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ABSTRACT
In this paper, we focus on tracking the signal subspace under
a sparsity constraint. More specifically, we propose a two-
step approach to solve the considered problem whether the
sparsity constraint is on the system weight matrix or on the
source signals. The first step uses the OPAST algorithm for
an adaptive extraction of an orthonormal basis of the principal
subspace, then an estimation of the desired weight matrix is
done in the second step, taking into account the sparsity con-
straint. The resulting algorithms: SS-OPAST and DS-OPAST
have low computational complexity (suitable in the adaptive
context) and they achieve both good convergence and estima-
tion performance as illustrated by our simulation experiments
for different application scenarios.

Index Terms— Principal subspace tracking, sparse sub-
space, adaptive estimation, sparse source separation.

1. INTRODUCTION

Subspace techniques play a fundamental role in statistical es-
timation and antenna processing. Indeed, these techniques are
widely used in applications such as data compression, system
identification, filtering and parameter estimation.

Many algorithms have been proposed for tracking the
principal subspace in the literature. In particular, the Oja
method [1] has been given a special consideration and used in
some real life applications [2]. It has been established in [3]
that the Oja method can be seen as an approximate gradient
technique for the minimization of a squared error function
(MSE). Following this approximate gradient method, other
faster methods have been developed. Among the most robust
and efficient methods, we find the PAST (Projection Approx-
imation Subspace Tracking) method proposed in [3] and its
orthogonal variant OPAST [4] well known for their linear
complexity.

Most recently, some applications needed to solve the
principal subspace problem but under a sparsity constraint.
This sparsity can be over the data as for example in the blind
separation of sparse sources [5] or over the subspace weight
matrix as in the case of sparse principal component anal-

ysis [6]. Surprisingly, even though several solutions have
been introduced for batch sparse subspace estimation, little
has been done so far for the adaptive scheme. Among the
existing adaptive solutions one can find the application pro-
posed in [7] is the STAP (space-time adaptive processing)
for Airborne Phased Array Radar, where they developed an
algorithm referred to as `1-PAST which solves the principal
subspace tracking problem under a sparsity constraint on the
weight matrix.

In this paper, we are interested in solving the same prob-
lem, however we drop the orthogonality constraint. In fact,
we figured out that looking for the best orthogonal subspace
and the sparsest one at the same time is not that optimal
and can lead to sub-optimal solutions. We propose at first a
two-stage algorithm which gives the same subspace perfor-
mance as OPAST while providing the sparsest weight matrix
generating the principal subspace. For sparse source signals,
we propose a second algorithm that searches in an adap-
tive scheme for the principal subspace weight matrix which
leads to the reconstruction of source signals with maximum
sparsity. The latter algorithm is illustrated in the context of
adaptive blind separation of sparse sources.

2. PROBLEM FORMULATION

Let x(t) ∈ Rn be a random data vector observed at the tth

snapshot over n sensors x(t) = [x1(t), ..., xn(t)]
T and let’s

denote by Cxx = E[xxT ] its covariance matrix. We assume
that the sorted eigenvalues of Cxx satisfy the conditions:

λ1 ≥ λ2 ≥ ... ≥ λp > λp+1 ≥ ... ≥ λn (1)

p being the rank of the desired principal (signal) subspace of
Cxx. In the adaptive scheme, the standard updating form of
the covariance matrix using an exponential window is:

Cxx(t) =

t∑
i=1

βt−ix(i)x(i)T = βCxx(t− 1) + x(t)x(t)T

(2)
where 0 < β < 1 is the forgetting factor used to afford the
tracking capability when the system operates in a nonstation-
ary environment. We seek to resolve the problem of tracking



the signal subspace of dimension p < n with a sparsity con-
straint over the weight matrix W (t) ∈ Rn×p or eventually a
sparsity constraint on the source signals (output of the filter-
ing matrix W (t)), i.e. y(t) =WT (t)x(t).

For this end, we propose a two-step approach where the
first is for the adaptive extraction of an orthonormal basis of
the principal subspace of Cxx(t). The second step is dedi-
cated to the estimation of the weight matrix with the desired
sparsity of the system or the data matrix according to the con-
sidered application assumption.

In the first stage, the objective function1 to minimize is:

JPS(W (t)) =

t∑
i=1

βt−i‖x(i)−W (t)WT (t)x(i)‖22 (3)

Under the unitary constraint of the weight matrix, i.e.
WT (t)W (t) = Ip. The previous term represents the mean
square error of the projected data vector (In−W (t)WT (t))x(t).
The optimization of (3) would be achieved by the OPAST al-
gorithm as shown next, and hence we refer to the extracted
weight matrix by Wopast(t).

For the second stage, we seek for the desired weight ma-
trix in the form W (t) =Wopast(t)Q(t) where the p× p non-
singular matrix Q is introduced in order to optimize the cho-
sen sparsity criterion. In the case the sparsity objective is for
the system matrix, Q is computed in such a way we minimize
the cost function:

argmin
Q(t)
‖W (t)‖1 = argmin

Q(t)
‖Wopast(t)Q(t)‖1

where ‖W (t)‖1
∆
=

∑n
i=1

∑p
j=1 |Wij(t)|. Note that the `0

norm is more appropriate to represent the sparsity ofW (t) but
that will make the objective function non convex and hard to
optimize. Therefore, we use the relaxation to `1 norm which
is one of the best convex approximation of `0 norm. We refer
to the previous cost function to as JSS(Q) where SS stands
for System matrix Sparsity.
• Remark: Note that the orthogonality is not necessarily

aligned with the sparsity constraint of the weight matrix for
which reason we have considered a two-step approach with
two different weight matrices Wopast and W .

Now, for sparse source signals, the objective function
minimization becomes:

argmin
Q(t)

t∑
i=1

βt−i‖Q(t)TWopast(t)
Tx(i)‖1

where matrix W (t) is a separation (beamforming) matrix
which extracts the sparse source signals. The latter cost func-
tion is referred to as JDS(Q) where DS stands for Data Spar-
sity.

1The index ’PS’ stands for Principal Subspace.

Next we introduce two algorithms dedicated to the two
previously mentioned problems where the minimization of
JSS and JDS is obtained via a natural gradient approach.

3. SUBSPACE TRACKING ALGORITHMS

In this section, we introduce the different algorithms used for
tracking the principal subspace with sparsity constraint. At
first, the OPAST algorithm is briefly revisited together with
the projection approximation technique.

3.1. OPAST algorithm

Let’s consider the function :

JPS(W (t)) =

t∑
i=1

βt−i‖x(i)−W (t)WT (t)x(i)‖22 (4)

It is shown in [3] that:
• W is a stationary point of JPS(W ) if and only if W =
VpQ, where Vp is an n × p matrix containing p distinct
eigenvectors of Cxx, and Q is any p× p unitary matrix.

• Every stationary point of JPS(W ) is a saddle point, ex-
cept when Vp contains the p dominant eigenvectors of
Cxx. In this case JPS(W ) attains the global minimum.

An iterative optimisation of (4) leads to the solution

W (t) = Cxx(t)W (t−1)(WT (t−1)Cxx(t)W (t−1))−1 (5)

PAST algorithm uses (5) and the projection approximation

Cxx(t)W (t) ≈ Cxx(t)W (t− 1) (6)

to solve iteratively (4) with a linear complexity 3np+O(p2).

Algorithm 1 OPAST

1: y =WT (t− 1)x(t)
2: q = 1

βZ(t− 1)y

3: γ = 1
1+yT q

and τ = 1
‖q‖2 (

1√
1+‖q‖2γ2(‖x(t)‖2−‖y‖2)

− 1)

4: e =W (t−1)(τq−γ(1+τ‖q‖2)y)+(1+τ‖q‖2)γx(t))
5: Z(t) = 1

βZ(t− 1)− γqqT

6: W (t) =W (t− 1) + eqT

The OPAST algorithm is based on the same principle as
PAST followed by a fast orthonormalization of W (t) (see [4]
and the above algorithm’s summary for details).

3.2. Sparsity constraint on the system matrix

We look now for the full rank matrix Q(t) ∈ Rp×p that
minimizes ‖Wopast(t)Q(t)‖1 where Q(t) is the matrix that
transforms the orthonormal principal subspace basis given by
OPAST into a sparse one.



The optimization of the `1-norm criterion is achieved here
by using a natural gradient approach. Hence, we seek the
updated matrix Q(t) in the form Q(t) = Q(t − 1)(I + ε)
where matrix ε ∈ Rp×p has small valued entries that can be
computed using a first order approximation according to:

ε̂ = arg min
ε
‖Wopast(t)Q(t−1)+Wopast(t)Q(t−1)ε‖1 (7)

Let’s define M = Wopast(t)Q(t − 1). Now we can rewrite
(7) as

ε̂ = arg min
ε

n∑
i=1

p∑
j=1

|Mij +

p∑
k=1

Mikεkj | (8)

Under the assumption z << |x|, one can approximate |x+ z|
by the value |x| + sign(x)z. Using this approximation in (8)
leads to:

ε̂ ≈ arg min
ε

n∑
i=1

p∑
j=1

|Mij |+ sign(Mij)

p∑
k=1

Mikεkj

≈ arg min
ε
‖M‖1 + Tr(εRT ) (9)

with R =MT sign(M) where sign(M) refers to the ma-
trix with ij − th entry equal to sign(Mij).

Algorithm 2 SS-OPAST

1: Compute Wopast(t) using OPAST in [4]
2: M =Wopast(t)Q(t− 1)
3: R =MT sign(M) then R = R

‖R‖2

4: Q(t) = Q(t− 1)(Ip − µR) then normalize its columns
5: W (t) =Wopast(t)Q(t).

So by choosing ε̂ = −µ R
‖R‖2 with µ > 0, we ensure the

local decrease of the cost function according to ‖M‖1 − µ <
‖M‖1. The full algorithm is summarized in Algorithm 2.
After every iteration, we need to normalize the columns of
Q(t) to better control the conditioning of matrix W (t).

3.3. Sparsity constraint on the sources

Similarly to the previous subsection, we seek for the full rank
matrix Q(t) ∈ Rp×p that minimizes ‖QT (t)WT

opast(t)X‖1
where X = [βt−1x(1), βt−2x(2) . . . x(t)] is the exponen-
tially windowed data matrix. We use the same assumption
about Q(t) and ε(t) to reformulate the problem as:

ε̂ = arg min
ε
‖QT (t)WT

opast(t)X‖1

= arg min
ε
‖(εT + I)QT (t− 1)WT

opast(t)X‖1

= arg min
ε
‖εTY + Y ‖1 (10)

With Y = QT (t − 1)WT
opast(t)X . Using the same develop-

ment as in equations (9) and (10), we get:

ε̂ = arg min
ε

p∑
i=1

t∑
j=1

|Yij |+
p∑
i=1

p∑
k=1

εki(Y sign(Y T ))ki

= arg min
ε
‖Y ‖1 + Tr(εRT ) (11)

With R = Y sign(Y T ). By choosing ε̂ = −µY sign(Y T ) and
adjusting µ we ensure the decreasing of `1 norm. However,
since the dimension of Y grows linearly with time, a direct
computation of matrix R would be prohibitive. To reduce the
cost, we use the projection approximation as shown below:

R(t) = Q(t− 1)TW (t)T [βXt−1, xt]

× sign([βXt−1, xt]
TW (t)Q(t− 1))

= βQ(t− 1)TW (t)TXt−1sign(βX
T
t−1W (t)Q(t− 1))

+Q(t− 1)TW (t)Txtsign(x
T
t W (t)Q(t− 1)) (12)

Under the assumption W (t) ≈ W (t− 1), we can write that
R(t) ≈ βR(t− 1)+y

t
sign(yT

t
) with y

t
= Q(t− 1)TW (t)Txt.

The full algorithm is summarized in Algorithm 3.

Algorithm 3 DS-OPAST

1: Compute Wopast(t) using OPAST in [4]
2: y

t
= Q(t− 1)TWT

opast(t)xt

3: R(t) = βR(t− 1)+y
t
sign(yT

t
) then R(t) = R(t)

‖R(t)‖2

4: Q(t) = Q(t− 1)(Ip − µR(t))
5: Normalize the columns of Q(t)

• Remark: Note that the computational cost of DS-
OPAST is of order O(np) per iteration. Now, if the update
of the weight matrix W (t) = Wopast(t)Q(t) is needed, the
latter cost would be of order O(np2) due to the previous
matrix product. However, by using the updating equations
in steps 3 and 4 of Algorithm 3 together with the projection
approximation Q(t− 1) ≈ Q(t− 2) one can avoid the matrix
- matrix product and preserve the linear complexity O(np) of
the algorithm.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Sparsity constraint on the system matrix

We present here some numerical simulations to assess the per-
formance of the proposed algorithm and we use the OPAST
[4] and `1-PAST [7] algorithms for comparison. At first, we
consider the data model X = AS+N with A ∈ Rn×p a ran-
dom sparse mixing matrix (we use the function SPRANDN
in MATLAB for its generation), S ∈ Rp×T the source sig-
nals generated according to a Gaussian distribution, with zero
mean and unit variance (T being the total number of samples)
and N ∈ Rn×T is a white Gaussian noise. The used perfor-
mance factors are the norm `1 of the weight matrix for the



sparsity measure (with columns normalized to 1) and for the
subspace performance we use a normalized quadratic error
given by :

ρ(t) =
1

r

r∑
i=1

trace(W#
i (t)(In −WexW

T
ex)Wi(t))

trace(W#
i (t)WexWT

exWi(t))
(13)

where r = 150 is the number of Monte Carlo runs, Wi(t)
is the matrix of desired subspace at experience i and iter-
ation t (W#

i (t) represents its pseudo inverse) and Wex is
the exact orthogonal subspace computed from the exact ma-
trix A. We experimented our algorithm for different sys-
tem sizes and present here two cases: (n = 16, p = 9) and
(n = 100, p = 30).
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Fig. 1: Subspace performance ρ(t) and norm `1 of W versus
time with: µ = 1 for SS-OPAST, µ is an adaptive vector for
SS-OPAST2 and (n = 16, p = 9, SNR = 15dB)

Figure 1 illustrates the improved performance of the SS-
OPAST as compared to `1-PAST and OPAST for SNR=15dB.
Note that at the beginning of the adaptive process, the `1 norm
of W is not decreasing due to the inappropriate first order ap-
proximation at this early stage (the decrease starts only after
few tens of iterations). An adaptive step might be considered
to force the decrease of the cost function.

For figure 2, we choose larger system dimensions (n =
100, p = 30) in which case the previous observations are con-
firmed. Based on these simulations, we note some general
remarks
• Choice of µ: if we choose µ = 0, we get the same

result as OPAST without sparsity, and if µ is too large we get
better sparsity but we can lose the constraint on the solution
rank (i.e. rank(W ) = p) since the weight matrix becomes
close to singular when we run the algorithm for a long period.
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Fig. 2: Subspace performance ρ(t) and norm `1 of W versus
time with: µ = 3 for SS-OPAST, µ is an adaptive vector for
SS-OPAST2 and (n = 100, p = 30, SNR = 15dB)

We thought about an adaptive solution to choose µ and we
figured out that by taking µj =

∑n
i=1 |Mij | and changing the

step 4 of Algorithm 2 by Q(t) = Q(t− 1)(Ip −Rdiag(µ)),
we improve the convergence performance and the stability of
SS-OPAST (diag(µ) is a diagonal matrix with the elements
of µ = [µ1, ..., µp] on the main diagonal). This is illustrated
by the plots referred to as SS-OPAST2 of figures 1 and 2.
• Changing OPAST: The algorithm we presented here

can be easily modified to fit with other adaptive subspace al-
gorithms such as PAST [3] and FAPI [8] just by changing the
first step of our algorithm.
• Complexity: Our algorithm is based on OPAST algo-

rithm which costs 3np + O(p2) operations plus the `1 mini-
mization part which cost 3np2 + O(p3) so the overall com-
plexity is 3np2 + O(p3). The `1-PAST has a complexity of
3np2 +O(p2) which is slightly less than our algorithm.

4.2. Sparsity constraint on the sources

As an illustrative example, our algorithm is applied in blind
sparse source separation (BSSS). We consider the same data
model but this time the matrix S of source signals is the
sparse one. In the context of BSSS, the performance in-
dex is the global rejection level [9] which is defined as:

Ipq
def
=

∑
p 6=q Ipq where Ipq measures the ratio of the power

of the interference of the qth source to the power of the pth
source signal and they are defined as Ipq = E|(Â#A)pq| (in
our case Â# =WT ).

We simulated 100 times the data with p = 2 sparse
sources, n = 5 sensors and we choose µ = 0.001. Figure



3 shows an example of the source signals used and how the
separated signals fit them well (after adjusting the amplitude
and put every output signal with its correspondent source
signal to remove the inherent ambiguities of BSSS).
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Fig. 3: Source and separated signals (n = 5, p = 2, SNR =
30dB)

To illustrate the adaptive separation capability of our al-
gorithm, we present in figure 4 the mean rejection level (dB)
in the first place versus time with a fixed SNR (dB) and in the
second place versus SNR after T = 3000 iterations.
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Fig. 4: Mean Rejection Level (dB) versus: (a) time for
SNR = 30dB, (b) SNR for T = 3000 (n = 5, p = 2)

It is clear that our algorithm converges to the right solu-
tion, however, the convergence time depends on the chosen
parameter µ and the size of the system. Finally, note that

one of the strengths of our algorithm is its low computational
complexity.

5. CONCLUSION

In this paper, adaptive subspace algorithms for sparse sys-
tems have been studied. We have proposed a two-step ap-
proach where the first uses the OPAST algorithm to track an
orthonormal basis for the principal subspace. The second step
seeks to find the weight matrix corresponding to the desired
sparsity constraint either on the system weight matrix or on
the source signals. Many applications are possible and can be
treated by our algorithms which have the advantages of low
computational cost and improved performance as compared
to the existing solutions.
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