
HAL Id: hal-01610261
https://hal.science/hal-01610261

Submitted on 4 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainties of Domestic Road Freight Statistics:
Insights for Regional Material Flow Studies
Jean-Yves Courtonne, Pierre-Yves Longaretti, Denis Dupré

To cite this version:
Jean-Yves Courtonne, Pierre-Yves Longaretti, Denis Dupré. Uncertainties of Domestic Road Freight
Statistics: Insights for Regional Material Flow Studies. Journal of Industrial Ecology, 2018, 22 (5),
pp.1189-1201. �10.1111/jiec.12651�. �hal-01610261�

https://hal.science/hal-01610261
https://hal.archives-ouvertes.fr


Uncertainties of domestic road freight statistics:
insights for regional material flows studies

Jean-Yves Courtonne, Pierre-Yves Longaretti, Denis Dupré

Abstract

Freight statistics are at the core of many studies in the field of industrial ecology because they depict
the physical inter-dependencies of territories and allow to link worldwide productions and consumptions.
Recent studies have been increasingly focusing on subnational scales, often relying on domestic freight
data. In this perspective, this article analyses the uncertainties of the French domestic road freight survey,
road being by far the most common mode of transport in the country. Based on a statistical analysis of
the survey, we propose a model to estimate the uncertainty of any given domestic road transport flow. We
also assess uncertainty reduction when averaging the flows over several years, and obtain for instance a
30% reduction for a 3-year average. We then study the impact of the uncertainties on regional material
flow studies such as the Economy-Wide Material Flow Analysis of the Bourgogne region. Overall the case
studies advocate for a systematic assessment of freight uncertainties, as neither the disaggregation level
nor the quantities traded are good enough predictors. This justifies the need for an easy-to-implement
estimation model. Finally, basic comparison with the German and Swedish surveys tend to indicate that
the main conclusions presented in this article are likely to be valid in other European countries.

1 Introduction

Material flow analysis (MFA) is a systematic assessment tool used to assess the flows and stocks of a sys-
tem during a period of time. Either focusing on specific substances or on the whole economy, it has been
widely applied to countries and more recently to subnational scales (Binder et al., 2004; Kovanda et al.,
2009; Niza et al., 2009; Browne et al., 2011; Moore et al., 2013; Theobald et al., 2016). Regarding these
studies, Rechberger et al. (2014) raise two key questions: “What level of precision do we achieve, and what
level of precision do we require?” These questions can be related to the remarks of Binder et al. (2009)
regarding the lack of implementation of MFA in policy making: indeed, if the precision of results is not
properly analyzed, the reliability of the studies may be questioned. On the contrary, analyzing uncertainties
helps preventing premature conclusions and points to the main lacks of information. For instance, it would
not make sense to try to explain a 10% di↵erence on the per-capita consumption of two regions if it can be
explained by an overlapping of confidence intervals. Laner et al. (2014) review the existing MFA literature
and propose a classification of uncertainty management methods into three types of approaches: qualitative
and semi-quantitative approaches (e.g., Graedel et al. 2004), approaches based on data quality classification
(e.g., Weidema and Wesnæs 1996; Hedbrant and Sörme 2001; Danius 2002) and statistical approaches (e.g.,
Cencic and Rechberger 2008; Dubois et al. 2014). They insist on the distinction between “random” uncer-
tainty (that cannot be reduced) and “epistemic” uncertainty (that is due to a lack of knowledge). Patricio
et al. (2015) provide uncertainty quantifications of Economy-Wide Material Flow Analysis (EW-MFA) for
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di↵erent spatial levels in Sweden: national, regional and urban levels1. Uncertainties of input data are es-
timated based on available statistical information, expert judgment and empirical estimates to account for
imputation errors, for instance when a proxy is used. Domestic transport is identified as a major source of
uncertainty when tackling regional and urban levels. Generally speaking, they underline that the lack of
direct information implies larger uncertainties as the spatial resolution increases. They also insist on the
fact that evaluating uncertainties is more common in Substance Flow Analysis (SFA) studies than in EW-
MFA where they are generally treated qualitatively. In a previous article, the authors qualitatively assessed
the relative reliability of di↵erent sources based on the data estimation technique (Courtonne et al., 2015):
cross-checking of several surveys, some of which exhaustive (e.g., employment, agriculture production),
declaration and punctual control (e.g., customs, companies’ communications), modeled or downscaled data,
extrapolation of a statistical survey on subpopulations (e.g., road freight). This article is a first attempt of
moving from qualitative to quantitative uncertainty assessment, putting the focus on domestic road freight
statistics.

In France, the statistical service of the ministry of ecology (SOeS) compiles information from various
sources to provide centralized data updated every year on both international and domestic freight (SitraM
database). As about 85% of merchandises transported between French regions travel by road2, a specific
survey, called the TRM3 survey, is dedicated to domestic road freight. It consists of a poll on French trucks
(more details are provided in the methods section). Uncertainties being inherent to polls, the SOeS assesses
every year the precision of the survey for the total aggregated result, that is, whatever the good transported
and whatever the regions of loading and unloading. For instance, the 2010 quality assessment indicates a
precision of about 1.5% on a total of about 2 Gt, which can be interpreted as: there is a 95% chance for the
real value to belong to an interval between 1970 Mt and 2030 Mt4. Until now, however, uncertainties have
never been estimated for disaggregated flows whereas these information are becoming more and more used.
For instance, among the 22 French regions5, 4 have already undertaken an EW-MFA and several other are
launching studies. Typically, domestic freight data can be obtained by NST 2007 positions (382 categories)
up to the NUTS 3 levels (96 French départements) for loading and unloading. Extrapolations for each flow
are provided along with the number of observations they are based on (see the glossary next section for a
proper definition). The SOeS warns that results based on less than 10 observations shouldn’t be used because
they are probably not significant. This article is aiming at a more precise assessment of the uncertainties.
Especially, we try to:

• Quantify uncertainties of any domestic road freight flow based on anonymised detailed results of the
surveys (accessed upon special research request),

• Check whether or not this quantification is in line with the threshold of 10 observations proposed by
the SOeS,

• Propose a simpler model of uncertainty quantification only based on publicly available information
(e.g., number of observations, see glossary).

We believe this information can directly benefit ongoing and future MFA studies in France, and also
foster research on similar topics in other countries, especially in Europe. Indeed, following the Council

1Note that the uncertainties reported in their article correspond to one standard deviation (68% confidence interval), whereas here
we chose to express them as two standard deviations (95% confidence interval).

2Domestic inter-regional freight is about twice as large as international imports. Although it would be interesting to estimate
uncertainties of customs data, this can not be done with the methodology developed in this article.

3Enquête permanente sur le Transport Routier de Marchandises: permanent survey on road freight.
4See the uncertainty section in the glossary for a more thorough explanation.
5Note that since January 1st 2016, metropolitan France is divided into 14 regions.
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Regulation No 1172/98 on statistics on the carriage of goods by road, EU countries as well as candidate
countries must carry surveys on road freight similar to the TRM survey. If uncertainty calculation seems to
be a common practice in some countries (as Sweden and Germany as we show in the case studies), it may
not be the case everywhere and it is especially unlikely for uncertainties to be available for any possible
aggregation level of the flows. Moreover, to our knowledge, the question of uncertainty reduction through
a multi-year average MFA has not been fully explored yet, while in some cases providing more accurate
results for a 3-year average (for instance) may be more relevant than providing less precise annual results.

The article is structured into three sections. Data sources and methods are depicted in a first section.
A second section is dedicated to theoretical results, and provides formulae to compute uncertainties for a
single year and for a multi-year average. Because the precision required of course depends on the problem,
case studies ranging from EW-MFA to MFA focusing on specific products are presented in a third section.
This last section also includes a basic comparison of the French, Swedish and German surveys. Finally, a
summary of the main findings and perspectives for future research are proposed in the conclusion.

2 Materials and methods

2.1 Glossary

For the sake of clarity, we provide definitions of the following terms that are used throughout the article:

• Population. All vehicles-weeks in France (typically 52 times the number of vehicles). The population
total size is N (a quantity that varies from year to year), and elements of this population are denoted
i (1  i  N). Vehicles-weeks are elements obtained by considering that each vehicle provides an
independent elementary unit each week of the year. An element is therefore one vehicle surveyed for
a single week.

• Subpopulation. Vehicles-weeks that meet specific criteria for at least one of their travels: specific
loading area, specific unloading area and specific type of merchandise transported. We are interested
in well-defined subpopulations, identified by a given origin (o), destination (d) and category of goods
(c) transported. These subpopulations are symbolically represented by an index �ci , taking two values:
�ci = 1 if i belongs to the desired c =(o, d, c) subpopulation, and �ci = 0 otherwise.

• Sample. Vehicles-weeks surveyed. A sample is noted s and is a collection of elements of the pop-
ulation, usually of predetermined size S . The number of times a given element i is represented in a
sample is noted S i. For a sampling method without replacement (as is the case for the TRM survey),
S i = 0 or 1.

• Subsample. Subpopulation restricted to a sample; subsample sizes are denoted n. Note that the se-
lection of a subsample is a post-selection procedure once the sample is drawn, and not a subsequent
resampling of the sample. This definition does not conform with the conventional use of the word.

• Number of observations. Number of elementary operations of loading/unloading meeting specific
criteria (specific loading/unloading/good); a single vehicle-week can report several observations of
the same good between the same loading and unloading places.

• Characteristic quantity. Any quantity of interest on the total population, for example the total quantity
transported per year (tonnes) corresponding to specific criteria (loading-unloading-good). Quantities
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of interest are denoted y in a generic way. The mot important quantity one tries to estimate through
survey sampling is the total of a quantity of interest on the whole population

T =
NX

i=1

y0i ., (1)

where y0i = Nwyi and Nw = 52 is the number of weeks of the annual survey. The number of weeks scal-
ing is due to the fact that elements are vehicles-weeks and not vehicles-year (see the Supplementary
material first section for more details). In the probabilistic description adopted here, yi are parameters,
not random variables.
For a subpopulation, the associated total is

T c =
X

i2c
y0i =

NX

i=1

�ci y0i . (2)

• Inclusion probability. The inclusion probability ⇡i relates to element i and defines its probability of
being present in the sample. By construction the probability of absence is ⇡i = 1 � ⇡i. Unequal
probability sampling methods are characterized by the fact the ⇡i is not constant (not independent of
i); it is the form of sampling adopted in the TRM survey.

• Coe�cient of variation. Also known as relative standard deviation, it is a measure of dispersion equal
to the ratio of the standard deviation sigma (�) to the mean mu (µ).

• Uncertainty. In this article, only uncertainties due to the sampling methodology are taken into ac-
count6. They are provided in the form of 95% confidence intervals, that is nearly twice (1.96) the
coe�cient of variation, given an hypothesis of Gaussian distribution7. We therefore use the notation
µ +/- 2�/µ (expressed in %). Uncertainties above 100% mean the extrapolation (µ) is not significant
and shouldn’t be used.

• Extrapolation. procedure allowing us to estimate the quantities of interest in the whole population
from a sample.

2.2 Description of the methodology of the TRM survey

The TRM survey focuses on motor vehicles registered in France, less than 15 years old, belonging to one
of the two following categories: lorries of loading capacity (LC) higher than 3.5 tonnes and road tractors of
maximum permissible laden weight (MPLW) above 5 tonnes.

The design experiment is constructed with an unequal probability sampling method, taking advantage of
known contextual information about the vehicles. The unequal drawing probabilities are defined based on
three factors: the age of the vehicle, the loading capactity of the vehicle and the activity of the owner. The
goal is to draw more “young” vehicles and vehicles which have a high loading capacity because they have

6This excludes for instance mistakes in the answers from truck drivers, possible errors during the treatment of the forms or bias due
to the handling of nonresponse. These sources of error are quite di�cult to quantify. Nonresponse is handled by a simple correction
factor.

7The computation of the standard deviation itself is independent from any distribution hypothesis; the Gaussian hypothesis is made
in order to translate the standard deviation in terms of confidence interval. This hypothesis is used for the same purpose by the French
statistical o�ce handling the survey.
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a higher contribution in the total tonnes and tonnes-kilometeres transported. Half of the sample is renewed
every year in order to make the year-to-year evolution more reliable.

Once the answers are collected, sampling weights are corrected for non-response and improved by a cali-
bration procedure (CALMAR method), aiming at reconciling data estimated from the survey with otherwise
known totals, for instance the number of trucks registered in each region, the number of trucks of each type
etc. More information about this procedure can be found in CGDD-SOeS (2011).

The owners (or users) of the vehicles drawn for the survey are asked about the use of the vehicle during
one week (the answer is mandatory). The unit of the survey is therefore the vehicle-week.

In 2010, the survey had the following characteristics (CGDD-SOeS, 2011):

• population size: 527,403

• sample size: 77,921

• number of usable forms: 49,933

• sampling rate: (sample size / population size) ⇥ 1/52 weeks = 0.28%

2.3 Formulae for totals and associated uncertainty estimation

We only collect here the relevant expressions for total estimators and their variance. Some details about these
expressions and their justification is provided in the first section of this paper’s Supplementary material.

The extrapolation of the annual characteristic totals is performed with the help of the Horvitz-Thomson
(HT) estimator:

bT =
X

i2s

y0i
⇡i
, (3)

The HT estimator variance can itself be estimated by

bVs(bT ) =
X

i2s

(1 � ⇡i)
✓ y0i
⇡i
�

P
k2s(1 � ⇡k)y0k/⇡kP

k2s(1 � ⇡k)

◆2
. (4)

For a subpopulation c, the HT estimator can be expressed as

bT c =
X

i2s

y0i�
c
i

⇡i
, (5)

with the associated variance estimator

bVs(T̂ c) =
X

i2s

(1 � ⇡i)
✓y0i .�

s
i

⇡i
�

P
k2s(1 � ⇡k)y0k�

s
k/⇡kP

k2s(1 � ⇡k)

◆2
(6)

The 95% confidence limit is readily obtained from the variance of the estimator under a Gaussian distribution
assumption8

be95% = 2

q
bVs(bT )

bT
. (7)

8The service producing the survey also uses a 95% confidence interval to compute the uncertainty on the total (all flows aggregated).
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2.4 Data processing

The study is based on data from the French road freight surveys from 2002 to 2010; the data have been
made anonymous for confidentiality purposes. For each truck of the samples, the following three types of
information are given:

• targeted information: location of loading, location of unloading, category of good transported, re-
ported tonnes, reported tonnes-kilometers,

• sampling information: statistical weight of each truck,

• contextual information (used for the sampling): age of the vehicle, type of vehicle, activity of the
transporter, region of registration.

From this disaggregated information, we recreated all existing combinations of aggregation levels, distin-
guishing between:

• 3 levels of loading: 1 country (nuts 1), 22 régions (nuts 2), 96 départements (nuts 3),

• 3 levels of unloading (same),

• 3 levels of product category: all goods, 10 groups of goods (NSTR between 2002 and 2008) / 20
groups of goods (NST 2007 between 2009 and 2010), 176 detailed goods (NSTR between 2002 and
2008) / 382 detailed goods (NST 2007 between 2009 and 2010).

An illustration of such combinations is provided in the accompanying Supplementary Material file. We
computed confidence intervals for each extrapolation (about 900,000 extrapolations in total for the period
2002-2010) with a C++ program implementing Eq. (7).

3 Theoretical results

3.1 Estimating uncertainties based on subsample sizes

We built a file based on the surveys from 2002 to 2010 containing the following fields for each extrapolation:

• n: size of the subsample used for the extrapolation (see subsample in the glossary),

• e: 95% error (see uncertainty in the glossary), computed from Eq. (7).

Extrapolations were first sorted out in 15 classes depending on the size of the subsample they are based on.
5%, 50% and 95% quantiles of uncertainties were then computed for each class9.

Power law fits to the data are proposed in figure 1. Applying these models, table 1 provides the values
for lower, median and upper uncertainty estimations for di↵erent values of subsample sizes. The R2 of the
median model, that is the proportion of variability it explains, is equal to 0.87, which is satisfactory. We
conducted similar studies for two other predictor variables, that are available in the supplementary material.
First, we took the number of observations (see glossary) as predictor variable, since it is currently the default

9The combinatorial e↵ect implies that the vast majority of the studied extrapolations have small subsample sizes. Therefore data
has to be organized into subsample size classes to prevent a ponderation bias during the analysis. More details are available in the
Supplementary Material file.
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variable provided by the French statistical o�ce. The derived model has an R2 of 0.77, which is still accept-
able but indicates that the size of the subsample is a better predictor and should be preferred when available.
Finally, we tested the hypothesis “the higher the quantity transported the smaller the uncertainty”, using
the number of tonnes transported as the explicative variable. This last model is the least e�cient, with an R2

of only 0.6310.

Figure 1: Piecewise models for estimating lower bound, median and upper bound uncertainties based on
the size of the subsamples (NB: this is a log-log plot). Extrapolations were classified in size classes as
explained in the text: each class is represented by three dots (aligned vertically). Lower dots correspond
to 5% percentiles, middle dots to medians and upper dots to 95% percentiles. Explicative models were
calibrated in order to properly fit the dots. The piecewise models e (%) = a/nb are drawn in blue lines and
the parameters are provided in the two tables. The R2 of the median model is 0.87. It is interesting to notice
that for the three models, the slope increases when the size of the subsample reaches a threshold: upper
bounds are the first to decrease, followed by median (for nearly 2000 individuals) and lower bounds.

10All the R2 indexes are computed with the formula R2 = 1 � S S residuals/S S total.
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Uncertainty (%)
Subsample size Lower bound Median Upper bound
5 75 92 136
10 57 73 110
15 49 64 98
20 44 58 90
50 31 43 68
100 24 34 56
150 21 30 49
200 19 27 45
500 13 20 34
1000 10 16 24
2000 8 13 16
5000 5 7 9
10000 3 4 6
20000 2 3 4

Table 1: Lower, median an upper uncertainties estimations for given subsample sizes (rows). We see that
below a size of 15 vehicles-week, there is risk for the statistic not to be significant (above 100% of uncer-
tainties), although it can be significant in some cases. Above 150 vehicles-week, there is a 95% chance that
the uncertainty is lower than 50%, the median estimation being 30%.

3.2 Estimating the reduction of uncertainty when averaging over several years

Let Ti be the estimation of tonnes transported for a given subsample (given loading and unloading locations,
and transported product) during the year ↵. The average over several years ny is:

T =
1
ny

X

↵

T↵. (8)

Assuming T↵ are independent variables, we would have:

V(T ) =
X

↵

V
 

T↵
ny

!
=

1
ny

P
↵ V(T↵)

ny
=

1
ny

V(T ), (9)

where V(T ) is the mean of the V(T↵) over ny years. Then:

�(T ) =
0
BBBB@

V(T )
ny

1
CCCCA

1/2

, (10)

and the associated error (twice the coe�cient of variation):

e = 2
�(T )

T
=

2
T

0
BBBB@

V(T )
ny

1
CCCCA

1/2

. (11)

In reality one cannot assume that the annual totals T↵ are independent variables because every year, half
of the sample is reconducted. To recover statistical independence, we chose to build alternative independent
samples by removing redundant vehicles-weeks. If we call p the size of a full sample for one year and
consider that this size is stable over the ny years considered, we see that the full sample over ny years will
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have a size of ny p while any independent sample over ny years will have a size of p + (ny � 1)p/2 (see the
table 3 of the Supplementary Material file and its accompanying comment).

This argument suggests to substitute [p + (ny � 1)p/2]/p to ny in the last expression of Eq. (11), leading
to the following predictor for the error e:

e =
2

p
1 + (ny � 1)/2

pP
↵ V(T↵)/nyP
↵ T↵/ny

. (12)

This relation is plotted on figure 7 of the Supplementary Material for an average over 3 years, where the

uncertainty e is represented as a function of x = 2
q

V(T )/T with V(T ) =
P
↵ V(T↵)/ny and T =

P
↵ T↵/ny.

The linear behavior holds with good accuracy, with the correct slope predicted by Eq. (12). To obtain this
plot, we sorted out observations depending on the value of the predictor and in each class and computed the
median of the uncertainties obtained by applying Eq. (6) to the independent sample.

The results displayed in table 2 allow us to validate this model over all the possible number of years one
could use for this averaging procedure. To construct this table, we have constructed the samples as explained
above for each averaging option, and compared a fitted slope with the predicted one; the di↵erence between
the two is clearly negligible for all practical purposes. Theoretically, the uncertainty of the average could
still be lowered because the part of the sample removed is not 100% correlated with the part kept. However,
it is not possible to know the level of correlation between these sample parts, so that we advise to break the
sample over several years as explained in this section and use Eq. (12) as a basic predictor.

Average over ny years Observed slope
(fitted model)

Suggested model
1/

p
1 + (ny � 1)/2

R2 of the fitted
model

R2 of the sug-
gested model

n=2 (2006-2007) 0.82 0.82 0.97 0.97
n=3 (2005-2007) 0.70 0.71 0.98 0.97
n=4 (2004-2007) 0.60 0.63 0.98 0.96
n=5 (2003-2007) 0.55 0.58 0.98 0.96
n=6 (2002-2007) 0.52 0.53 0.98 0.97

Table 2: Fitted slopes versus modeled slopes in a e = slope ⇥ 2V(T )/T model. The R2 index of the fitted
model shows that [V(T )]1/2/T is a very good predictor of the error. The suggested model produces slopes
very close to that of the fitted model and its R2 index stays very high. Note that the value 1 � slope can
be interpreted as the reduction of uncertainty obtained thanks to the averaging operation (e.g. for a 3 year-
average, we can expect a reduction of uncertainty of about 30%).

4 Case studies

4.1 Implications for regional EW-MFA: the case of the Bourgogne region

The methodology for Economy-Wide Material Flow Analysis was standardised by Eurostat (2001). Its
objective is to quantify the physical inputs into an economic system, material accumulation in this system
and outputs to other economies or back to nature, as illustrated by table 3. This table shows the material
balance of the Bourgogne region as computed by Alterre-Bourgogne (2013).

We only consider the uncertainties of road freight statistics and we use Gauss’s law of propagation to
capture their impact on EW-MFA results. Of course this requires the use of a correspondence table between
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freight and EW-MFA classifications: we use the table provided by the French o�cial guide for regional
EW-MFA (CGDD, 2014).

Regional (Eurostat nuts 2 level) results are presented in table 3. We can see that at this level road
freight uncertainties are very low for total imports and exports (about 5%) and low to moderate when we
start disaggregating by product categories (between 5% and 21%). Also note that with 95% intervals of
confidence of respectively 2.5% and 6% DMI (Domestic Material Input) and DMC (Domestic Material
Consumption) indices seem robust to road freight uncertainties, although DMC is more subject to variations.
This conclusion is confirmed by the results for the four départements of Bourgogne (nuts 3 levels) displayed
in table 4: while DMI uncertainties vary between 5% and 8%, DMC uncertainties vary between 12% and
21%. At this geographical level, DMCs should therefore be compared with great care and intervals of
confidence should be given. This higher sensitivity of the DMC index to input data uncertainties was already
underlined in Patricio et al. (2015).

Flow type Flow Value (Mt) Uncertainty

Inputs (Mt)

Balancing inputs 15.8
Domestic extraction (unused) 20.1
Domestic extraction (used) 27.8
Imports 27.1 +/- 5%

products from agriculture and fisheries 5.4 +/- 11%
products from sylviculture 1.4 +/- 16%
metallic minerals and derived products 2.4 +/- 5%
non metallic minerals and derived products 4.9 +/- 21%
fossil fuels and derived products 3.8 +/- 7%
other products 9.2 +/- 7%

Indirect flows associated to imports 131.4

System (Mt) Net addition to stock 11.0
Recycling 4.0 to 5.5

Outputs (Mt)

Balancing outputs 15.1
Domestic extraction (unused) 20.1
To air 11.2
To nature (others) 6.6
Exports 26.8 +/- 4%

products from agriculture and fisheries 8.0 +/- 7%
products from sylviculture 1.6 +/- 16%
metallic minerals and derived products 2.1 +/- 17%
non metallic minerals and derived products 5.4 +/- 11%
fossil fuels and derived products 0.8 +/- 13%
other products 8.8 +/- 7%

Indirect flows associated to exports 120.6

Indicators DMI 33.5 t/cap +/- 2.5%
DMC 17 t/cap +/- 6%

Table 3: Economy-Wide Material Flow Analysis of the Bourgogne region (Alterre-Bourgogne, 2013). Un-
certainties of trade flows (95% interval of confidence) are computed by the authors. Uncertainties of DMI
and DMC indicators only incorporate the e↵ect of domestic road freight uncertainties (other data sources
are not studied here). Taking other sources of uncertainty into account would of course lead to higher uncer-
tainties for these indicators.
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Flow type Flow Côte d’Or Nièvre Saône et Loire Yonne

Inputs (Mt)

Balancing inputs 4.5 2.5 6 2.8
Domestic extraction (unused) 7.1 3.1 4.4 5.5
Domestic extraction (used) 7.8 5.9 7.8 6.3
Imports 9.4 +/- 6% 3.8 +/- 17% 12.8 +/- 9% 6.5 +/- 14%

System (Mt) Net addition to stock 2.5 1.8 4.0 2.7

Outputs (Mt)

Balancing outputs 3.2 3.1 6.3 2.5
Domestic extraction (unused) 7.1 3.1 4.4 5.5
To nature 5.3 2.6 6.3 3.5
Exports 10.7 +/- 8% 4.6 +/- 18% 10.0 +/- 7% 7.0 +/- 10%

Indicators DMI 33 t/cap +/- 5% 44 t/cap +/- 8% 37 t/cap +/- 7% 37 t/cap +/- 8%
DMC 12 t/cap +/- 15% 23 t/cap +/- 21% 19 t/cap +/- 12% 17 t/cap +/- 20%

Table 4: Economy-Wide Material Flow Analysis of the départements (nuts 3 levels) of Bourgogne (CGDD,
2014). Uncertainties (95% interval of confidence) of trade flows and of the indicators are computed by the
authors. Uncertainties of DMI and DMC indicators only incorporate the e↵ect of domestic road freight
uncertainties (other data sources are not studied here).

4.2 The disaggregation e↵ect: a focus on agro-products and wheat

In this section, we show the results for two categories of products: all products from agriculture, forestry and
fishery on the one hand and wheat on the other hand (in the NST 2007 classification these correspond respec-
tively to the codes 01 and 0111). In addition, we distinguish between three levels of spatial disaggregation:
total domestic road freight, total road imports and total road exports of each French region and inter-regional
road freight. The results presented in figure 2 clearly show that geographical and product disaggregation
rapidly lead to loss of precision given the decrease in the size of the subsample. The most disaggregated
results (inter-regional trade of wheat) show that there is a very large variability of uncertainties depending
on the flows (here, depending on loading and unloading regions), ranging from 31% to 183%.

This clearly shows that the disaggregation level is not enough to characterize uncertainty, but that there is
a large regional variation. As a consequence, uncertainties should be evaluated in each MFA study to check
whether or not road freight is reliable enough depending on the question tackled. Data reconciliation tech-
niques that couple transport data with production, transformation and consumption data seem well adapted
to take advantage of available trade data while still taking its (lack of) precision into account, as shown by
the authors in a previous article (Courtonne et al., 2015).

4.3 Uncertainty propagation: studying wheat supply areas of French regions

Another common way of using transport databases is to estimate the origin or the destination of products
(see, e.g., Kastner et al. 2011; Billen et al. 2009; Courtonne et al. 2016 to name only a few). In this section,
we analyze the case of supply areas.

Following Kastner et al. (2011), we define a matrix R whose terms Ri j represents the percentage of region
i supply initially originating from region j. It is computed as follows:

R = (I � Zx̂�1)�1 p̂, (13)
x = p + Z · I. (14)

In these relations, I is the identity matrix; p the vector of regional productions; Z the transport matrix (with
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Product disaggregation

G
eographical disaggregation

France France

All Agro-products

7478

+/- 4%

France France

Wheat

869

+/- 11%

Region Region

All Agro-products

35

+/- 67%

France Region

All Agro-products

571

+/- 23%

Region France

All Agro-products

539

+/- 23%

Region France

Wheat

53

+/- 56%

France Region

Wheat

51

+/- 56%

Region Region

Wheat

9

+/- 116%

LEGEND
Loading Unloading

Product category

Average sample size

Average uncertainty

Figure 2: Analysis of uncertainties of road freight at various spatial and product disaggregation levels. Dis-
tribution are shown, with the x axis representing uncertainties computed for the year 2010 and the y axis
representing the number of occurrences. Distributions are not drawn for total domestic freight (loading and
unloading in France, whatever the region) since there is only one occurrence per product category. Uncer-
tainties above 100% correspond to non-significant extrapolations. Flows between French départements (nuts
3 levels) are not shown but display an even larger level of uncertainty.
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Zi j the exports of country j to country i); I a vector of ones so that ZI is the vector of total imports for each
region; and x̂�1 a diagonal matrix whose ith diagonal elements is x�1

i . Note that term Ri j takes into account
an infinite regression of imports and exports between all regions (e.g., region j exports to region k which in
turn exports partly to region i while importing its own supply from other regions, etc), under an assumption
of perfect blend11.

For the study of uncertainty propagation we use Monte-Carlo simulations and only consider uncertainties
of domestic road freight statistics12. For each simulation, road freight data (symbolized by the r superscript
on matrix Z) are generated and satisfy the four following constraints:

• all terms must remain positive,

• random draws of trade between two regions are generated from a Gaussian distribution centered on
the estimated value and within the 99% confidence interval (3 sigmas).

• total imports and total exports of a region computed with the random draws of inter-regional trade
must be within the 99% confidence interval of the estimated total imports and total exports

• total domestic trade computed with the random draws of inter-regional trade must be within the 99%
confidence interval of the estimated total domestic trade.

The distributions mean value are extracted from the TRM survey extrapolated values and the confidence
interval from our error analysis.

These constraints are necessary due to the fact that aggregated data is more reliable than disaggregated
data. They translate into the following inequalities:

• For each couple of regions (i, j), Zr
i j � 0, with Zr the random draw of road freight,

• |Zr
i j � Z0

r
i j|  3�(0)

i j with Zr
0 the initial road freight data, of estimated standard deviation �(0),

• |(ZrI)i � (Zr
0I)i|  3�(1)

i ,

• |(ItZr) j � (ItZr
0) j|  3�(2)

j ,

• |ItZrI � ItZr
0I|  3�(3).

Here, �(0) is a matrix, �(1) and �(2) are vectors and �(3) is a number.
Figure 3 shows the supply areas for wheat of two French region (Haute-Normandie and Alsace), chosen

for their high level of inter-regional imports. These two examples show that the supply uncertainty is often
but not always small: for instance, the supply of Alsace coming from Franche-Comté is estimated inside
of a wide 2%-22% interval. Turning to the analysis of all regions, we find that the average uncertainty for
regions contributing to more than 5% to another region’s supply is equal to 28% (the median is 18%) but the
dispersion is quite high. Again, this suggests that uncertainty evaluation for input data as well as for output
results should be generalized as emphasized by Laner et al. (2014).

11This hypothesis states that the proportion of production going to local consumption (which is unknown) is the same as the propor-
tion of total supply going to local consumption (which is known). The same applies to the proportion of production directed to exports.
This assumes constant stocks on the long run.

12This means that uncertainties of production, international trade and domestic trade by other modes of transport are not considered.
It is however very likely that domestic road freight data are the less precise.
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Alsace

Franche-Comté

Haute-Normandie

Figure 3: Wheat supply areas of region Haute-Normandie (left) and Alsace (right). Note that for each region
x, the first percentage gives the fraction of supply of region y (Haute-Normandie or Alsace) produced in
region x. 95% Confidence intervals are shown in the second percentage and are expressed in absolute value
(which is a percentage since the quantity of reference is a percentage). Most of the uncertatinties do not twist
the conclusions that could be made based on central values alone, except for the case of supply of Alsace
originating from Franche-Comté which can in fact vary between 2% and 22%.
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4.4 Comparison between the French, Swedish and German surveys

It is interesting to compare freight error analysis between countries, when possible. For Sweden, follow-
ing Patricio et al. (2015), we retrieved data from the Swedish statistics o�ce and built table 5. Note that the
uncertainties presented correspond to total domestic freight (a regional resolution will have higher uncertain-
ties as we saw previously). For Germany, the German statistics o�ce in charge of the survey only provides
extrapolations meeting minimum quality criteria: the subsample size must be above 35 and the uncertainty
below 40%. It also highlights extrapolations that are based on less than 50 trucks or whose uncertainties are
above 20%. The uncertainty of the total in Sweden is about four times larger than in France, the latter being
itself about twice as large as in Germany. We conclude from these examples that uncertainties in European
countries are likely to be comparable in order of magnitude to the ones reported here. If one wishes to use
disaggregated domestic freight data for MFA purposes in European countries, we therefore advise to conduct
uncertainty studies similar to the one exposed in this work.

5 Discussion and outlook

This article addresses the complex and technical issue of uncertainties of domestic road freight data in the
context of material flow studies. Below, we start by summarizing the major quantitative results before
pointing out the importance of such studies from a broader viewpoint.

5.1 Major quantitative results

Since uncertainties of domestic road freight data are not currently computed by the French statistics o�ce,
we have conducted our own uncertainty analysis of the sampling procedure performed in France, and pro-
posed a model to estimate the resulting errors, based on available predictor variables, the subsample size
or the number of observations. We also proposed a computation rule to assess uncertainty reduction when
averaging over ny years. Results suggest that conducting MFA studies on period of several years instead of
a single year would lead to more reliable results. For instance, we can expect a 3-year average to reduce the
uncertainty of road freight by 30%.

Turning to specific material flows, we illustrated the data disaggregation e↵ect on the case of agro-
products, and then the propagation e↵ect of determining regional supply areas for wheat. Results show it
is not possible to assert up to which disaggregation level the data can be exploited: computing uncertainties
should be done on every flow studied (which justifies the need for reliable and easy-to-implement computa-
tion rules). We show that the subsample size (or the number of observations) is a much better predictor than
the total tonnes estimated, that is, one should not directly assume that large quantities are necessarily more
reliable than smaller ones.

We focused on the French case for definiteness but the methodology developed in this paper should be
of more general validity. Although specific results may di↵er, many trends are likely to be valid in other
European countries since these countries make use of the same kind of surveys for assessing road freight.
The fact robustness increases significantly when using time period averages is typically a result that will be
true in other countries.

5.2 Broader outlook

Estimating uncertainties of MFA data is important for at least three reasons. First, as for any scientific
endeavor, MFA results can not be properly interpreted without providing information on their reliability.
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Product category Uncertainty

of the 2010

French

survey

Uncertainty

of the 2010

Swedish

survey

Uncertainty of the

2013 German sur-

vey

01 - Products of agriculture, hunting, and forestry; fish and other
fishing products

4% 10% < 20%

02 - Coal and lignite; crude petroleum and natural gas 18% 114% 20% < e 6 40% or
35 < # trucks 650

03 - Metal ores and other mining and quarrying products; peat;
uranium and thorium ores

4% 16% < 20%

04 - Food products, beverages and tobacco 4% 13% < 20%
05 - Textiles and textile products; leather and leather products 22% 56% < 20%
06 - Wood and products of wood and cork (except furniture);
articles of straw and plaiting materials; pulp, paper and paper
products; printed matter and recorded media

7% 19% < 20%

07 - Coke and refined petroleum products 7% 30% < 20%
08 - Chemicals, chemical products, and man-made fibers; rub-
ber and plastic products; nuclear fuel

8% 25% < 20%

09 - Other non-metallic mineral products 4% 24% < 20%
10 - Basic metals; fabricated metal products, except machinery
and equipment

10% 21% < 20%

11 - Machinery and equipment n.e.c.; o�ce machinery and
computers; electrical machinery and apparatus n.e.c.; radio,
television and communication equipment and apparatus; medi-
cal, precision and optical instruments; watches and clocks

8% 29% < 20%

12 - Transport equipment 10% 31% < 20%
13 - Furniture; other manufactured goods n.e.c. 12% 62% < 20%
14 - Secondary raw materials; municipal wastes and other
wastes

8% 26% < 20%

15 - Mail, parcels 9% 21% < 20%
16 - Equipment and material utilized in the transport of goods 14% 15% < 20%
17 - Goods moved in the course of household and o�ce re-
movals; baggage and articles accompanying travelers; motor
vehicles being moved for repair; other non-market goods n.e.c.

15% 43% < 20%

18 - Grouped goods: a mixture of types of goods which are
transported together

4% 8% < 20%

19 - Unidentifiable goods: goods which for any reason cannot
be identified and therefore cannot be assigned to groups 01-16

17% - < 20%

20 - Other goods n.e.c. 55% 39% e > 40% or # trucks
6 35

TOTAL (all product categories) 1.5% 6% 0.8%

Table 5: Comparison of the 95% uncertainties in the 2010 French and Swedish road freight surveys and
the 2013 German survey for the main categories of products (NST 2007 classification). Uncertainties of the
French survey are computed by the authors as described in methods section, except for the total which is
provided in CGDD-SOeS (2011). Uncertainties of the Swedish survey are computed based on table 7A of
Swedish-Transport-Administration (2011). Uncertainties of the German survey were taken from the table
p. 60 of Kraftfahr-tBundesamt (2014), except for the total which was directly provided to the authors by the
statistics o�ce.
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Conversely, uncertainties are useful to analyze the level of detail researchers can currently aim at, that is,
given existing statistical data. For instance, can we model material flow down to the département level in a
satisfactory way, or should we only focus on the regional level? Will results be reliable enough if we study
flows of durum wheat? Or should we rather study all wheat flows? Or aggregated cereal flows? Of course it
is often the case that too much aggregation leads to less interpretable results; knowledge about uncertainties
can help set the cursor right. Finally, without any robustness assessment, results are unlikely to be used to
guide policy making even if the original research was action oriented.

With the large amounts of data and computational power available nowadays, it is tantalizing to elaborate
evermore sophisticated tools without taking the time to question to what extent they provide useful new
contributions to our knowledge and understanding. Analyzing uncertainties helps putting such results in
perspective, avoiding premature conclusions, pointing to current lack of information, in line with this famous
quote from Read (1920): “it is better to be vaguely right than exactly wrong”.
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méthodologique.
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Supplementary material

Uncertainties of domestic road freight statistics:
insights for regional material flows studies

Jean-Yves Courtonne, Pierre-Yves Longaretti, Denis Dupré

The document is structured as follow:

• Section 1 presents and explains the relevant material and results from survey sampling theory that are
used in the main text.

• Section 2 is an illustration of data treatment that shows how combinations of aggregates are generated
based on basic extrapolations,

• Sections 3 is an annex to the theoretical results section of the article, dedicated to model uncertainties
for a single year based two other explanatory variables (the number of observations and the tonnes
transported),

• Section 4 is also an annex to the theoretical results section of the article, but dedicated to the study
of uncertainty reduction when averaging over several years: it explains how independent multi-year
samples are built and illustrates the results on a dedicated plot.

1 Unequal probability survey sampling in a nutshell
The French road freight survey (TRM survey) is statistical in nature, and makes use of a specific unequal
probability sampling method without replacement to estimate totals of interest, such as the total number of
tonnes, kilometers travelled or tonnes-kilometers transported by road from any given origin to any given
destinations and category of goods.

The TRM survey also makes use of constraints from auxiliary quantities of known totals to improve the
desired total estimate, but this form of constraint is ignored here, as it provides only a modest correction to
the variance in most cases and as its implementation requires information we do not have. However a simple
correction for non-response is included.

The TRM survey only provides the error on the aggregated total (for all origins, destinations and cat-
egories) while we are interested in the error on the various disaggregated totals. The object of the present
discussion is therefore to provide the reader with relevant results and explanations from survey sampling the-
ory in order to perform an estimation of the errors of these various disaggregated totals. It is also intended
to provide a minimal guideline to the relevant literature; as a consequence, literature citations are focused on
the few books and articles most directly related to the problem at hand.

The following subsection is devoted to introducing important definitions and notations; some of these are
already given in the main text, but reproduced here, sometimes in more detail, for the reader’s convenience.
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The next one will give relevant results for totals and their variances for samplings without replacement.
The last one will provide a heuristic justification for the approximation we use in this work. All relations are
demonstrated (unless otherwise stated) for the interested reader to get a feel of what these relations are about,
and as the technical literature has a mathematical flavor that can be daunting for the non-mathematician.

1.1 Definitions and notations
One considers a population of N elements (here vehicles-weeks) denoted i (1  i  N). Samples of fixed
size S are drawn from this distribution. Typically in the problem at hand, N ' 5 ⇥ 105 and S ' 8 ⇥ 104,
while the number of usable answers is ' 5 ⇥ 104 (this last figure makes non-response — which includes all
unusable answers — non negligible and a correction for this is generally applied).

Several quantities need to be defined to specify what is meant by unequal probability sampling without
replacement.

Samples. Samples are designated by s = (s1, s2, . . . , sN

) where s

i

is the number of times a given element
i is present in the sample. The set of all such samples is denoted F. A sample without replacement has
s

i

= 0 or 1, by definition (an element cannot be selected more than once). A sample with replacement has
0  s

i

 S where S is the size of the sample. Samples of fixed, predetermined size are the only ones of
interest here; then, by construction,

P
N

i=1 s

i

= S .

Sample design. The sample design is the probability distribution p(s) defined on the set of samples F. As
a consequence, both s

i

and the inclusion indicators �
i

defined right below are probabilistic quantities1. Note
that in this form of probabilistic description, the elements of the populations are not random variables, as the
elementary probabilistic event of interest is the selection of a whole sample, not the successive selections of
elements of the population.

Inclusion indicator and inclusion probabilities. The inclusion indicators (or inclusion variables or Corn-
field variables) �

i

are defined by �
i

= 0 if s

i

= 0 and �
i

= 1 otherwise (s

i

� 1), i.e., an inclusion indicator
measures the presence of its associated element in the sample and ignores its possible repetitions.

The first-order inclusion probability ⇡
i

relates to element i and defines its probability of being present in
the sample. By construction the probability of absence is ⇡

i

= 1 � ⇡
i

. By definition of the sampling design
and inclusion indicator:

⇡
i

=
X

s2F
p(s)�

i

. (1)

Similarly, the probability that both i and j are present in the sample is the second-order probability ⇡
i j

=P
s

p(s)�
i

�
j

. By definition, ⇡
ii

= ⇡
i

. For fixed-size and non-replacement sampling designs,
P

N

i=1 ⇡i

= n, from
Eq. (1).

Unequal probability sample designs. Unequal probability sampling designs are characterized by the fact
⇡

i

is not constant (not independent of i).
1No distinction of notation is made here between a random variable and its associated realizations.
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Characteristic quantity. This refers to any quantity of interest on the whole population, for example the
quantity transported per year (tonnes) corresponding to specific criteria (loading and unloading locations,
category of product transported). Quantities of interest are denoted y in a generic way. The most important
quantity one tries to estimate through survey sampling is the sum total of y on the whole population

T =

NX

i=1

y

i

. (2)

In the probabilistic description adopted here, y

i

is a parameter, not a random variable.

Subpopulation index and total. We are mostly interested in evaluating totals on well-defined subpopula-
tions, identified by a given origin (o), destination (d) and category of goods (c) transported. These subpop-
ulations are symbolically represented by an index �c

i

, taking two values: �c
i

= 1 if i belongs to the desired
c =(o, d, c) subpopulation, and �c

i

= 0 otherwise.
It must be noted that the index �c

i

is not a random variable. It is a fixed parameter allowing us to sort
out the relevant elements in the total population or in a sample. In particular, we do not redraw a subsample
of the considered sample within this category, we just post-select the relevant elements within the drawn
sample.

The associated total is

T

c =
X

i2c
y

i

=

NX

i=1

�c
i

y

i

. (3)

Subsamples. The members of a subpopulation belonging to a given sample are called a subsample here,
although they result from a post-selection process and not a second sampling stage. A subsample size is
denoted n.

Sampling algorithms. A sample design is specified by its probability distribution p(s) over the sample set
F, and is constructed algorithmically. For the simple equal probability or replacement cases, the first and
second order inclusion probabilities can be specified analytically.

In sampling designs without replacement, elements are not reinserted in the original population if se-
lected in one of the successive steps of the sampling algorithm; on the contrary, a given element can be
selected any number of times in a sampling design with replacement. Sampling designs without replace-
ment are more complex to implement but their interest comes from the following theorem (see Tillé 2006,
section 2.18): sampling designs with replacement are suboptimal in the sense that designs with smaller vari-
ance (i.e., more precise, an essential property) and identical first-order inclusion probabilities2 can always
be found.

Unequal probabilities are useful when the quantity of interest is not evenly distributed in the population.
In particular, if one can find an auxiliary quantity X

i

that is known to be (at least approximately) correlated
to y

i

, one can substantially improve the quality of the estimate of the total T at constant sample size S by
designing the probability to be proportional to X. For the TRM survey, the first-order inclusion probabili-
ties are proportional to the vehicle’s age and payload, with a correction factor for some specific categories
of vehicles. The specification of the first order inclusion probabilities is the first step in the algorithmic
construction of a sample design. For more details, see section 2.10 of Tillé 2006.

2Second-order inclusion probabilities are necessarily di↵erent.
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There is an infinite number of sampling designs with given first-order inclusion probabilities, and sam-
pling design algorithms are selected inasmuch as possible to have desirable properties for the second-order
inclusion probabilities ⇡

i j

. Quite often indeed, the algorithmic evaluation of these quantities turns out to be
unpractical for large samples, or to possess undesirable properties making the variance strongly unreliable
or even negative. For example, the ordered systematic sampling design (Tillé 2006, section 7.1) is a widely
used algorithm due to its simplicity (it is used in the TRM survey), but has the undesirable feature to pro-
duce a (large) number of vanishing second-order inclusion probabilities. As a result, the usual expression of
the Horvits-Thomson variance Eq. (5) below gives biased results and cannot be used, and an approximate
expression must be found by other means.

Finding practical sampling algorithms with simple-to-evaluate and well-beha-ved ⇡
i j

or finding useful
approximations of the variance based only on first-order inclusion probabilities for known algorithms is still
an active area of research in this field (see, e.g., chapters 3 and 7 of Tillé 2006 for more details).

More complex sampling designs can be adopted besides unequal probability sampling without replace-
ment, e.g. stratified or clustered sampling, but these methods will not be discussed here (see Cochran 1977
or Fuller 2009 for more details).

1.2 The Horvitz-Thomson estimator and its variance
1.2.1 Generic relations

The quantity of interest is the total of any characteristic quantity, Eq. (2). The best known and most used
estimator is the Horvitz-Thomson one, defined by (Tillé 2006, section 2.17)

b
T =

X

i2s

y

i

⇡
i

=

NX

i=1

�
i

Y

i

⇡
i

. (4)

An estimator is unbiased if its expectation value is equal to the desired quantity. Eq. (4) shows that the
expectation value of the HT estimator over the sample space is unbiased. Indeed, E

s

(bT ) =
P

s

b
T p(s) = T ,

from Eq. (1), where E

s

(X) is the expectation of X over the sample probability distribution.
The variance V

s

(bT ) of the Horvitz-Thomson estimator follows from its definition, and a straightforward
calculation gives:

V

s

(bT ) =
NX

i=1

NX

j=1

y

i

y

j

⇡
i

⇡
j

(⇡
i j

� ⇡
i

⇡
j

). (5)

In practice, one needs an estimator of this variance that can be evaluated on the sample at hand. As pointed
out above, the main di�culty lies in the evaluation of the second-order inclusion probabilities ⇡

i j

. A common
strategy to avoid the problem is to approximate the variance estimator with an expression involving only
appropriate combinations of the first-order inclusion probabilities. One of the most simple approximate
estimator of the variance b

V(bT ) is given by (Tillé 2006, Eq. 7.20 with S/(S � 1) ⇡ 1 due to S � 1)

b
V(bT ) =

X

i2s

c

i

 
y

i

⇡
i

�
P

i2s

c

i

y

i

/⇡
iP

i2s

c

i

!2

, (6)

where

c

i

= 1 � ⇡
i

. (7)

A justification for this approximate variance estimator is given in section 1.3.
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1.2.2 Relations for subpopulations

The preceding considerations are straightforwardly transposed to any subpopulation. In particular, an unbi-
ased estimator of the total in the subpopulation, Eq. (3), is given by

b
T

c =
X

i2s

�c
i

y

i

⇡
i

=

NX

i=1

�c
i

�
i

y

i

⇡
i

. (8)

One can check that E

s

(bT c) = T

c; this follows from the fact that �
c

is not a sampling random variable, but
simply a selection or post-selection one. However, the resulting estimator will be precise enough only if the
inclusion probabilities are su�ciently correlated with the characteristic quantity in the subpopulation.

Similarly, an estimator of the variance of this quantity is provided by

b
V(bT c) =

X

i2s

c

i

 
�c

i

y

i

⇡
i

�
P

i2s

c

i

�c
i

y

i

/⇡
iP

i2s

c

i

!2

, (9)

where c

i

is given in Eq. (7). This can be seen by a formal substitution of y

i

with y

i

�
c

in Eq. (6).
Neglecting the n/(n � 1) factor of Eq. (7.20) of Tillé (2006) in Eq. (7) is not justified for very small

subsample sizes n, but in such cases, the variance is large anyway, and the total estimator unreliable.

1.2.3 Rescaling

Weeks vs year The quantities of interest are, e.g., tonnes transported per year, or kilometers travelled per
year. On the other hand, our population is made of vehicles-weeks, as the survey selects any vehicle for a
single week in the year. As a consequence, Eqs. (4) and (8) do not give totals per year, but totals per week.
On the other hand, the “week” in question is not any particular week of the year, as polls are conducted
every single week. It is in e↵ect some year average week total, inasmuch as the the sampling procedure is
homogeneous throughout the year. As a consequence, Eqs. (4) and (8) should be multiplied by the number
of weeks N

w

= 52.
Because the Horvitz-Thomson is linear, this procedure is obviously equivalent to rescaling the quantities

of interest y as

y

0
i

= N

w

y

i

. (10)

The resulting Horvitz-Thomson estimators Eqs. (4) and (8) have the same formal expression after this sub-
stitution, so that the variance will also be the same except for the substitution of y

0 to y in Eqs. (5), (6) and
(9). Note however that this substitution does not imply that for any given truck, the total load transported in
the year is N

w

times what is transported in the poll week, due to seasonal variations; it just means that this is
a reasonable extrapolation on average over all vehicles-weeks.

Nonresponse A similar correction is performed to account for nonresponse. Denoting S

nr

the number of
usable forms, nonresponse is taken into account by substituting a scaled first order inclusion probability to
⇡

i

: ⇡0
i

= S ⇡
i

/S
nr

. A better correction is obtained by performing the same correction by category (origin,
destination, product transported) except maybe for the categories with very small number of elements. The
inclusion probabilities provided by the public organization (SOeS) in charge of the TRM database are already
corrected for nonresponse in this way and the inclusion probabilities used in all formulae are in fact the
primed ones, not the original ones, but we have not made the distinction in notation, for simplicity.
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1.3 Elements of justification of the adopted estimator of the variance
It is possible to provide some justification of Eqs. (6), (7) and (9). This will be done in this section with the
help of the following reasoning:

1. First, an unequal probability sampling design without replacement is approximated by an unequal
probability sampling design with replacement characterized by the same first-order inclusion proba-
bilities. The usefulness of this approximation comes from the existence of analytic expressions for the
total estimator and its variance in sampling designs with replacement.

2. However, it is known that the resulting variance is not optimal (it is generically overestimated). This
will be explicitly shown by taking the limit of a simple random sampling design (equal probability)
where the sampling with and without replacement can be analytically compared.

3. On can estimate the error introduced by the sampling design substitution procedure by computing the
average number of occurrences of any element in a sample. This will allow us to estimate that on
average, the number of elements that are multiply present in the equivalent design with replacement
is about 1/3 the total size of the sample in the case of the TRM survey. This indicates that the
overestimation of the variance is most probably not negligible, so that a tighter estimator would be a
welcome improvement.

4. A correction is applied through a generalization of the expression of the variance estimator, subject
to the constraint that the correct variance must be formally recovered for a simple random sampling
design without replacement. The corrected estimator is known to still overestimate the variance for
the ordered systematic sampling design, though, so that we still err on the side of safety.

1.3.1 First step: approximating a sample design with replacement by a sample design without re-
placement

Let us define a sample design with replacement that has the same population (size N), same sample size
S , and same first order inclusion probabilities ⇡

i

as the sample design without replacement of interest. The
simplest such sampling design makes use of the probability p

i

that element i has to be drawn in the S

successive draws that constitute the sample. The probability p

i

is directly related to the inclusion probability
⇡

i

from the probability of non inclusion in S successive draws ⇡
i

= (1 � ⇡
i

)S :

⇡
i

= 1 � (1 � p

i

)S = S p

i

� (S p

i

)2

2
+ O�S 3

p

3
i

�
. (11)

This relation can be inverted for future use:

S p

i

= ⇡
i

+
⇡2

i

2
+ O(⇡3

i

). (12)

The totals of interest in the population can be estimated on the sample with the help of the Hansen-
Hurwitz estimator (Tillé 2006, section 2.16)

b
T =

1
S

X

i2s

y

i

p

i

. (13)
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This estimator is unbiased. To see this, consider first a single term in the sum: x

i

= y

i

/S p

i

; every term of this
kind constitutes a realization of the random variable X = Y/S p(Y). Its expectation value on the population
is

E(X) =
NX

k=1

p

k

y

k

S p

k

=

NX

k=1

y

k

S

=
T

S

. (14)

The variance of X is readily computed :

V(X) =
NX

k=1

p

k

 
y

k

S p

k

� T

S

!2

=
1

S

2

2
666664

0
BBBBB@

NX

k=1

y

2
k

p

k

1
CCCCCA � T

2

3
777775 (15)

Now, b
T is the sum of S identical random variables identical to X. The expectation value and variance of

the estimator are therefore the sum of the expectation value and variance of X, leading to

E(bT ) = S E(X) = T (16)

V(bT ) = S V(X) =
1
S

2
666664

0
BBBBB@

NX

k=1

y

2
k

p

k

1
CCCCCA � T

2

3
777775 . (17)

Note that the expectation value and variance E and V are computed on the population, and not on the sample
space, contrarily to E

s

and V

s

.
From Eq. (17), one obtains an unbiased estimator of the variance:

b
V(bT ) =

1
S (S � 1)

X

i2s

 
y

i

p

i

� b
T

!2

. (18)

One can check that this estimator is unbiased from the following intermediate identity, which can be verified
by direct calculus:

b
V(bT ) =

1
S (S � 1)

X

i2s

 
y

i

p

i

� T

!2

� 1
S � 1

(bT � T )2, (19)

from which one obtains:

E(bV(bT )) =
1

S � 1
S

2
V(X) � 1

S � 1
V(bT ) = V(bT ). (20)

Note that as ⇡
i

' S p

i

, the Hansen-Hurwitz estimator is closely related to the Horvitz-Thompson one:

b
T =

X

i2s

y

i

⇡
i

, (21)

Furthermore, for large enough S ,

b
V(bT ) ⇡

X

i2s

 
y

i

⇡
i

�
P

j2s

y

j

/⇡
j

S

!2

=
X

i2s

 
y

i

⇡
i

�
*

y

i

⇡
i

+

s

!2

, (22)

where h·i
s

is the mean observed on the sample. Note that this relation is of the generic form Eq. (6) with
c

i

= 1.
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1.3.2 Interlude: simple random samplings with and without replacement

It is useful to see why Eq. (22) overestimates the variance of a sampling design without replacement. This
is most easily seen by considering sampling designs with uniform probability (aka simple random sampling
designs), for which all relevant relations can be derived analytically.

Let us examine first a uniform probability sampling design without replacement. In this case, and denot-
ing C

q

p

= p!/q!(p � q)! the binomial coe�cient,

⇡
i

=
C

S�1
N�1

C

S

N

=
S

N

⌘ ⌧, (23)

⇡wor

ii

= ⇡
i

, (24)

⇡wor

i j

=
C

S�2
N�2

C

S

N

=
S (S � 1)
N(N � 1)

, (25)

where the superscript wor refers to “without replacement”. Defining y =
P

N

i=1 y

i

/N and �2(y) =
P

N

i=1(y
i

�
y)2/N, Eq. (5) yields

V

s

(bT ) =
N

2

S

1 � ⌧
1 � 1/N

�2(y) ⇡ N

2

S

(1 � ⌧)�2(y). (26)

Similarly, defining hyi = PS

i=1 y

i

/S and �̃2(y) =
P

N

i=1(y
i

� hyi)2/N, Eq. (22) gives

V

s

⇣
b
V(bT )

⌘
=

N

2

S

�̃2(y). (27)

For large enough samples, hyi ⇡ y and �̃2(y) ⇡ �2(y) so that the main di↵erence between Eq. (26) and
(27) is the 1 � ⌧ factor, known as the finite population correction factor. This denomination has a double
justification: first, this coe�cient becomes negligible as N ! 1 at constant S , and second, as shown by
Eq. (25), selecting one element in the population a↵ects the second-order inclusion probability, which is
then systematically larger in sampling designs with replacement. These arguments explain why Eq. (22)
also overestimates the actual variance in generic unequal probability sampling designs without replacement
(see, e.g., Tillé 2006, section 2.18 and Berger 1998).

1.3.3 Second step: estimating the need for a correction of the replacement sampling design variance
estimator

It has just been pointed out above that a potentially important issue of sampling designs with replacement is
that they often lead to overestimate the variance of the population totals; corrected variance expressions have
been derived in the literature to compensate for this drawback. Before looking into this question, though, it
is of some interest to estimate first if such a correction is necessary in the present case; indeed if the number
of multiple draws of the same element in a sample is negligible on average, there would be little interest in
performing the correction.

To this e↵ect, one must evaluate the average number of multiple draws of any given element i of the
population, from which one can in turn quantify the mean number of multiple draws in samples of size
S . From our notations and definitions, s

i

is the number of draws of element i in such a sample; let us
further define hs

i

i
s

, the sample average of s

i

, hs
i

i>1
s

the sample average number of multiple draws of i, and
hs

i

i1
s

= hs
i

i
s

� hs
i

i>1
s

.
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Let us also define the probability p

i

(k) that i is drawn k times in a sample of size S (0  k  S ). This
probability is obtained by direct counting and reads

p

i

(k) = C

k

S

p

k

i

(1 � p

i

)S�k, (28)

where C

k

S

is the usual binomial coe�cient. Defining !
i

= p

i

/(1 � p

i

), one has

hs
i

i
s

=

SX

k=0

C

k

S

kp

k

i

(1 � p

i

)S�k =
p

i

(1 � p

i

)S+1
d

d!
i

0
BBBBB@

SX

k=0

C

k

S

!k

i

1
CCCCCA

=
p

i

(1 � p

i

)S+1
d(1 + !

i

)S

d!
i

=
S p

i

(1 � p

i

)2S

. (29)

One also finds:

hs
i

i1
s

= S p

i

(1 � p

i

)S�1, (30)

so that

hs
i

i>1
s

= 3⇡2
i

+ O(⇡3
i

), (31)

where Eq. (12) has been used.
The quantity of interest here is the population average of hs

i

i>1
s

, E(hs
i

i>1
s

):

E(hs
i

i>1
s

) = 3
NX

i=1

p

i

⇡2
i

=
3N

S

⇡3
i

, (32)

where ⇡3
i

is the simple population average of ⇡3
i

(i.e., not weighted by the probability p

i

).
Finally, defining by �S the mean (population and sample) average number of multiple draws, one has

�S = S E(hs
i

i>1
s

) so that E(hs
i

i>1
s

) is the relative number of multiple draws in a sample of size S . Note also
that the same relation applies for a subpopulation N

c and a subsample n, mutatis mutandis.
A similar logic can be applied to evaluate the relative standard deviation of �S :

�(�S )
�S

=

2
666664 ⇡i

✓
⇡2

i

� N⇡3
i

/S
◆2 3777775

1/2

N

1/2⇡3
i

. (33)

For the TRM survey, the histogram of ⇡
i

is shown on Fig. 1. One also has N/S ' 6.76 (in 2010),
⇡3

i

= 0.016, E(hs
i

i>1
s

) ⇡ 1/3 and �(�S )/�S ⇡ 5 ⇥ 10�4; i.e., 1/3 of the sample is made of multiple draws in
a sampling design with replacement, on average, and with very little variation from sample to sample. This
is not a dominant fraction, but it is clearly not negligible either. As a consequence, a correction to Eq. (22)
is required to tighten the variance estimates.

1.3.4 Third step: correcting the variance

A corrected variance estimator can be obtained by generalizing Eq. (22) under the form given in Eq. (6);
a constraint is applied to the parameters c

i

to specify their expression. In the case at hand, the constraint
adopted is that the variance for a uniform probability sampling design should be formally identical to the
variance of the equivalent design without replacement, Eq. (26).
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Figure 1: Histogram of the distribution of the first-order inclusion probabilities ⇡
i

for the TRM survey.

By construction, c

i

can only depend on ⇡
i

: c

i

= g(⇡
i

). For a simple random sampling design discussed
in section 1.3.2, g(⇡

i

) = g(⌧) from Eq. (23), and Eq. (6) gives

V

s

⇣
b
V(bT )

⌘
=

N

2

S

g(⌧)�̃2(y). (34)

Comparison with Eq. (26) shows that the finite population correction factor will be recovered for c

i

= 1�⇡
i

,
i.e., Eq. (7).

The form Eq. (22) of the generalized variance is theoretically justified when the sampling design without
replacement is “close” to an entropy maximizing sampling design (see Tillé 2006, section 7.5, Tillé 2001,
section 6.9 and Berger 1998). This is however not the case for the ordered systematic sampling design
adopted in the TRM survey. In fact, it is known that Eqs. (6) and (7) still overestimates the variance (Berger,
2003) for this sampling design, because the design makes numerous second-order inclusion probabilities
equal to zero, so that a non negligible number of legitimate samples is not incorporated in the sample popu-
lation. Eq. (22), on the contrary, implicitly takes into account all possible samples, because the second-order
inclusion probabilities can be expressed in terms of the first-order inclusion probabilities in replacement
sampling designs3, and are never equal to zero.

2 Building all combinations of aggregates: an illustrative example
Figure 3 shows it is possible to build 19 aggregates based on the three basic extrapolations from figure 2. Of
course, the number of combinations increases when we add new basic flows, levels of products, loading or
unloading areas. In the dataset used for the article, about 2.1 million aggregates where built from about 900
thousand basic flows.

3This expression is not derived here, as it does not provide useful information to further reduce the variance.
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Figure 2: Example of 3 basic flows extrapolated from a survey on 9 trucks.

Figure 3: All existing combinations of aggregates based on the 3 basic flows above. In this example, we
only distinguish between 2 levels of products, loading and unloading areas.
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3 Estimating uncertainties for a single year based on explanatory
variables

3.1 Estimating uncertainties based on subsample sizes: details on the classes used

Figure 4: Number of class members in each class of defined by the size of the subsample. These 15 classes
(rows) are used in the theoretical results section of the article to build an explicative model.

3.2 Estimating uncertainties based on the number of observations
By default, the French statistical o�ce does not provide the size of the subsample on which each extrapo-
lation is based. It provides instead the number of observations on which they are based (see glossary in the
article). We use the same method as the one described in the article to propose an explicative model based
on this variable:

• the sample is divided into 29 classes defined by an interval of number of observations,

• for each class, we compute the 5%, 50% (median) and 95% percentiles of uncertainty,

• we propose a model depicting the low, median, high uncertainty estimations depending on the number
of observations.

Figure 5 displays the calibrated models with their equations and table 1 shows the lower, median an
upper uncertainties for di↵erent number of observations.

12



Figure 5: Evolution of lower bound, median and upper bound uncertainties depending on the number of
observations (NB: this is a log-log plot). Looking at the median model, it is striking that part of the slope is
almost flat between about 1200 and 3400 observations. This does not occur when the explicative variable is
the size of the subsample, which is one reason why the latter is a better predictor.
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Uncertainty (%)
Number of obser-
vations

Lower
bound

Median Upper
bound

10 59 94 176
20 47 77 140
50 35 59 104
100 28 48 82
200 23 39 66
500 17 29 49
1000 14 22 39
2000 12 19 30
5000 9 15 19
10000 7 11 13
20000 5 8 9
50000 3 5 6

Table 1: Lower, median an upper uncertainties estimations for di↵erent number of observations, based
on the models depicted in figure 5. We see that below 50 observations, there is risk for the statistic not
to be significant (above 100% of uncertainties), although it can be significant in some cases. Above 500
observations, there is a 95% chance that the uncertainty is lower than 50%, the median estimation being
29%.

The number of observation is a predictor of lower quality than the size of the subsample, generally
resulting in a wider interval between lower and upper bounds for a given class. The R

2 of this model is 0.77
compared to 0.87 for the subsample size model. This should encourage the statistical o�ce to publish the
information on the sample size by default.

3.3 Estimating uncertainties based on the quantities (tonnes) estimated
The number of tonnes is in turn tested as explanatory variable for the uncertainty. Results are shown in
figure 6. the R

2 index of the median model is 0.63. We can conclude that the hypothesis “the higher the

quantity transported the smaller the uncertainty” is only partially true. Other explanatory variables, such as
the subsample size, should be preferred when it is possible.
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Figure 6: Evolution of lower bound, median and upper bound uncertainties depending on the number of
tonnes extrapolated (NB: this is a log-log plot).

4 Uncertainty reduction when averaging over several years

4.1 Building independent multi-year samples
In the survey, every year, half of the sample is renewed (half the trucks surveyed year i will also be surveyed
year i+ 1) as shown in table 2. When averaging over n

y

years, there are 2n

y

�1 independent samples possible.
Table 3 shows 1 among the 16 possibilities for an average over 5 years4. Among the independent samples
generated, we chose the ones of the largest size.

Sample 2003 Sample 2004 Sample 2005 Sample 2006 Sample 2007
First half Draw 2002 Draw 2004 Draw 2004 Draw 2006 Draw 2006
Second half Draw 2003 Draw 2003 Draw 2005 Draw 2005 Draw 2007

Table 2: Composition of the sample for each year of the survey: Vehicles belonging to the draw of year i are
surveyed on years i and i + 1.

4Note that sample weights have to be re-calibrated in order to leave the total unchanged: for instance if we remove half of the
population surveyed in a given year, we have to double the weights of the remaining half population.
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Sample 2003 Sample 2004 Sample 2005 Sample 2006 Sample 2007
First half Draw 2002 Draw 2004 Draw 2004 Draw 2006 Draw 2006
Second half Draw 2003 Draw 2003 Draw 2005 Draw 2005 Draw 2007

Table 3: A possibility of independent sample for computing a year-average between years 2003 and 2007.
White cells are kept, grey cells are removed from the sample. In total, 16 combinations are possible. Note
that, if a one-year sample is composed of p individuals, the complete sample would be composed of n

y

p

individuals while every independent sample is only composed of p + (n
y

� 1)p/2 individuals.

4.2 Results
Results of averaging over the years 2005-2007 (3-year average) are shown in figure 7. The slope of the
model is 0.71 indicating an average reduction of uncertainty of 29%.
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Figure 7: Uncertainties of a 3-year average (2005-2007) depending on 2
p

Ṽ(T )/T , with Ṽ(T ) = 1/3 ⇥
(V(T2005)+ V(T2006)+ V(T2007)) and T̄ = 1/3⇥ (T2005 + T2006 + T2007). The line corresponding to the model
proposed is plotted in blue. The R

2 index of the model is 0.97. About 200 data points are sampled over the
31000 datapoints of the (independant 3-year) sample in order to make the graph readable.
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