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Abstract

An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like

biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the

frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical

parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption µa

and scattering µs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of µs

and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main

novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an

additional contrast agent in optical tomography.

Keywords Optical properties; image reconstruction; radiative transfer equation; adjoint method; crosstalk problem;

anisotropy factor.

1 Introduction

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality which employs a visible or Near infrared Laser

source for probing biological tissues and measures light intensities at the boundary surface. In recent years, potential

applications of DOT have been developed such as breast cancer detection [1] and brain functional imaging [2]. This tech-
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nique seeks to recover the spatial distributions of optical properties inside the medium through an image reconstruction

algorithm. Optical properties are different between healthy and cancerous tissues [3] [4] due to physiological or patho-

logical changes [5]. In spite of all the success of DOT in cancer diagnosis applications, to date, only absorption (µa) and

reduced scattering (µ′
s) coefficients reconstruction can be found in the literature. However, the anisotropy factor g of the

Henyey-Greenstein (H-G) phase function has an important effect on light propagation [6] and can reveal rich informations

on the anisotropic scattering behavior of the tissue: [7] showed that the g value of porcine brain tissue increases from 0.561

to 0.834 after thermal coagulation, [8] demonstrated that the anisotropy factor g of rat liver decreases from 0.952 to 0.946

in a tumor at 633 nm, [9] proved experimentally that g was different for normal human liver tissue and liver metastases at

three different wavelengths. That means that g can also be modified when tissue is affected by an eventual tumor besides

µa and µs. Therefore, this factor can provide a potential contrast agent for optical medical diagnosis between healthy and

tumoral tissues. To our best knowledge, up to now, no works have been done to investigate the reconstruction of the spatial

distribution of g [10]. On the other hand, an efficient forward model to predict light transport in the biological tissue is

required in order to estimate optical parameters. Many research groups have adopted the diffusion equation as a forward

model [11, 12, 13]. However, this model fails to accurately predict light propagation close to sources and boundaries, and

also in highly absorbing mediums [14]. An additional drawback is that the estimation of g is not possible (g is assumed

to be constant and known), due to the introduction of the reduced scattering coefficient and then the loss of information

about the scattering phase function [6]. To overcome these limitations, more and more interest is turned towards a forward

model based on the radiative transfer equation (RTE). The RTE rigorously describes the light propagation in biological

tissues. The anisotropy factor g is an independant parameter in the RTE via the H-G phase function. Different forms of

the RTE have been used in DOT. The frequency-domain (FD) approach [15, 16, 17, 18, 19, 20, 21] is the most widely

employed, since it is a good trade-off between time-domain [22, 23, 24] and steady-state domain [25]. Moreover, the

FD approach provides additional information (phase shift) compared to the steady-state modality and avoids the technical

limitations of the experimental setup for time-domain often expensive. In addition, the use of FD data allows to better

separate the optical properties than the steady-state data by reducing the crosstalk issue when simultaneous estimation is

applied [16]. Another challenging task still remains in DOT: the inverse problem. The inversion algorithm can be con-

sidered as a large-scale optimization problem, since the optical properties vary spatially inside the medium. In principle,

the simultaneous estimation of the three optical properties (µa, µs and g) is not possible, due to the non-uniqueness of the

ill-posed problem when several optical properties distributions lead to an identical set of boundary data [6]. Additionally,

these three parameters differ in nature, units, order of magnitude and sensitivities on the emerging intensity of the forward
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model which makes the estimation inextricable. That’s why, in this work, we reconstructed only two parameters either

(µa and µs) or (µs and g) simultaneously in order to reduce the ill-posed nature of the problem. This inversion aims at

recovering the optical properties of tissue through the minimization of an appropriate objective function (OF). Most of

the time, the OF is the least-square error norm between the measured and the predicted data calculated by the forward

model. Gradient-based algorithms are commonly used as optimization methods [13, 16, 26], which employ the gradient

of the OF with respect to the optical parameters to find the minimum. These methods proved to be efficient and robust

in DOT [24]. On the other side, the core problem and difficulty in the inversion procedure is to accurately compute the

gradient of the OF. This process can be computational-intensive due to the number of parameters to retrieve which are

space dependent. Generally, the adjoint differentiation is the most commonly used method for calculating the gradient

because it uses only elementary results at each iteration step of the forward model [27, 28]. However, when the dimension

of the problem is high (larger than 1000 for example), the use of this method becomes cumbersome and computationaly

expensive. More recently, [29] employed the adjoint method which gives an efficient and fast way to compute the OF

gradient regardless of the number of unknowns. This is done by solving an additionnal (adjoint) equation for the adjoint

variable whose computational cost is equivalent to that of the forward calculation.

In this work, a gradient-based algorithm using the RTE as forward model is employed to reconstruct the optical properties

(µa, µs and g) of a heterogeneous medium. The gradient of the OF is obtained accurately by means of the adjoint method

in the FD. The objective of this study is to test the efficiency and the robustness of the proposed algorithm in presence

of some issues encountered in the DOT. These issues such as the collimated source number, the crosstalk between two

optical parameters, the inclusion contrast level, the highly absorbing medium, the measurements noise level and the in-

clusion location effects are examined through several test cases. Furthermore, for author’s best knowledge, the estimation

of g and the simultaneous reconstruction of µs and g have not been reported yet in the previous works. This explains

our motivation to test in particular the feasibility of the present method to reconstruct simultaneously µs and g with and

without crosstalk. First, the RTE equations are described and the detector predictions on the boundary are given. Sec-

ond, the adjoint method is presented through a lagrangian formalism for the computation of the OF gradient at multiple

modulation frequencies. Finally, to illustrate the performance of the algorithm, single and simultaneous reconstructions

of optical properties based on numerical test phantoms are presented in presence of certain issues mentioned above.
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2 Forward model

In DOT, the light transport in the biological tissues is a forward model which aims at computing the prediction of the

detectors reading once the source and the optical properties of the medium are known. The biological tissue is illuminated

by an external collimated Laser beam Υ(rsrsrs, ωk) at the source position rsrsrs on the surface. ωk is the modulation frequency

of the intensity-modulated Laser source. In order to take into account this collimated light, the energy arriving in the

medium is separated into two components ψ = ψc + ψs, respectively the collimated ψc and scattered radiance ψs. The

ψc radiance is governed by the RTE state equation Rc in the collimated direction ΩΩΩc and is solved analytically.

Rc =

[
ΩΩΩc · ∇+

(
i ωk
v

+ µt(rrr)

)]
ψc(rrr, ωk) = 0. (1)

The velocity of light, v, in tissue is the ratio v = c/n of the velocity of light in vacuum and the refractive index of

tissue. The total extinction coefficient µt(rrr), at position rrr, is the sum of the absorption µa(rrr) and the scattering µs(rrr)

coefficients. The boundary condition for the collimated component ψc(rrr, ωk) is given by:

ψc(rrr, ωk) = Υ(rsrsrs, ωk) for ΩcΩcΩc ·nnn < 0, (2)

where nnn is the outward normal unit vector of the boundary. It should be noted that the component Υ, in Eq. 2, represents

only the transmitted part (no reflexion) of the collimated Laser beam into the medium. The scattered radiance ψs(rrr,ΩΩΩ, ωk)

is obtained by solving the RTE state equation Rs in the direction ΩΩΩ of the light propagation such as :

Rs =

[
ΩΩΩ · ∇+

(
i ωk
v

+ µt(rrr)

)]
ψs(rrr,ΩΩΩ, ωk)− µs(rrr)

∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′
,ΩΩΩ) ψs(rrr,ΩΩΩ

′
, ωk) dΩ

′
− Sc(rrr,ΩΩΩ, ωk) = 0. (3)

The H-G phase function p(Ω
′

Ω
′

Ω
′ ·ΩΩΩ) is the most widely adopted scattering phase function in biomedical optics and has been

used here [23, 30]. This function, is the probability that photons traveling in direction Ω
′

Ω
′

Ω
′

scatter into direction ΩΩΩ. The

H-G phase function mathematical expression in 2D is given by:

p(Ω
′

Ω
′

Ω
′
·ΩΩΩ) =

1

2π

1− g2(rrr)(
1 + g2(rrr)− 2 g(rrr) Ω

′
Ω

′
Ω

′ ·ΩΩΩ
) . (4)

The anisotropy factor g(rrr) represents the mean cosine of the angles of the scattered directions ΩΩΩ with respect to the inci-

dent ones Ω
′

Ω
′

Ω
′
. This factor is spatially dependent in our case for the heterogeneous medium. The source term Sc(rrr,ΩΩΩ, ωk)

in Eq. (3) induced by the scattering of the collimated radiance ψc(rrr, ωk) is given by:

Sc(rrr,ΩΩΩ, ωk) = µs(rrr) p(ΩcΩcΩc,ΩΩΩ) ψc(rrr, ωk). (5)

Eq. (3) is associated to a semi-transparent boundary condition [31] with Fresnel reflection at the interface (air / biological

tissue) due to the refractive index mismatch. The detector prediction P (rdrdrd, ωk) corresponding to the exitance at the
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detector position rdrdrd on the illuminated surface is obtained by:

P (rdrdrd, ωk) =

∫
nnn·Ω′Ω′Ω′>0

[
1− ρ(Θ)

]
ψs(rrr,Ω

′Ω′Ω′, ωk)
(
Ω′Ω′Ω′ ·nnn

)
dΩ′, (6)

where ρ(Θ) is the reflectivity of the surface ∂D. The forward model has been solved accurately with a Modified Finite

Volume Method (MFVM). The methodology of this method is not repeated here and we refer the reader to [32], for

details. The stability and accuracy of the MFVM have been validated through comparisons with the Monte Carlo (MC)

technique and analytical solution of RTE on available test cases. The MFVM, compared to other deterministic numerical

solutions of the RTE (available in the literature) has the advantage to have a high precision with an error less than 1% with

respect to MC simulations and RTE analytical solution. This is mainly due to the fact that the RTE is also solved inside

each control volume through an exponential schema.

3 Inverse problem

In the following, we first define the discrete sum of the objective function over all modulation frequencies. Then we

introduce the minimization problem where the state equations are used as constraints. After introducing the Lagrangian

formalism, we show how to deduce the adjoint equations and the objective function gradient.

3.1 Objective function and minimization problem

The OF J (β) to be minimized in the inversion procedure is the mean square discrepancy between the measurements,

M(rdrdrd, ωk), and the predictions of the forward model based on the RTE, P (rdrdrd, ωk), at detector positions, rdrdrd on the surface

of the medium over all intensity modulation frequencies ωk:

J (β) =
1

2

Nω∑
ωk=1

J(β, ωk) with J(β, ωk) =

Nd∑
d=1

∣∣∣∣P (rdrdrd, ωk)−M(rdrdrd, ωk)
∣∣∣∣2, (7)

The vector β contains the spatial distribution of the optical properties in the heterogeneous medium. Here Nd and Nω

are the total numbers of detectors and modulation frequencies, respectively. The goal of the optimization technique is to

determine the vector β̂ that minimizes the OF iteratively. This vector β̂ will be a solution to the minimization problem

and is displayed as a two-dimensional optical image.

3.2 Lagrangian and adjoint model equations

The adjoint equations are derived by considering that the OF at each modulation frequency J(β, ωk) must be minimized

under some constraints given by the RTE state equations at the corresponding frequency ωk. Hence, we can rewrite the
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original OF by following the Lagrangian formalism of the minimization problem as:

L(β, ψs, ψs, λs, λc) =
Nω∑
ωk=1

[
J(β, ωk) +

(
λs

∣∣∣Rs(β, ψs, ψc)
)ωk

s
+
(
λc

∣∣∣Rc(β, ψc)
)ωk

c

]
, (8)

where λc = λc(rrr, ωk), λs = λs(rrr,ΩΩΩ, ωk) are the complex adjoint variables to ψc and ψs, respectively. The inner products

(·|·)ωk
c and (·|·)ωk

s associated to the solution space, respectively, of ψc and ψs are defined by:

(
λs

∣∣∣Rs

)ωk

s
= Re

∫
D

∫
Ω=2π

λs(rrr,ΩΩΩ, ωk)Rs(β, ψs, ψc) dΩdr (9)

(
λc

∣∣∣Rc

)ωk

c
= Re

∫
D
λc(rrr, ωk)Rc(β, ψc) dr. (10)

When ψc, ψs verify the state equations Eqs. (1), (3), respectively, that leads to:

L(β, ψs, ψc, λs, λc) = J (β), L′(β, ψs, ψc, λs, λc) = J ′(β), (11)

Using Eq. (11), we can extract the gradient of the OF from the L2 inner product of the directional differential L′ with

respect to β in the direction δβ, such that:

L′(β) =

(
∇J (β)

∣∣∣∣δβ)
L2

(12)

Notice that the functional L is independant of λs and λc due to the fact that the residuals Rs and Rc are zero, yielding:

∂L(β, ψs, ψc)
∂λs

= 0,
∂L(β, ψs, ψc)

∂λc
= 0. (13)

The lagrangian formalism assumes that the variation of ∂L is not non-zero unless there is a variation of β. This condi-

tion is ensured by a particular choice of adjoint variables λs and λc which allows to compute the OF gradient without

having to compute the sensitivities δψs = (∂ψs(rrr,ΩΩΩ, ωk)/∂β)δβ and δψc = (∂ψc(rrr, ωk)/∂β)δβ. These sensitivities are

computationally expensive. Hence, that leads to the following adjoint equations model of the FD DOT problem:

∂ψsL(β, ψs, ψc) δψs = 0, ∂ψcL(β, ψs, ψc) δψc = 0. (14)

The adjoint equations can be obtained by partially differentiating the Lagrangian functional Eq. (8) with respect to ψs,

ψc in direction δψs and δψc, respectively. After using the definition of the adjoint operator [33] and the inner products

properties, we can reformulate the adjoint equations over Nω modulation frequencies ωk such as:

∂ψs
L(β, ψs, ψc) δψs =

Nω∑
ωk=1

[
∂J(β, ωk)

∂ψs
+

(
∂Rs(β, ψs, ψc)

∂ψs

)∗

λs

]
= 0, (15)

∂ψc
L(β, ψs, ψc) δψc =

Nω∑
ωk=1

[(
∂Rs(β, ψs, ψc)

∂ψc

)∗

λs +

(
∂Rc(β, ψc)

∂ψc

)∗

λc

]
= 0. (16)

Note that ∂J(β, ωk)/∂ψc = 0, since the OF is independent on the collimated light source.
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By using the definitions in Eq. (1) and (3) for Rc and Rs, respectively, the adjoint variables must be a solution of the

following adjoint equations system at each modulation frequency ωk:[
−ΩΩΩ · ∇+

(
−i ωk
v

+ µt(rrr)

)]
λs(rrr,ΩΩΩ, ωk)− µs(rrr)

∫
Ω′=2π

p(Ω
′

Ω
′

Ω
′
,ΩΩΩ) λs(rrr,ΩΩΩ

′
, ωk) dΩ

′
Ω

′
Ω

′
+
∂J(β, ωk)

∂ψs
= 0 (17)

[
−ΩΩΩc · ∇+

(
−i ωk
v

+ µt(rrr)

)]
λc(rrr, ωk)− µs(rrr)

∫
Ω=2π

p(ΩcΩcΩc,ΩΩΩ) λs(rrr,ΩΩΩ, ωk) dΩΩΩ = 0. (18)

The system of the RTE adjoint equations can be solved with the same solution method as the forward model equations.

In the next section, we will show how to obtain the gradient vector components ∇J with respect to the optical properties

(µa, µs and g) by simply using the adjoint variables λs(rrr,ΩΩΩ, ωk) and λc(rrr, ωk) of the adjoint model described above.

3.3 Gradient expressions

The directional derivative of the objective function J ′ is equal to that of the lagrangian functional L′ (see Eq. (11)). Thus,

it suffices to determine the latter in order to extract the gradient ∇J . By applying Eqs. (11 - 14), the gradient ∇J can be

deduced by differentating the lagrangian functional L with respect to β in direction δβ such as:(
∇J (β)

∣∣∣∣δβ)
L2

=

Nω∑
ωk=1

[(
λc

∣∣∣∂Rc(β, ψc)

∂β
δβ

)ωk

c

+

(
λs

∣∣∣∂Rs(β, ψs, ψc)

∂β
δβ

)ωk

s

]
. (19)

Note that ∂J(β, ωk)/∂β = 0 as the OF does not depend explicitly on β (see Eq.(7)).

This latter expression clearly shows that only a simple inner product has to be calculated. It should be noted that, the

gradient of the OF at multiple frequencies is the sum of all the gradients computed at each modulation frequency ωk.(
∇J (β)

∣∣∣∣δβ)
L2

=

Nω∑
ωk=1

(
∇J(β, ωk)

∣∣∣∣δβ)
L2

. (20)

Applying Eq. (19) for δµa , δµs and δg, we obtain an analytical expression of the OF gradient, with respect to µa, µs and

g, respectively: (
∇J (µa)

∣∣∣∣δµa)
L2

=

Nω∑
ωk=1

[(
λs

∣∣∣∣ψsδµa)ωk

s

+

(
λc

∣∣∣∣ψcδµa)ωk

c

]
. (21)

(
∇J (µs)

∣∣∣∣δµs)
L2

=

Nω∑
ωk=1

[(
λs

∣∣∣∣ψsδµs)ωk

s

+

(
λc

∣∣∣∣ψcδµs)ωk

c

(22)

−
(
λs

∣∣∣∣( ∫
Ω′=2π

ψs p(ΩΩΩ′,ΩΩΩ) dΩ′ + ψc p(ΩΩΩc,ΩΩΩk)
)
δµs

)ωk

s

]
(
∇J (g)

∣∣∣∣δg
)
L2

=

Nω∑
ωk=1

(
λs

∣∣∣∣− µs

(∫
Ω′=2π

ψs
∂p(ΩΩΩ′,ΩΩΩ)

∂g
dΩ′ + ψc

∂p(ΩΩΩc,ΩΩΩ)
∂g

)
δg
)ωk

s

(23)

The gradient is then computed for all the optical parameters regardless of the number of unknowns of the problem.

Thus, the adjoint formulation gives a fast way to efficiently compute the gradient. This is done by solving an additional
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equation for the adjoint variables and then evaluating the gradient through a simple inner product. To our knowledge, the

gradient expression ∇J (g) with respect to g is derived for the first time by using the adjoint model of the RTE. Once the

gradient ∇J (β) is obtained accurately, a reconstruction scheme based on the Limited memory (Lm) BFGS method [29]

is employed in order to update the spatial distribution of the optical properties. The advantage of this method is that it

avoids the cost of building the Hessian and inverting it as in the Newton methods [34, 35]. After computing the Lm-BFGS

search direction, the Armijo line search [36] is employed to find an optimal step size, αk, which minimises sufficiently

the OF.

4 Results and discussions

4.1 Model description

The reconstruction of the spatial distribution of optical properties in a non-homogeneous biological medium is studied.

A two-dimensional 4 × 4 mm2 domain which contains three circular inclusions is examined as shown in Fig. 1(a). The

inclusions (0.5 mm in diameter each, centered at x = -0.1 mm; y = 1 mm for inclusion A, x = 1 mm; y = 1 mm for inclusion

B and x = -1 mm; y = -1 mm for inclusion C) are embedded as heterogeneities in the background medium.

[Figure 1 about here.]

w<The optical properties of these inclusions can take different values for the different test cases considered below. The

refractive index of the medium is uniformly set at n = 1.4 while that of the surrounding medium (air) is set to unity.

For all these cases, the homogeneous background optical properties are used as the initial guesses to start the inverse

procedure. Four Gaussian Laser sources illuminate simultaneously the mid-center of each side of the medium, unless the

cases specified otherwise (those using one source). The expression of the Gaussian function in space along x -axis or y

-axis (s = x or y) is given by:

Υ(s) =
1

σs
√
2π

exp

(
− s2

2σ2
s

)
, (24)

where σs = 0.5 mm is the standard deviation of the spatial Gaussian beam. Eighty detectors are distributed around the

numerical phantom (one source and 20 detectors are located on each side of the medium). All detectors predictions were

used in the minimization problem, expect the cases where µs and g factor are reconstructed simultaneously. The synthetic

data were obtained by running the forward model using the exact heterogeneous distribution of the optical properties we

want to reconstruct. An unstructured triangular mesh of Ns = 2577 nodes (degrees of freedom) corresponding to 4992

triangles was used (Fig. 1(b)). The angular space was discretized into 32 directions and each direction was also subdivided
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into 8 solid angles for the normalized phase function. The reconstructions were achieved by fitting the FD data obtained at

10 modulation frequencies equally distributed in the range of 100 MHz to 1 GHz. We have found that the multifrequency

approach provides a better estimation quality than that at single modulation frequency [37, 38, 39, 40]. This is because the

underdetermination of the large-scale optimization problem was reduced by employing multiple modulation frequencies.

The reconstruction process is terminated when the normalized difference of the OF between two subsequent iteration

steps was smaller than ε = 10−4. To compare the quality of reconstruction images, the relative error ε between real and

reconstructed values of optical properties is defined as:

εβ(ZI) =
100

P

ZI∑
i=1

∣∣∣∣∣∣∣∣ β̂i − β∗
i

β∗
i

∣∣∣∣∣∣∣∣, (25)

where β̂i and β∗
i are the reconstructed and the exact values of the optical parameter at the ith node of the mesh, respectively.

P represents the unknowns number (mesh nodes) in the zone of interest ZI of the image. This ZI can be either the

background, inclusion or cross-talk zone or even the whole reconstructed image.

4.2 Impact of source number on reconstruction

As the first test problem, the effect of source number on reconstruction is examined. For this purpose, we consider the

phantom described above where only the scattering coefficient varies spatially inside the medium through the inclusions.

The optical properties of the background are chosen in the range of biological tissues (µa = 0.05 mm−1, µs = 5 mm−1

and g = 0.9). These properties yield to a highly-forward anisotropically scattering medium. Inclusions A and C are

assigned the real scattering coefficient µ∗
s = 4 mm−1, while inclusion B is assigned the real µ∗

s = 6 mm−1, corresponding

to a 20% decrease and increase, respectively, relative to the scattering coefficient of the background medium. Figs. 2(a)

and 2(b) display the reconstructed images of µs when only the top surface of the medium was probed and when the four

different boundaries of the medium were illuminated, respectively.

[Figure 2 about here.]

From Figs. 2(a,b), it can be seen that the three inclusions are spatially well recovered in the exact locations for both

cases. As expected, the two top inclusions (A and B) are accurately reconstructed while the deeper one (inclusion C) is

significantly overestimated (µ̂s = 4.5 mm−1) when probing only the north boundary. In addition, the inclusion C has

worse contrast and circular shape (Fig. 2(a)). However, the circular shape and the contrast of the inclusion C are clearly

improved and enhanced when scaning the medium from all its boundaries. The scattering values are accurately estimated

µ̂s = 4 mm−1, µ̂s = 6 mm−1 and µ̂s = 4 mm−1 at the centers of inclusions A, B and C, respectively (Fig. 2(b)).
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4.3 Simultaneous reconstruction of µaµaµa and µsµsµs

In this section, the simultaneous reconstruction of the spatially dependent absorption and scattering distribution is ex-

amined with three different test cases. The anisotropy factor of the H-G phase function is kept constant g = 0.9. We

reconsider the same phantom as described in Fig. 1, illuminated by four collimated Laser beams.

The most encountered issues and challenges in DOT are reported in this section in order to assess the robustness of

the reconstruction algorithm. Firstly, the "crosstalk" problem is frequently encountered in practice when simultaneous

estimation of several parameters is applied. This problem is due to the non-uniqueness of the DOT where many com-

binations of optical properties can lead to similar boundary data. For this purpose, we assumed that the inclusion A

represents a heterogeneity with low in both absorption and scattering coefficients compared to the background optical

properties. Whereas, inclusion B is highly scattering only while inclusion C is highly absorbing only. This configu-

ration is intended to mimic a crosstalk in the three test media. Secondly, the "contrast" level represents the difference

between the background (initial optical value) and the inclusion (exact optical value). Different contrasts may lead to

different reconstruction results [41, 42]. In the 3 test cases, the three inclusions represent a contrast of 20% with respect

to the background optical values expect for case 2 where inclusions B and C represent a contrast of 40%. This case

is chosen in order to evaluate the effect of this contrast on the crosstalk issue and the estimation quality. Two homo-

geneous backgrounds of different optical properties are employed. The first two cases are assigned the low-absorbing

background medium of (µa = 0.05 mm−1, µs = 5 mm−1) while the third one consists of a very high-absorbing medium

(µa = 1 mm−1, µs = 5 mm−1). This last case presents a situation in which the diffusion approximation is not valid. The

exact optical properties of the inclusions for each case are listed in Table 1. Figure 3 displays the reconstructed µa and

µs images for the 3 test mediums. The relative reconstruction errors of background, inclusions and crosstalk are given in

Table 2.

[Table 1 about here.]

[Figure 3 about here.]

As shown in Fig. 3, the inclusions are accurately located in both optical parameters for all test cases. For the two

low-absorbing media, perturbations such as edges artifacts are more remarkable in the absorption images. Also, the local

values in the scattering maps are accurately retrieved while that of the absorption maps are underestimated. The purely

absorbing inclusion C has no crosstalk impact on the µs images even with hight contrast of 40% (see Figs. 3(b,d)). This

is because the use of the FD data is expected to better separate between the two parameters. However, the crosstalk
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phenomenon is only pronounced in absorption images. As shown in Figs. 3(a,c), the scattering inclusion B appeared as

a false positive heterogeneity in the µa images for both cases. This behavior is mainly due to the different sensitivities of

the RTE model which is much more sensitive to variations in µs than µa [43]. These parameters have somehow the same

effect on the boundary data. In other words, a decrease in intensity could be caused by either an increase in absorption or

in scattering [6], since both contribute to light extinction in tissue. Therefore, the low emerging intensities caused by the

highly scattering inclusion B, have been analyzed as a highly inclusion in both scattering and absorption (crosstalk).

By comparing the cases 1 and 2, we find that the estimation errors of the inclusions B and C with 20% of contrast, εIncBµs

= 5.46% and εIncCµa
= 9.16%, have been approximately doubled to εIncBµs

= 9.70% and εIncCµa
= 17.7%, respectively, when

the contrast level was increased about 40% (see Table 2). However, the inclusion A error was slightly increased to εIncAµa

= 10.95% and εIncAµs
= 7.35% because the contrast level for this inclusion has not changed for the two cases. In the case

2, perturbations are more pronounced in the absorption background (εBackgroundµa
= 6.11%) and some artifacts are also

remarkable in the scattering image (εBackgroundµs
= 1.36%). Thus, it is interesting to note that the high inclusion contrast

leads to more artifacts around the boundary while the low inclusion contrast shows better estimation quality. As shown

in Figs. 3(a,c), the reconstructed absorbing inclusion C is readily visible when the contrast is up to 40%. This is because

the influence of the last becomes more important on the emerging data with higher contrast. Furthermore, it is also seen

that the contrast has some considerable effect on the crosstalk. The crosstalk error in the absorption map εCrosstalkµa
=

12.29% has been doubled to εCrosstalkµa
= 24.49% when the contrast of the inclusion B was increased from 20% to 40%,

respectively. For the scattering map the crosstalk error εCrosstalkµs
= 0.17% was slightly increased to εCrosstalkµs

= 0.27%,

but remains low. Hence, a large contrast level leads to a worse estimation quality and further to a strong crosstalk effect in

the absorption images. This has an important implication because the realistic contrast levels between tumor and normal

tissue are believed to be in the range of the lower contrast levels [42].

For the test case 3, the reconstruction of optical properties is achieved with a reasonable accuracy thanks to the RTE

based forward model. This result would not have been possible with the diffusion approximation, since it fails to predict

accurately the light propagation in such medium. Comparing now the tests 1 and 3, we can observe that the reconstruction

of the µa background becomes clearer with less perturbations leading to lower relative error of εBackgroundµa
= 0.94% in

the highly-absorbing medium (Figs. 3(a,e)). In addition, the crosstalk error induced by the scattering inclusion B has been

reduced about 50% (εCrosstalkµa
= 5.769%) in the µa image. The estimation errors of the inclusions A and C (εIncAµa

=

11.62% , εIncCµa
= 9.94%) are somewhat similars compared to errors obtained in case 1. This is because the contrast level

of 20% was kept unchanged in the two test cases. For the µs image, the background is accurately recovered with small
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error of εBackgroundµs
= 0.60%. In contrary to case 1 and 2, the purely absorbing inclusion C has now a significant crosstalk

effect on the µs image (Figs. 3(b,f)). Nevertheless, the crosstalk error is still relatively small (εCrosstalkµs
= 1.85%) in the

µs image. The estimation errors of the inclusions A and B were increased to almost 50% εIncAµs
= 12.1% and εIncBµs

= 12.6% compared to the case 1, respectively. One can deduce here that the reconstruction quality of the µa image is

improved (low crosstalk and background errors) while that of the µs image is worse (high crosstalk and inclusions errors).

This improvement of µa can be explained by the highly absorption coefficient yielding to a comparable order of magnitude

with the scattering coefficient. In this situation, the RTE model has a significant sensitivity to any small variation of µa

(20%) when the absorption coefficient is very high. Therefore, the algorithm provides a better reconstruction quality for

µa. On the other hand, the highly absorbing coefficient produces a high light extinction in the tissue which attenuates the

multiple scattering of light and therefore to µs inaccuracy.

On the other hand, if the µs and µa original images contain each two inclusions where their exact values are both either

high or low with respect to their initial values, the proposed algorithm was tested and has been proven to reconstruct

accurately this example case.

[Table 2 about here.]

4.4 Reconstruction of g

In this case, the anisotropy factor g varies spatially inside the medium through the inclusions as represented in Fig. 1(a).

The algorithm was used to reconstruct the spatial distribution of g when µa and µs are assumed to be known. The optical

properties of the homogeneous background are µa = 0.05 mm−1, µs = 5 mm−1 and g = 0.9. The inclusions A and C are

assigned the exact value g∗ = 0.85, while the inclusion B is assumed to have higher forward-scattering value g∗ = 0.95. In

order to test the robustness of the algorithm, the synthetic data are corrupted by adding normal distributed random errors

to the exact predictions such as:

Md = P∗
d + rand σd, (26)

where Md and P∗
d are the measured value and the exact prediction at the d-th detector on the bounding surface, respectively.

The rand function, in Eq. (26), generates random numbers with a normal Gaussian distribution. The noise level σd is

defined as the standard deviation of the measured value at the d-th detector. Four examples of different noise levels present

in the synthetic data (0%, 3%, 6% and 10%) were used in the reconstructions. The results are depicted in Figure 4 and the

computational features of the reconstruction algorithm are given in Table 3.

[Figure 4 about here.]

12



For the noise-free example, the reconstructed g image is in good agreement with the original medium (Fig. 4(a)). Loca-

tions and circular shapes of the inclusions were clearly reconstructed. The retrieved local values at the inclusions centers

were accurately estimated leading to low relative error of the inverted image εg = 0.29%. Also, the background anisotropy

factor is well recovered for all the cases. These results show that the gradient expression with respect to the anisotropy

factor (Eq. 23) has been validated and accurately computed by the present adjoint method. For the noisy data examples, it

is also seen that the algorithm can well detect and locate the inclusions inside the medium (Figs. 4(b, c, d)). However, the

edges artifacts are more pronounced and the circular shape of inclusions is distorted as the noise level in found to increase.

Additionally, the estimation error increases to εg = 0.41%, εg = 0.53% and εg = 0.72% when the noise level increases to

3%, 6% and 10%, respectively (see Tab. 3). As expected, higher noise levels on the boundary data lead to quality image

degradation. From Table 3, the optimization procedure reached the stopping criterion faster for a higher noise level. This

is because the OF converges around a certain noisy value. This computational feature is often encountered for gradient

based algorithms and has been reported in [10, 36]. It should be noted here that the estimation of g would have not been

possible with the diffusion approximation. Since, the information about the anisotropy factor is lost by considering the

reduced scattering coefficient µ
′

s = µs(1− g) in the diffusion equation.

[Table 3 about here.]

4.5 Simultaneous reconstruction of µs and g

4.5.1 With crosstalk problem

In this section, the spatial distributions of the scattering coefficient µs and the anisotropy factor g are reconstructed simul-

taneously. The original phantom to reconstruct contains only the two top inclusions A and B located as depicted in Fig.

1(a). The medium was probed by one Gaussian source at the mid-center of the top surface and only the backscattered

light (reflectance) on the illuminated boundary was used for reconstruction. The use of one source allows to highlight

the inclusion location effect with respect to the source on the estimation and crosstalk qualities. In this source-detectors

configuration, we are able to assess the sensitivities of the µs coefficient and the g factor on the reflectance. The homoge-

neous background parameters are the same as in the previous section. For author’s best knowledge, to date, the crosstalk

problem between µs and g has not been considered in the literature for the DOT. Hence, we are interested to study the

crosstalk effect of the scattering coefficient on the anisotropy factor reconstruction, and vice-versa. For this purpose, two

different test cases are considered. In the first one, the inclusion A varies only in scattering (µ∗
s = 4 mm−1) while the

inclusion B represents a heterogeneity in anisotropy factor (g∗ = 0.85). In the second test, the inclusion A is an anisotropy
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heterogeneity only (g∗ = 0.85) and the inclusion B varies only in scattering (µ∗
s = 4 mm−1). This last is made in order

to show the influence of the inclusion location with respect to the source on the reconstruction results. The reconstructed

images are displayed in Fig. 5 and the relative errors are listed in Table 4.

[Figure 5 about here.]

From Table 4, the reconstruction quality of the inclusion A is relatively more accurate (εIncAµs
= 17.20% and εIncAg =

3.00%) than that of the inclusion B (εIncBµs
= 19.00% and εIncBg = 4.35%) in scattering and anisotropy factor. This is

mainly due to the location effect, since the inclusion A is nearer to the source and placed in higher sensitivity area than

the inclusion B. Therefore, the inclusion A transmits more rich informations to detectors and makes the inversion more

accurate. Unlike the cases where µa and µs were retreived simultaneously, the crosstalk issue between the scattering and

the anisotropy factor is clearly pronounced in both optical images. This is because µs and g have both significative and

important sensitivities on the emerging intensities. Comparing the two test cases, it can be observed that the crosstalk

impact depends on the inclusion location with respect to the source. The crosstalk µs error has decreased from εCrosstalkµs

= 9.66% to εCrosstalkµs
= 8.62% when the g heterogeneity was exchanged from inclusion A to B. Similarly, the crosstalk

g error has decreased from εCrosstalkg = 1.03% to εCrosstalkg = 0.49% when the scattering inclusion passed from position

A to B. Thus, we can deduce that the crosstalk is more pronounced as the responsible inclusion in the other parameter is

nearer to the source (inclusion A). Note that, the µs inclusion B (case 2) has a weak crosstalk effect on the g image (Fig.

5d) whereas when this inclusion is a g heterogeneity (case 1), the crosstalk in the µs image is much more remarkable

(Fig. 5a). This can be attributed to the different sensitivities for µs and g on the reflectance. It has been shown in [43]

that the reflectance of the RTE model is much more sensitive to a variation in the anisotropy factor than the scattering

coefficient. That explains the better estimation quality of g for all cases (Tab. 4) and further the strong crosstalk in the

reconstructed µs images. Another interesting remark can be observed when µs and g are reconstruct simultaneously. As

shown in Figs. 5(a,b,c,d), the low inclusion in anisotropy factor appears as a high scattering inclusion in the µs images.

Also, the low scattering inclusion is reconstructed as a high inclusion in anisotropy factor. Hence, we can deduce that

the two parameters µs and g doesn’t have the same behavior and effect on the backscattered light. These parameters

present an opposite sensitivities on the reflectance [6, 43]. In other words, an increase in the reflectance could be caused

by either a decrease in g factor or an increase in µs coefficient, and vice-versa. In case 1 for example, the increase of the

reflectance due to the inclusion B (low anisotropy factor g∗ = 0.85) has resulted in low heterogeneity in g (Fig. 5b) and

highly scattering inclusion (crosstalk) (Fig. 5a). The reconstructed results are in agreement with the previous sensitivity

studies and confirm the non-uniqueness nature of the problem when several combinations of µs and g can lead to identical
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boundary data.

[Table 4 about here.]

4.5.2 Without crosstalk problem

For computational time purpose, the simulated reconstructions for all the previous cases were performed on a relatively

small phantom size. In this subsection, we consider a 2 cm × 2 cm domain which contains one circular inclusion in order

to test our algorithm for larger domain. The source-detectors configuration is the same as in the previous subsection in

order to get closer to a realistic experimental setup based on the reflectance geometry. The synthetic data are generated

on a finer triangular mesh of 21248 elements using the exact optical properties while the inversion is performed on a

coarser mesh of 5312 triangular elements. The data are corrupted by 3% of noise level which is inevitable in the practical

applications. The inclusion located at position x = 5 mm, y = 7 mm is assigned the exact values µ∗
s = 6 mm−1 and g∗ =

0.85 while µa = 0.05 mm−1 is uniformly distributed inside the medium. The reconstructed results are depicted in Fig. 6.

[Figure 6 about here.]

As shown in Figure 6, the inclusion is accurately identified in the exact location for both optical properties. It is also

seen that the reconstructed profils of µs and g along the cross-section on y = 7 mm are spatially well fitted with the exact

solution (Figs. 6 (c,d)). Furthermore, the values of optical properties are accurately retrieved even for noisy data. Also,

the background is well recovered for µs and g images. These results prove that the algorithm is robust for realistic domain

size and can provide a good estimation quality for both µs and g in this situation. However, if the exact values µ∗
s and

g∗ of the inclusion are both either high or low with respect to the background values, the quality reconstruction will be

relatively worse. This behavior is due to the opposite sensitivities of the two parameters on the boundary data, as deduced

previously. The residual errors induced by this inclusion will be compensated yielding to small objective function level

and therefore to image inaccuracy. Hence, a suitable regularization technique for the proposed algorithm is needed in

order to better separate and estimate simultaneously the optical properties µs and g.

5 Summary

Reconstructions of spatial distributions of the optical properties for different cases were presented. The radiative transfer

equation was used as forward model in frequency-domain and solved accurately by the MFVM. For the inversion, the

gradient of the objective function with respect to µa, µs and g was computed fastly and efficiently by using the adjoint
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method. The simultaneous reconstructions of µa and µs were achieved with reasonable accuracy for lowly and even

for highly absorbing media. It has also been pointed out that the estimation and crosstalk errors depend on both the

inclusion location and contrast level. The main contribution of this study is the reconstruction of the spatial distribution

of the anisotropy factor g. This estimation of g was possible by using forward and adjoint models based on the RTE.

Consequently, this work might open the possibility to image g in tissues as an additional contrast agent for DOT. Also, we

have shown the capability of the proposed algorithm to reconstruct simultaneously µs and g even for large domain with

noisy data. The crosstalk between the two parameters has been considered and clearly observed in both optical images.

We deduced that µs and g have an opposite sensitivities and effects on the reflectance. Therefore, a suitable regularization

technique will be implemented as a next step, in order to reduce the strong crosstalk issue between µs and g. This work

was a necessary preliminary study before extending the present algorithm to 3D reconstructions.
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µa = 0.05 mm−1, µs = 5 mm−1 and g = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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(a) (b)

Figure 1: (a) Two-dimensional (4 × 4 mm2) triangular mesh (b) containing three circular inclusions A, B and C.
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(a) (b)

Figure 2: Reconstructions of the scattering coefficient µs for two different source numbers. (a) One source is placed at
the mid-center of the north surface (b) Four sources are used to probe the mid-center of each surface of the phantom. The
solide circles indicate the exact inclusion locations.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Simultaneous reconstructions of the absorption µa and the scattering µs coefficients. Left column : Recon-
structed µa images. Right column : Reconstructed µs images. Top raw : Test case 1. Middle raw : Test case 2. Bottom
raw : Test case 3. The solide circles indicate the exact positions while the dashed circles depict the crosstalk zones. We
started the minimization using the homogeneous background optical properties.
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(a) (b)

(c) (d)

Figure 4: Reconstructions of the anisotropy factor g for four different noise levels σm on the synthetic data. The original
phantom medium to reconstruct was shown in figure 1. (a) reconstructed g image with noiseless data (b) reconstructed
g image, for σm = 3 % (c) reconstructed g image, for σm = 6 % (d) reconstructed g image, for σm = 10 %. The solide
circles indicate the exact inclusion locations.
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(a) (b)

(c) (d)

Figure 5: Simultaneous reconstructions of the scattering coefficient µs and the anisotropy factor g. Left column : Recon-
structed µs images. Right column : Reconstructed g images. Top raw : Test case 1, inclusion A in scattering coefficient
and inclusion B in anisotropy factor. Bottom raw : Test case 2, inclusion A in anisotropy factor while inclusion B in
scattering coefficient. The solide circles indicate the exact positions while the dashed circles depict the crosstalk zones.
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(a) (b)

(c) (d)

Figure 6: Simultaneous reconstructions of the scattering coefficient µs and the anisotropy factor g for the 2 cm × 2 cm
domain. (a) : Reconstructed µs image. (b) : Reconstructed g image. (c) : µs Cross-section. (d) : g Cross-section. We
started the minimization using the homogeneous background optical properties : µa = 0.05 mm−1, µs = 5 mm−1 and g
= 0.9.
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Inclusions
Background A B C

Test case 1 µa(mm−1) 0.05 0.04 0.05 0.06
µs(mm−1) 5 4 6 5

Test case 2 µa(mm−1) 0.05 0.04 0.05 0.07
µs(mm−1) 5 4 7 5

Test case 3 µa(mm−1) 1 0.8 1 1.2
µs(mm−1) 5 4 6 5

Table 1: The exact absorption and scattering coefficients of the 3 test mediums
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µa µs
εbackgroundbackgroundbackground
µa

εIncAIncAIncA
µa

εIncCIncCIncC
µa

εCrosstalkCrosstalkCrosstalk
µa

εbackgroundbackgroundbackground
µs

εIncAIncAIncA
µs

εIncBIncBIncB
µs

εCrosstalkCrosstalkCrosstalk
µs

Test medium 1 3.57% 10.42% 9.16% 12.29% 0.75% 6.88% 5.46% 0.17%
Test medium 2 6.11% 10.95% 17.7% 24.49% 1.36% 7.35% 9.70% 0.27%
Test medium 3 0.94% 11.62% 9.94% 5.769% 0.60% 12.1% 12.6% 1.85%

Table 2: The relative estimation errors of background, inclusions and crosstalk for the absorption and scattering coeffi-
cients.
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Errors
σm = 0% σm = 3% σm = 6% σm = 10%

Relative estimation error εg (%) 0.29 0.41 0.53 0.72
Number of iterations k 57 22 17 15

Table 3: The relative estimation errors and the iterations numbers of the reconstruction algorithm for the 4 different noise
levels.
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µs g
εbackgroundbackgroundbackground
µs

εIncAIncAIncA
µs

εIncBIncBIncB
µs

εCrosstalkCrosstalkCrosstalk
µs

εbackgroundbackgroundbackground
g εIncAIncAIncA

g εIncBIncBIncB
g εCrosstalkCrosstalkCrosstalk

g
Test case 1 0.62% 17.20% - 8.62% 0.08% - 4.35% 1.03%
Test case 2 0.67% - 19% 9.66% 0.1% 3% - 0.49%

Table 4: The relative estimation errors of background, inclusions and crosstalk for the scattering coefficient µs and the
anisotropy factor g.
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