some positive constants C 5 and C 6 . Finally, there exist positive constants C 7 and C 8 such that

∂H 1 ∂v ≤ C 7 |x| k+1 |log |x|| q + v |x| k + u |x| k ≤ C 8 |x| k .
Let us assume that there exist positive constants K and K such that

     ∂φ ∂x ≤ K u m |x| -1 + |x| N -k-1 u , ∂φ ∂u ≤ K u m-1 + |x| N -k . Then we have ∂Tφ ∂x ≤ ∞ n=0 ∂ ∂x x n x -kB H 1 (x n , u n , φ(x n , u n )) ≤ ∞ n=0 ∂ ∂x x n x -kB H 1 (x n , u n , φ(x n , u n )) + x n x -kB ∂H 1 ∂x ∂x n ∂x + ∂H 1 ∂u ∂u n ∂x + x n x -kB ∂H 1 ∂v ∂φ ∂x ∂x n ∂x + ∂φ ∂u ∂u n ∂x .
We now use Lemma 8.5 to give estimates. We have

∂ ∂x x n x -kB H 1 (x n , u n , φ(x n , u n )) ≤ -kB x n x -kβ 1 |x n | x n x 1+δ-2ε + 1 |x| × u n m |x n | -1 + |x n | N -k-1 u n × |x n | k+1 [C 1 + C 2 K 0 (|x n | |log |x n || q + φ(x n , u n ) + u n )] . Similarly ∂H 1 ∂x ∂x n ∂x ≤ u n m |x n | -1 + |x n | N -k-1 u n |x n | k × C 3 + C 4 K 0 (|x n | |log |x n || q + φ(x n , u n ) + u n ) x n x 1+δ-2ε
, and

∂H 1 ∂u ∂u n ∂x ≤ u n m |x n | -1 + |x n | N -k-1 u n |x n | k × C 5 |x n | u n + C 6 |x n | u |x n | δ-ε x 1+δ-2ε . Finally ∂H 1 ∂v ∂φ ∂x ∂x n ∂x + ∂φ ∂u ∂u n ∂x ≤ C 8 u n m |x n | -1 + |x n | N -k-1 u n |x n | k × K x n x 1+δ-2ε + K u |x n | 1+δ-ε u n |x| 1+δ-2ε .
By Corollary 6.3, we have the following estimate

∞ n=0 |x n | µ |log x n | q ≤ C µ,q |x| µ-k |log x| q ,
for a constant C µ,q > 0, and hence there exists a positive constant K 1 , depending only on H 1 , so that ∂Tφ ∂x ≤ K 1 u m |x| -1 + |x| N -k-1 u .

Setting K = K 1 , we proved the first inequality. In a similar way, we estimate ∂Tφ ∂u obtaining

∂Tφ ∂u ≤ ∞ n=0 ∂ ∂u x n x -kB H 1 (x n , u n , φ(x n , u n )) + x n x -kB ∂ ∂u (H 1 (x n , u n , φ(x n , u n ))) .
For the first term , we have

∂ ∂u x n x -kB H 1 (x n , u n , φ(x n , u n )) ≤ -kB 1 x n ∂x n ∂u x n x -kB u n m-1 + |x n | N -k |x n | k × C 1 u n + C 2 u n (|x n | |log |x n || q + φ(x n , u n ) + u n ) K(xn,un) ≤ C 1 x n ∂x n ∂u x n x -kβ u n m-1 + |x n | N -k |x n | k K(x n , u n ).
The second term contains the partial derivatives of H 1 with respect to x, u and v, and we have

∂ ∂u (H 1 (x n , u n , φ(x n , u n ))) ≤ u n m-1 + |x n | N -k |x n | k × C 3 u n + C 4 K 0 u n (|x n | |log |x n || q + φ(x n , u n ) + u n ) |x n | δ-ε |x| δ-ε + C 5 + C 6 K 0 u n x n x δ-ε +C 8 K u n |x n | -1 |x n | 1+δ-2ε |x| δ-ε + K x n x δ-ε ≤ K(x n , u n , x) u n m-1 + |x n | N -k |x n | k . Therefore ∂Tφ ∂u ≤ K 2 u m-1 + |x| N -k ,
and the constant K 2 only depends on H 1 . Taking K = K 2 we conclude the proof.

Definition of F. We are left with finding a suitable subset of maps, such that T is a contraction. Let m and N be integers satisfying (8.13). Let F 0 be the Banach space of the holomorphic maps φ, defined on S γ,s,ρ , such that

φ 0 := sup x,u φ(x, u) u m + |x| N -k u
is bounded, endowed with the norm φ 0 . Define F as the closed subset of F 0 given by the maps satisfying (8.17) and (8.19), with the constants K 0 , K 1 and K 2 given by Propositions 8.4 and 8.6.

Proposition 8.7. If F is the subset defined above, then T| F is a contraction.

Proof. Let φ and ψ be in F. We need to control

S := ∞ n=0 x n x -kB H 1 (x n , u n , φ(x n , u n )) - ∞ n=0 x n x -kB H 1 (x n , u n , ψ(x n , u n )) ,
where (x n , u n ) and (x n , u n ) are the iterates of (x, u) via (8.1) respectively with φ and ψ. We can bound S with the sum of S 1 and S 2 , where

S 1 := ∞ n=0 x n x -kB H 1 (x n , u n , φ(x n , u n )) - ∞ n=0 x n x -kB H 1 (x n , u n , ψ(x n , u n )) , and 
S 2 := ∞ n=0 x n x -kB H 1 (x n , u n , ψ(x n , u n )) - ∞ n=0 x n x -kB H 1 (x n , u n , ψ(x n , u n )) .
It is easy to control the term S 1 . From (8.18), we have S 1 bounded above by

C ∞ n=0 x n x -kβ u n m + |x n | N -k u n |x n | k+1 |log x n | q + |x n | k u n φ -ψ 0 ,
for some integer q. By Corollary 6.3, since u n ≤ u |x n | kα |x| -kα , we obtain

S 1 ≤ C u m + |x| N -k u (|x| |log x| q + u ) φ -ψ 0 .
To estimate S 2 , we have to estimate the dependence of {(x n , u n )} on φ in (8.1). We have the following reformulation of Lemma 3.7 of [START_REF] Hakim | Transformations tangent to identity[END_REF] .

Lemma 8.8. Let δ = min{kα, k}. Let ε be a positive real number, with ε < δ, and Re λ j > α + ε for each eigenvalue λ j of A. Let φ and ψ be in F, and let {(x n , u n )} and {(x n , u n ) } be the iterates via (8.1) associated to φ and ψ. Then for γ, s and ρ small enough, the following estimates hold in S γ,s,ρ :

x n -x n ≤ |x n | 1+δ-ε |x| -δ ( u m + |x| N -k-1 u ) φ -ψ 0 , and u n -u n ≤ |x n | δ |x| -δ ( u m + |x| N -k-1 u ) φ -ψ 0 .
Proof. We use the following notation: ∆x n := |x n -x n |, ∆u n := u n -u n , and ∆φ(x, u) := ( u m + |x| N -k-1 u ) φ -ψ 0 . We argue by induction over n. If n = 1, thanks to (8.1), there exists

K > 0 such that    ∆x 1 ≤ K |x| k+1 ∆φ(x, u), ∆u 1 ≤ K |x| k+1 + |x| k u ∆φ(x, u),
for γ and s small enough. Let us assume that the inequalities hold for n, and we prove that they hold also for n + 1. Since x k n and (x n ) k are equivalent to 1 n , we have (

x n ) k = x k n + o(x k n ). From the definition of Φ it follows ∆x n+1 = x k n 1 -x k n + O x 2k n , u n x k n -(x n ) k 1 -(x n ) k + O (x n ) 2k , u n (x n ) k ≤ ∆x n 1 -x k n + o(x k n ) + K |x n | k+1 ∆u n + K |x n | k+1 ∆φ(x n , u n ), and ∆u n+1 ≤ K u n ∆x n + |1 -(α + ε)x n + o(x n )| ∆u n + K |x n | k+1 + u n |x n | k ∆φ(x n , u n ). Thanks to u n ≤ u xn x kα , we have ∆φ(x n , u n ) ≤ u m + |x| N -k-1 u x n x mkα + x n x kα+N -k-1 φ -ψ 0 ,
and, since xn x γ ≤ xn x δ when γ > δ, we have

|x| δ ∆φ(x n , u n ) ≤ 2 |x n | δ ∆φ(x, u).
By inductive hypothesis, we may bound |x| δ ∆x n+1 ∆φ and |x| δ ∆u n+1 ∆φ . We thus obtain

|x| δ ∆x n+1 ∆φ ≤ 1 -εx k n + o(x k n ) |x n+1 | 1+δ-ε + K |x n | 2+δ + 2K |x n | 2+δ ≤ 1 -εx k n + o(x k n ) |x n+1 | 1+δ-ε ≤ |x n+1 | 1+δ-2ε
, and

|x| δ ∆u n+1 ∆φ ≤ K u n |x n | 1+δ-ε + 1 -εx k n + o(x k n ) |x n+1 | δ + K (|x n | + u n ) |x n | 1+δ ≤ 1 -εx k n + o(x k n ) |x n+1 | δ ≤ |x n+1 | δ . Since u n |x n | -kα = o(1)
, we can now prove the last inequality

u n |x n | 1+δ-ε = o(|x n | 1+kα+δ-ε ) = |x n | δ o(|x n |),
for ε small enough.

Lemma 8.10. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2. If X = (x, y) ∈ C p \ {(0, 0)} is so that X n = Φ n (x, y) converges to the origin and [X n ] converges to [1 : 0], then there exist constants γ, s and ρ so that, for any n > n 0 , with n 0 large enough, we have x n = 0 and X n = (x n , y n ) ∈ S γ,s,ρ , where, for x = 0 and U = y x , we set

S γ,s,ρ = (x, U ) ∈ C × C p-1 Im x k ≤ γ Re x k , x k < s, U < ρ .
Proof. Since X n = (x n , y n ) converges to 0 and [X n ] converges to [1 : 0], we have that x n is definitively different from 0. Moreover X n definitively lies in D s,ρ := {(x, U ) | |x| ≤ s, U ≤ ρ}. Thanks to Proposition 4.3, the first component of Φ is of the form x 1 = x-1 k x k+1 +O U x k+1 , x 2k+1 , and x k n ≈ 1 n . Therefore, for any γ arbitrarily small and any n large enough, we have Im x k n ≤ γ Re x k n , and hence X n definitively lies in S γ,s,ρ .

Corollary 8.11. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2, and let [V ] be a non-degenerate characteristic direction. If there exists an attracting domain Ω where all the orbits converge to the origin along [V ], then all the directors of [V ] have non-negative real parts.

Remark 8.12. It is not true that if [V ] is a non-degenerate characteristic direction and there exists an attracting domain Ω where all the orbits converge to the origin along [V ], then all the directors of [V ] have strictly positive real parts. In fact, as shown by Vivas in [V2], it is possible to find examples of germs having attracting domains along non-degenerate characteristic direction even when the directors have vanishing real parts.

Fatou Coordinates

We have the following analogous of Theorem 1.9 of [START_REF] Hakim | Transformations tangent to identity[END_REF].

Theorem 9.1. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ. Let [V ] be an attracting nondegenerate characteristic direction. Then there is an invariant domain D, with 0 ∈ ∂D, so that every point of D is attracted to the origin along the direction [V ], and such that Φ| D is holomorphically conjugated to the translation   

1 x 1 = 1 x + 1, U 1 = U, with (x, U ) ∈ C × C p-1 .
We may assume that [V ] = [1 : 0], and that its associated matrix A is in Jordan normal form, with the non-zero elements out of the diagonal equal to ε > 0 small. Let λ 1 , . . . , λ h be the distinct eigenvalues of A, and up to reordering, we may assume that, setting α j = Re (λ j ), we have

α 1 ≥ α 2 ≥ • • • ≥ α h > α > 0.
Let J 1 , . . . , J h be the Jordan blocks of A, where J l is the block relative to λ l for 1 ≤ l ≤ h, and let u = (u 1 , . . . , u h ) ∈ C p-1 be the splitting of the coordinates of C p-1 associated to the splitting of A and hence the rôles of A(= J j ) and B(= B j ) are here exchanged. Note that, if 1, λ 1 , . . . , λ h are rationally independent, then we can prove the statement exactly as in the proof of Proposition 8.1.

Otherwise, let Q(v)x s (log x) t be the lower degree term in P j N (x, (0, v)), with Q(v) homogeneous polynomial of degree d in v. The change of coordinates ũj = u j -x s-k (log x) t P (v), deletes the term Q(v)x s (log x) t if P solves

P ((I q -x k B)v) -(I r -x k J j )P (v) - s -k k x k P (v) = x k Q(v) + O( v x k+1 ),
where r and q are the dimensions, respectively, of u j and v. Therefore, by decreasing induction on the indices of the components of u j , we may reduce ourselves to solve, for the r components P i of P , equations of the form (9.4)

∂P i ∂v 1 (Bv) 1 + • • • + ∂P i ∂v q (Bv) q -λ j - s -k k P i = Qi (v),
that is, by Euler formula, of the form (9.5)

∂P i ∂v 1 (Cv) 1 + • • • + ∂P i ∂v q (Cv) q = Qi (v),
where C = B -λ j -(s-k)/k d I q . We solve these equations component by component, by comparing the coefficients of the monomials v T , where T ∈ N q in both sides. For any T := (t 1 , . . . , t q ) ∈ N q , we define the weight of T as w(T ) = t 1 + 2t 2 + • • • + qt q .

If P i (v) = av T and Qi (v) = cv T , equation (9.5) is reduced, modulo terms of greater weight, to a(ν 1 t 1 + • • • + ν q t q ) = c, where ν 1 , . . . , ν q are the eigenvalues of C. Now, if ν 1 t 1 + • • • + ν q t q = 0, then we can solve the equation; otherwise, we can consider the change of coordinates ũj = u j -av T x s-k (log x) t+1 , under which the terms in v T x s-k (log x) t+1 and in v T x s (log x) t+1 (log x) t+1 in the left-hand side vanish and the equation is reduced to a(t+1) = -c; this change introduces new terms in x s (log x) t+1 , but it can happen only finitely many times, and hence it is not a problem. Iterating this procedure on the weight of T , given a degree d, we have to solve the case of T of maximal weight, i.e., v T + v d q . In this case, the equation is simply aν q d = c, and it is solvable if ν q = 0; if ν q = 0, as before, we can consider the change ũj = u j -av d q x s-k (log x) t+1 , and we are done.

We can then deduce the following reformulations of Corollaries 4.2,4.3,and 4.4 of [Ha2] for the case k + 1 ≥ 2.

We shall study the attractive basin Ω (0,[V ]) when some of the directors of [V ] have positive real parts.

We can assume that, writing X = (x, y) ∈ C × C p-1 , [V ] = [1 : 0] and Φ is of the form

x 1 = x + p k+1 (x, y) + p k+2 (x, y) + • • • , y 1 = y + q k+1 (x, y) + q k+2 (x, y) + • • • , with p k+1 (1, 0) = -1/k and q k+1 (1, 0) = 0. Thanks to Lemma 8.10, we have (10.2)

Ω (0,[V ]) = n≥0 Φ -n Ω (0,[V ]) ∩ S γ,s,ρ ,
and we can restrict ourselves to study Ω (0,[V ]) ∩ S γ,s,ρ .

Since S γ,s,ρ ∩ {x = 0} = ∅, we can use the blow-up y = xu and we can assume that, in the sector, Φ has the form (10.3)

x 1 = x -1 k x k+1 + O( u x k+1 , x k+2 ), u 1 = (I p-1 -x k A)u + O( u x k , u x k+1 ), where A = A([V ]) is the matrix associated to [V ], and we can perform all the changes of coordinates used to prove Theorem 8.3 and Theorem 9.1.

We thus can prove the following generalization of Theorem 5.2 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2.

Theorem 10.2. Let Φ be a global biholomorphism of C p fixing the origin and tangent to the identity of order k + 1 ≥ 2 and let [V ] be a non-degenerate characteristic direction of Φ at 0. If [V ] is attracting, then the attractive basin Ω (0,[V ]) ⊂ C p is a domain isomorphic to C p , i.e., it is a Fatou-Bieberbach domain.

Proof. We can reduce ourselves to consider Φ as in (10.3), with A in Jordan normal form. Let λ 1 , . . . , λ h be the distinct eigenvalues of A, and let α j = Re (λ j ). Up to reordering, we may assume α 1 > • • • > α h > α > 0. Let ε > 0 be small and such that

α 1 > α 1 -ε > α 2 > α 2 -ε > • • • > α h > α h -ε > 0.
Thanks to Theorem 9.1 and Corollary 9.4, the coordinates u = (u 1 , . . . , u h ) adapted to the structure in blocks of A can be chosen such that, for n large enough, we have (10.4) u j n ≤ |x n | k(α j -ε) , and we know that on (10.5) D = {(x, u) ∈ S γ,s,ρ : u j n ≤ |x n | k(α j -ε) , for j = 1, . . . , h}, we can conjugate holomorphically Φ to the translation For any fixed Z ∈ C and r > 0, consider the generalized polydisc P (Z,r) := {(Z, U ) ∈ C p : U j ≤ r for j = 1, . . . , h}.

   1 z 1 = 1 z + 1, U 1 = U,
The definition (10.5) of D, and the form (10.6) of U (x, u) imply that for Z ∈ Σ γ,R and R big enough, W contains the generalized polydisc P (Z,|Z| ε/2 ) . For |Z| tending to infinity, the fiber of W above Z contains generalized polydisc P (Z,r) of radius arbitrarily large. Hence we have (10.9)

n≥0 τ -n (W ) = C p .
The end of the argument is then as in Fatou [START_REF] Fatou | Sur les fonctions uniformes de deux variables[END_REF][START_REF] Fatou | Sur certaines fonctions uniformes de deux variables[END_REF], as follows.

Since D ⊂ Ω (0,[V ]) , and, thanks to (10.4), for n large enough, for every X ∈ Ω (0,[V ]) , X n ∈ D, we also have (10.10) Ω (0,[V ]) = n≥0 Φ -n (D).

Therefore, we can extend the isomorphism ψ : D → W , to ψ : Ω (0,[V ]) → C p as follows: given X ∈ Ω (0,[V ]) , consider n 0 such that Φ n 0 (X) ∈ D, and define ψ(X) := τ -n 0 • ψ • Φ n 0 (X).

Thanks to (10.7), the definition does not depend on n. It is immediate to check that ψ is injective, whereas its surjectivity follows from (10.10).

This last result is the generalization of Theorems 1.10 and 1.11 of [START_REF] Hakim | Transformations tangent to identity[END_REF] for the case k + 1 ≥ 2.

Theorem 10.3. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ. Let [V ] be a non-degenerate characteristic direction, and assume it has exactly d directors, counted with multiplicities, with strictly positive real parts, greater than α > 0. Then

(1) if the remaining directors have strictly negative real parts, the attractive basin Ω (0,[V ]) is biholomorphic to C d+1 ;

  with a change of the form (z(x, u), U (x, u)) such that(10.6) U (x, u) = x -kA u + O(x η ),for some positive η, and z(x, u) ≈ x k as x → 0. Let ψ : D → C p be defined byψ(x, u) := (Z(x, u), U (x, u)) = 1 z(x, u) , U (x, u) ,and let τ : C p → C p be the translation τ (Z, U ) := (Z + 1, U ). We know that D is Φ-invariant(10.7) τ • ψ = ψ • Φ.Let us consider W := ψ(D). For γ small enough, and R > 0 big enough, the projection Z(W ) of W on C contains the set (10.8) Σ γ,R := {Z ∈ C : |Im Z| < γRe Z, |Z| > R}.
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We can now estimate S 2 as follows.

By Lemma 8.8, Corollary 6.3 and the fact that u n |x n | -ε = o(1), we thus obtain

Therefore T is a contraction.

Taking φ the unique fixed point of T , we can use the following change of coordinates: ṽ = v -φ(x, u). Then ṽ1 = v 1 -φ(x 1 , u 1 ) = (I -x k B)v + H(x, u, v) -φ(x 1 , u 1 ) = (I -x k B)(ṽ + φ(x, u)) + H(x, u, ṽ + φ(x, u)) -φ(x 1 , u 1 ) = (I -x k B)ṽ + (I -x k B)φ(x, u) + H(x, u, φ(x, u))

with H(x, u, ṽ) = O( ṽ ), and hence H(x, u, 0) = 0. Therefore we can apply Theorem 7.1 to Φ| {ṽ=0} and this concludes the proof of Theorem 8.3.

We then deduce the following reformulation of Corollary 3.8 of [START_REF] Hakim | Transformations tangent to identity[END_REF] .

Corollary 8.9. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 and let [V ] be a non-degenerate characteristic direction. Let {λ 1 , . . . , λ h } be the directors associated to [V ] with strictly positive real parts and assume that

where α j = Re λ j . Then there exists an increasing sequence

of parabolic manifolds, defined in a sector, attracted by the origin along the direction [V ]. Moreover, for any 1 ≤ i ≤ h, the dimension of M i is 1 + Re λ j ≥α i m alg (λ j ) and M i is tangent at the origin to CV Re λ j ≥α i E λ j , where E λ j is the eigenspace associated to the eigenvalue λ j .

We can also deduce a partial converse of Theorem 7.1, using the following result, which holds for germs of biholomorphisms and hence also for global biholomorphisms.

in Jordan blocks. Therefore we can write

, where I l is an identity matrix of same dimension of the block J l for 1 ≤ l ≤ h, and

Set

u ≤j := (u 1 , . . . , u j ) and u >j := (u j+1 , . . . , u h ), and analogous definitions for u <j and u ≥j .

Given N ∈ N with N ≥ k + 1, thanks to (8.3), for every 1 ≤ j ≤ h, we can write

for some h N ∈ N depending on N , where for any s we defined E s as the (finite) set of integers t so that the series above contains the term x s (log x) t , and where c s,t (u) are holomorphic in u ≤ ρ and c s,t (0) ≡ 0.

The following result is the analogous of Proposition 4.1 of [START_REF] Hakim | Transformations tangent to identity[END_REF].

Proposition 9.2. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 as in (9.1), with [V ] = [1 : 0] attracting non-degenerate characteristic direction. For any positive integers N ≥ k + 1 and m, there exist local holomorphic coordinates (defined in a sector) such that (9.2) holds, and moreover

Proof. We want to change coordinates holomorphically in order to remove the terms in u >j with degree less than m from P j N (x, (0, u >j )). We use holomorphic changes of coordinates of the form ũj = u j -q j (x, u >j ), where the q j 's are polynomials in x, log x and u >j with q j (x, 0) = 0; if we obtain (9.3) for j = 1, . . . , j 0 , then changing the variables u j for j > j 0 will provide no effect on the first j 0 variables. We shall then perform the construction by induction on j, considering only changes on u ≥j with u <j = 0, which allow us to forget about the first j -1 coordinates.

Let v = u >j , and let us consider the matrix B j defined as

We now have to prove a statement similar to the one in Proposition 8.1 but with the opposite notation, i.e., we look for changes of coordinates of the form ũ = u -ϕ(x, v) such that

Corollary 9.3. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 as in (9.1), with [V ] = [1 : 0] attracting non-degenerate characteristic direction. For any positive integers N ≥ k + 1 and m, there exist local holomorphic coordinates such that

Corollary 9.4. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k + 1 ≥ 2 as in (9.1), with [V ] = [1 : 0] attracting non-degenerate characteristic direction. Let 0 < ε < α, and assume that the local coordinates are chosen so that the non-zero coefficients out of the diagonal in A are equal to ε 0 > 0 small enough, and (9.6) is satisfied with m and N such that

Then, for every j and for each (x, u) ∈ S γ,s,ρ with γ, s, ρ small enough, there exists a constant K > 0 such that

and moreover, u ≤j n |x n | -k(α j -ε) converges to zero as n tends to infinity. Proof. From the proof of Theorem 7.1, we know that, taking α = α h -ε we have

Hence, from (9.6) and (9.7) we obtain

Arguing as in the proof of Theorem 7.1, choosing ε and ε 0 small enough, since the eigenvalues of J j -k(α j -ε)I j have positive real parts, for each x ∈ S γ,s,ρ with γ, s, ρ small enough, we have

We have

Hence, setting

implying that there exists a positive constant K > 0 such that proving (9.8). Moreover, this proves that there exists ε 0 << ε 1 < ε such that u ≤j n |x n | -k(α j -ε) ≤ ε 1 , and so u ≤j n |x n | -k(α j -ε) converges to zero as n → +∞.

Thanks to the last corollary, we may assume without loss of generality that our germ Φ is of the form (9.1) and in the hypotheses of Corollary 9.4. Define the set (9.9) D := {(x, u) ∈ S γ,s,ρ : u ≤j n |x n | -k(α j -ε) ≤ 1}. To prove Theorem 9.1, we shall need this reformulation of Lemma 4.5 of [START_REF] Hakim | Transformations tangent to identity[END_REF] .

Lemma 9.5. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ. Let [V ] be an attracting non-degenerate characteristic direction. Consider local holomorphic coordinates where Φ satisfies the hypotheses of Corollary 9.4 with ε such that 3ε < min(α 1 , 1). Then the sequence {x -kA n u n } converges normally on the set D defined by (9.9).

Proof. Given (x, u) ∈ D, we shall bound x -kJ j n+1 u j n+1 -x -kJ j n u j n , for each j = 1, . . . , h. We have

for some positive integer q. Since (x, u) ∈ D, we have ε) , and hence, using the inequality x

and hence there exists K > 0 such that

, and hence we are done.

We now have all the ingredients to prove Theorem 9.1.

Proof of Theorem 9.1. Thanks to the previous lemma, we can define in D the following holomorphic bounded map (9.10)

Therefore, the holomorphic map (9.12)

is invariant. The main term near to the origin is x -kA u, and the level sets {U (x, u) = c} with c ∈ C are complex invariant analytic curves. Therefore, taking (x, U ) as new coordinates, Φ becomes (9.13)

where F is a holomorphic function of order at least k + 2 in x, and U behaves as a parameter. We can thus argue as in Fatou [Fa], and change coordinates, in D, in the first coordinate x, with a change depending on U , to obtain Φ of the form

and this concludes the proof.

We thus deduce the following reformulation of Corollary 4.6 of [START_REF] Hakim | Transformations tangent to identity[END_REF] .

Corollary 9.6. Let Φ ∈ Diff(C p , 0) be a tangent to the identity germ of order k+1 ≥ 2 and let [V ] be a non-degenerate characteristic direction. Assume that [V ] has exactly d (counted with multiplicity) directors with positive real parts. Let M be the parabolic manifold of dimension d + 1 provided by Theorem 8.3. Then there exist local holomorphic coordinates (x, u, v) such that M = {v = 0}, and Φ| M is holomorphically conjugated to:

Proof. Thanks to Theorem 8.3 there exist local holomorphic coordinates (x, u, v) defined in a sector S γ,s,ρ such that the parabolic manifold M is defined by M = {v = 0}, and Φ is defined by (8.1) with F , G, and H satisfying (8.2), and H(x, u, 0) = 0. Then Φ| M is given by

where all the eigenvalues of A have positive real parts. Let λ 1 , . . . , λ h be the distinct eigenvalues of A, and let α j = Re (λ j ). Up to reordering, we may assume

Let m and N ≥ k + 1 be positive integers such that mα h -α 1 ≥ 1 and N + k(α h -α 1 ) ≥ k + 1. We can thus write the Taylor expansion of G as

where c s,t (u) is a polynomial and deg(c s,t (u)) ≤ m. Therefore we can apply Theorem 9.1 to Φ(x, u, 0) and we are done.

Fatou-Bieberbach domains

In this section we shall assume that Φ is a global biholomorphism of C p fixing the origin and tangent to the identity of order k + 1 ≥ 2.

Definition 10.1. Let Φ be a global biholomorphism of C p fixing the origin and tangent to the identity of order k + 1 ≥ 2. Let [V ] be a non-degenerate characteristic direction of Φ at 0. The attractive basin to (0, [V ]) is the set

(2) otherwise, considering coordinates such that [V ] = [1 : 0], the set

is biholomorphic to C d+1 , and moreover its definition does not depend on α.

Proof. Thanks to the previous results we can apply Lemma 8.10 and property (10.2). We can thus choose local holomorphic coordinates in a sector, such that, after the blow-up, Φ has the form

where A, and B are in Jordan normal form, A has eigenvalues with strictly positive real parts, B has eigenvalues with non-positive real parts, and F , G, and H satisfying (8.2). Moreover, thanks to Theorem 8.3, we may assume H(x, u, 0) = 0.

If X ∈ Ω (0,[V ]) , for γ, s, ρ arbitrarily small positive numbers, then X n ∈ S γ,s,ρ , for n big enough.

Assume that B has only eigenvalues with strictly negative real parts. Therefore, thanks to the previous equations, we have v n+1 > v n for n big enough, so v n cannot converge to 0 unless we have v n = 0. Hence Ω (0,[V ]) ∩ S γ,s,ρ ⊂ {v = 0}, and we can apply the same argument as in Theorem 10.2 to Φ| Sγ,s,ρ∩{v=0} .

If B has eigenvalues with non-positive real parts, since in Ω (0,[V ]) , for n big enough, we have x -kα n+1 v n+1 > x -kα n v n , we cannot have x -kα n v n converging to 0 unless v n = 0. Therefore we argue as before, but considering Ω (0,[V ]) .