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Abstract: The ubiquitous presence of spirooxindole architectures with several functionalities
and stereogenic centers in bioactive molecules has been appealing for the development of novel
methodologies seeking their preparation in high yields and selectivities. Expansion and refinement
in the field of asymmetric organocatalysis have made possible the development of straightforward
strategies that address these two requisites. In this review, we illustrate the current state-of-the-art
in the field of spirooxindole synthesis through the use of non-covalent organocatalysis. We aim to
provide a concise overview of very recent methods that allow to the isolation of unique, densely
and diversified spirocyclic oxindole derivatives with high structural diversity via the use of cascade,
tandem and domino processes.

Keywords: spirooxindole derivatives; non-covalent organocatalysis; hydrogen-bonding; cascade;
tandem; domino; enantioselectivity; chiral building blocks

1. Introduction

Heterocyclic compounds are found in a broad range of bioactive molecules, natural products,
and drugs. Consequently, several novel efficient strategies based on catalytic methods have been
validated to date for the direct assessment of such scaffolds in an enantiopure fashion [1–3]. In this
context, spirocyclic oxindole derivatives have appeared as privileged structural motifs being part of
a great number of synthetic and natural products displaying remarkable biological activities as well
as useful biomedical applications (Figure 1) [4–6]. Asymmetric organocatalysis has appeared as an
appealing tool in order to prepare such compounds with rich structural diversity and complexity
through cascade, tandem, and domino processes [7–9]. Indeed, since the beginning of the 21st century,
the golden-age of organocatalysis, several reports and substantial advances on the field of the synthesis
of complex structural entities via the combination of organocatalysis and cascade transformations have
been reported so far. The ability to reach for molecular complexity through the conscious choice of
substrates and catalysts in a single transformation has inspired a growing number of research groups.
Seminal reports that cover this subject have appeared before 2015 [10–13].

The aim of this review is to describe recent advances towards the stereocontrolled synthesis of
strained spiro-quaternary stereocenters on the oxindole core through non-covalent organocatalysis [14–16]
within the timeframe from 2015 to the middle of 2017. It is the authors’ aim to attract the reader’s attention
to the potential of asymmetric non-covalent organocatalysis to mediate one-pot cascade, tandem,
and domino processes that, employing an oxindole derivative as starting material, give a facile access to
complex molecules featured by several functionalities and various stereogenic centers.
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Figure 1. Examples of bioactive compounds built around the oxindole framework. 

The observed high yields and remarkable stereoinduction, which resemble Nature’s outcomes, 
mainly rely on H-bond interactions, electrostatic effects, and π–π  staking that are established 
between the oxindole core, the employed reagent, and the selected catalyst (i.e., dual and cooperative 
catalysis) [17]. Examples of such connections are depicted in Figure 2. 

  
Figure 2. Examples of non-covalent interactions in a substrate/reagent/catalyst system. 

Far to be exhaustive and comprehensive, the current review is divided according to the most 
employed class of catalysts. Specifically, after a quick overview about the Cinchona alkaloids (Section 1), 
the subsequent synthetic elaborations of these natural-occurring organocatalysts are going to be 
introduced (Sections 2–5); meanwhile, Section 6 will detail an example of non-covalent activation via 
Brønsted acids. Finally, we apologize for any omissions. 
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Figure 1. Examples of bioactive compounds built around the oxindole framework.

The observed high yields and remarkable stereoinduction, which resemble Nature’s outcomes,
mainly rely on H-bond interactions, electrostatic effects, and π–π staking that are established between
the oxindole core, the employed reagent, and the selected catalyst (i.e., dual and cooperative
catalysis) [17]. Examples of such connections are depicted in Figure 2.
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Figure 2. Examples of non-covalent interactions in a substrate/reagent/catalyst system.

Far to be exhaustive and comprehensive, the current review is divided according to the most
employed class of catalysts. Specifically, after a quick overview about the Cinchona alkaloids (Section 1),
the subsequent synthetic elaborations of these natural-occurring organocatalysts are going to be
introduced (Sections 2–5); meanwhile, Section 6 will detail an example of non-covalent activation via
Brønsted acids. Finally, we apologize for any omissions.
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2. Cinchona Alkaloid Catalysts

Discovered in 1820 for its antimalarial properties, Cinchona alkaloids have found several
applications in various and quite different fields ranging from medicine to food and beverage industries,
and even including organic chemistry. Besides the initial uses as resolving agents, over the last decades,
Cinchona alkaloids have established a primary and outstanding role in asymmetric synthesis as highly
efficient organocatalysts capable of promoting a wide range of enantioselective transformations in
both homogeneous and heterogeneous environments [18]. The impressive chiral induction mainly
relies both on the accessibility of different chiral skeletons and on the facile adaptability to various
reaction processes (Figure 3). Specifically, the 1,2-aminoalcohol group summarizes in one molecule:

(i) the basicity and bulkiness of quinuclidine moiety, apt to activate a nucleophile by deprotonation
as well as to stabilize the developing positive charge,

(ii) the secondary 9-hydroxy group, which acts as both an acid and a H-bond donor, and is suitable
for further chemical modification of the catalyst structure. Additionally, the overall catalytic
action is also ascribed to the possible π–π interactions with the aromatic quinoline ring.
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Figure 3. Representative examples of Cinchona alkaloids.

Representative examples of widespread used Cinchona alkaloids are depicted in Figure 3. Notably,
as fragments of more complex organocatalysts (Sections 3–5) the same structures play a crucial role to
induce high levels of diastereo- and enantioselectivity.

Within this context, in 2015, Yuan and co-workers succeeded in the construction of a class of
spirocyclic oxindoles through a domino Mannich-cyclization process [19]. Specifically, employing
various 3-isothiocyanate oxindoles 1 and imines 2 as substrates, the simplest commercially available
quinine (I, 1 mol %) made possible the diastereo- (up to >99:1 d.r.) and enantioselective (up to
97% ee) synthesis of spiro[imidazolidine-2-thione-4,3′-oxindole] derivatives 3 (Scheme 1). Notably,
the optimized conditions, i.e., using toluene as solvent at 0 ◦C with the addition of 4 Å molecular
sieves (MS), led, in just 10 min, to the desired products isolated in remarkable yields (up to 95%).
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Scheme 1. Synthesis of spiro[imidazolidine-2-thione-4,3′-oxindole] via domino Mannich/Cyclization 
process and proposed transition states where A and B are the suggested intermediates (Y = Yield). 
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the C9-OH and (ii) the 3-isothiocyanate oxindole moiety via deprotonation and consequent 
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attack of the Si-face nucleophile counterpart (A, Scheme 1). The subsequent ring closure reaction 
involves the just formed N-nucleophile and the electron-poor carbon of the isocyanate oxindole 
framework (B, Scheme 1).  
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validated even in a kinetic resolution approach. Indeed, Tanaka and co-workers were engaged in the 
synthesis of spirooxindole polycycles 8 bearing a spiro[4,5]decane system that was remarkably 
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Scheme 1. Synthesis of spiro[imidazolidine-2-thione-4,3′-oxindole] via domino Mannich/Cyclization
process and proposed transition states where A and B are the suggested intermediates (Y = Yield).

To explain the observed outstanding stereocontrol, the authors suggest that in the transition state the
quinine simultaneously activates: (i) the tosyl-protected imine via a H-bond interaction of the C9-OH and
(ii) the 3-isothiocyanate oxindole moiety via deprotonation and consequent enolization performed by the
tertiary amine group. In such a way, the imine Si-face is exposed to the attack of the Si-face nucleophile
counterpart (A, Scheme 1). The subsequent ring closure reaction involves the just formed N-nucleophile
and the electron-poor carbon of the isocyanate oxindole framework (B, Scheme 1).

More recently the impressive stereoinduction properties of Cinchona alkaloids have been validated
even in a kinetic resolution approach. Indeed, Tanaka and co-workers were engaged in the synthesis
of spirooxindole polycycles 8 bearing a spiro[4,5]decane system that was remarkably accomplished by
a two-step strategy involving a formal [4 + 1] cycloaddition and a subsequent Michael-Henry cascade
transformation (Scheme 2) [20].
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While the former reaction was carried under acidic catalysis, the Michael-Henry cascade steps were
performed under quinidine (II) catalysis at room temperature. In such conditions, the final polycyclic
derivatives 8 featuring seven stereogenic centers were isolated in high optical purity (80–92% ee) despite
modest yields (up to 28%) consequence of the racemic mixture used as starting materials. However, the
unreacted enantiomer ent-6 was easily recovered in enantioenriched fashion (up to 43% yield, 92–98% ee).

Although initially the simplest naturally available Cinchona alkaloids have been widely exploited,
over the years, organic chemists have created more efficient and complex molecules bearing the
same scaffold that was implemented with the introduction of further functionality capable of H-bond
interactions. In the following sections, we are going to illustrate and compare other privileged organic
chirality inducers, most of which could be added to the realm of Cinchona alkaloid derivatives.

3. (DHQD)2 Based Catalysts

Joining together two units of Cinchona derivatives/analogues in a single molecule, creating
the so-called bis-Cinchona alkaloids, is the easiest way to enhance the H-bond network inside the
catalyst/substrates system. Such structures have mainly shown their efficiency as chiral ligands in
the Sharpless dihydroxylation. However, over the years, several research groups have highlighted
their potential and effectiveness as simple organocatalysts without the introduction of further metal
salt additives. Among others, Wu and co-workers exploited the ability of (DHQD)2PYR (IX) in
Michael/cyclization cascade reaction to synthesize different spirocyclic oxindoles starting from
isatilidene malonitriles as initial electrophile. Precisely, the employment of acyclic β,γ-unsaturated
amides 10 as vinylogous enolates, smoothly provided the titled spirooxindoles 11 in good yields
(87–95%) and noteworthy enantioselectivity (77–96% ee) even though the overall outcomes were
affected by the steric hindrance introduced on both donor and acceptor reagents (Scheme 3) [21].
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Likewise, the replacement of the Michael donor with suitable pyrazolone 12 furnished the
expected spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives 13 by performing the reaction in
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analogous conditions (i.e., −20 ◦C, AcOEt as solvent) and adding only 1 mol % of the chosen
organocatalyst IX (Scheme 4) [22]. The whole process was completed in a shorter reaction time
(from 10 min to 9 h) with respect the previous vinylogous Michael/cyclization sequence (from 60 min
to 7 days) and provided the products in notable yields (96–99%) and good-to-moderate optical purity
(47–91% ee).
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Unfortunately, the optimized protocol failed when the one-pot three component reaction of
N-trityl isatin (14), malonitrile (15), and pyrazolone 12 (R3 = Me, R4 = Ph) was attempted affording
the hypothesized spirocompound 13 (R1 = H, R2 = Tr, R3 = Me, R4 = Ph) in low yield (41%) and poor
enantioselectivity (28% ee).

Almost simultaneously, Enders and co-workers designed and realized an organocatalytic
Mannich/Boc-deprotection/aza-Michael sequence of N-Boc ketimine 16 and 3-substituted oxindoles
17 that straightforwardly afforded the functionalized 3,3′-pyrrolidinyl derivatives 18 bearing three
stereocenters, two of which were contiguous spiro-stereocenters [23]. Therefore, the devised and
validated protocol (i.e., room temperature, MTBE as solvent), which relied on the efficiency of
(DHQD)2PHAL X (10 mol %) as catalyst, gave access in moderate-to-good yields (41–84%) and
high stereoselectivity (up to >20:1 d.r., 90–98% ee) to complex spirocyclic systems 18 (Scheme 5).
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4. Thiourea-Based Catalysts

Thiourea-based organocatalysts [24–27] have been intensively considered for promoting
multiple C-C and C-heteroatom bonds formation via domino reactions through H-bond network
between substrates and catalysts. In this section, recent selected cascade reactions involving such
organocatalysts (Figure 4) allowing to highly functionalized chiral spirooxindole-bearing compounds
are going to be discussed.
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4.1. Michael Addition/Cyclization Sequence

Electrophilic isatilydene malonitrile derivatives 9 are substrates of choice to promote Michael
addition/cyclization transformations through reaction with nucleophiles. In 2015, Kesavan and
co-workers have indeed devised a sequential vinylogous Michael addition/cyclization in the presence
of vinyl malononitriles 19 and 20 as vinylogous nucleophiles [28]. The reaction, conducted in
the presence of L-proline derived bifunctional thiourea catalyst XI (10 mol %) in toluene at 0 ◦C,
demonstrated a wide scope with both substrates (Scheme 6, compounds 21 and 22). In addition,
an enantioselective three-component reaction could also be proposed via in situ formation of
isatylidene malonitrile derivatives. The authors have also highlighted the ability of XI to afford
high levels of enantioselectivity without the need for N-protected oxindoles. Indeed, enantioselective
transformations involving oxindoles usually require the prior N-protection in order to avoid unsought
substrate interactions with the catalyst.
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Herrera and co-workers reported the combination of enamines 23 and isatylidene malonitrile 9
to propose a promising asymmetric synthesis of few 2-oxospiro-[indole-3,4′-(1′,4′-dihydropyridine)]
24 in moderate yields and enantioselectivities (Scheme 6, compound 24) [29]. The domino process is
believed to follow a mechanism that involves a Michael addition, an intramolecular cyclization and then,
a tautomerization and is catalyzed by Takemoto’s catalyst [30] XIII (30 mol %) in acetonitrile at 15 ◦C.

The synthesis of several spiro[4H-pyran-oxindole] derivatives 26 was proposed by Wu and
co-workers by using α-cyano ketones 25 as nucleophiles (Scheme 6) [31]. In the presence of very
low loadings of quinidine-derived thiourea organocatalyst XVII (2 mol %) and morpholine (1 mol %)
in dichloromethane at 0 or −10 ◦C, the cascade process takes place within less than two hours and
accommodates a broad range of substrates affording the expected products in excellent yields and
high enantioselectivities. The authors have shown that the chiral tertiary amine moiety in catalyst
XVII is crucial to afford enantioenriched spiro compounds 26 as in its absence, the expected products
were obtained in a racemic manner.

Novel thiazole-fuzed spirooxindoles 28 were synthesized in high yields and enantioselectivities by
using (1R,2R)-1,2-diphenylethane-1,2-diamine derived thiourea catalyst XII (2 mol %) (Scheme 6) [32].
In this case, the domino transformation also takes place in shorter reaction times and the catalytic
system proved to be suitable to a series of 2-substituted thiazol-4-ones 27 as nucleophiles and
2-(1-methyl-2-oxoindolin-3-ylidene)malonitrile as electrophile. Concerning the mechanism, the authors
reasoned that the observed stereochemistry of this domino reaction can be explained via a first
Michael addition of thiazolones 27 to 9 to afford the Michael addition intermediate followed by its
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subsequent intramolecular Thorpe-Ziegler-type cyclization. Both steps operate through dual activation
of substrates in the presence of the bifunctional thiourea catalyst XII.

The combination of naphthoquinone and chromenone derivatives with oxindole ketoesters
as Michael acceptors has paved the way to the preparation of versatile heterocyclic compounds.
The group of Kesavan has, once again, underscored proline-based catalyst XI (5 mol %) as
powerful catalyst to carry on tandem Michael addition/hemiketalization of ketoester 29 with
2-hydroxy-1,4-naphthoquinone 30 in dichloromethane at room temperature (Scheme 7) [33].
The expected hybrid spirooxindole-naphthoquinone compounds 31 were obtained in excellent yields
and enantioselectivities and displayed good functional tolerance concerning the oxindole ketoester
scaffold including different N-protecting groups. However, unprotected (i.e., N-H) oxindole substrates
gave lower yields and enantioselectivities probably due to the additional H-bond binding site that
might be in competition either with the organocatalyst or with the substrates. Independently and
shortly after, the group of Wang proposed a similar transformation in the presence of catalyst XX
(10 mol %). In this work, a broader scope has been proposed with respect of both substrates [34].
Additionally, the synthesis of several optically active spiro[oxindole-benzo[g]chromene-dione]
derivates was also described via cascade reaction between 2-hydroxy-1,4-naphthoquinone as
nucleophile and oxindole ketoesters.
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In 2016, Enders and co-workers developed a highly selective domino oxa-Michael/1,6-addition
sequence to synthesize functionalized chromans with an oxindole moiety [35]. The success of the
transformation relies on the use of unprecedented ortho-hydroxyphenyl-substituted para-quinone
methide 33 as donor-Michael acceptor substrates in combination with isatin-derived enoate 32
(Scheme 8). The mild reaction conditions [i.e., catalyst XVIII (5 mol %) in toluene at room temperature]
showed significantly wide substrate scope and functional group tolerance.

Other interesting substrates used in cascade transformations to afford highly substituted and
poly-functionalized spirooxindoles through Michael addition/cyclization process are 3-isothiocyanate
oxindoles (Scheme 9, compound 35). Indeed, their ambiphilic character (e.g., bearing both electrophilic
and nucleophilic sites) allows for the synthesis of several functionalized spirooxindoles via reaction
with diversified suitable substrates such as electron-poor olefins. Chowdhury, Ghosh, and co-workers
proposed the use of quinine-derived thiourea catalyst XIX (20 mol %) in toluene at 0 ◦C in order
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to synthesize a broad range of 3,2′-pyrrolidinyl spirooxindoles 37 in high yields and excellent
diastereo- and enantioselectivities by using quite unreactive π-electrophiles such as diethyl benzylidene
malonate 36 [36]. Moreover, Jing, Qin, and co-workers reported an asymmetric synthesis of
trans-configured trispirooxindoles by combining 35 and cyclic methyleneindolinones 38 in the presence
of Takemoto’s catalyst XIII (15 mol %) [37]. Interestingly, less than 60 min is enough to the cascade
reaction to reach completion and the expected spiro compounds that bears three quaternary stereocenters
are isolated in good yield and selectivities.
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Scheme 8. Synthesis of chromans 34 with an oxindole moiety catalyzed by XVIII.
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Scheme 9. 3-Isothiocyanate oxindoles as versatile substrates for the synthesis of densely
functionalized spirooxindoles.

Remarkably, the use of chiral amino-thiocarbamate catalyst XXII (10 mol %) gave rise to several
polycyclic spirooxindoles 41 containing three contiguous chiral centers, with two of them having
quaternary stereocenters, in the presence of 35 and 3-nitroindoles 40 (Scheme 10) [38]. Excellent
yields and selectivitivites were obtained when the N1-position of 35 was blocked with a methyl
group while slight erosion of the diastereo- and enantioselectivities were observed for more hindered
N1-protecting groups.
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4.2. Michael Addition/Mannich/Cyclization Sequence

Recyclable fluorous bifunctional Cinchona alkaloid catalyst XV [39] has proved its efficiency to
catalyze cascade reaction in the presence of electron-deficient olefinic oxindole 42 and nucleophiles.
The syntheses of spirooxindoles containing 2-piperidinone 44 and tetrahydropyridine 46 rings were
successfully accomplished in 2015 by Zhang and co-workers through a four-component cascade
transformation in the presence of diethyl malonate 43 or 1,3-diketone 45 respectively (Scheme 11) [40].
Under the optimal conditions [i.e., catalyst XV (10 mol %) in toluene] high yields and levels of
selectivity were reached affording polycyclic molecules densely functionalized that were prone to
either further derivatization or scale-up. Although the authors have mainly proposed the use of
oxindoles bearing a methyl group at the N1-position, one single example using free-N1 has been
described affording slightly lower yields and comparable selectivities.
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Scheme 11. Synthesis of piperidone and tetrahydropyridine rings bearing spirooxindoles in the
presence of recyclable catalyst XV.

Shortly after, the same group has used catalyst XV (10 mol %) during a similar cascade reaction for
the synthesis of spiro-γ-lactam oxindoles via a thiol-Michael/Mannich/lactamization cascade reaction
in good yields and enantioselectivities and moderate diastereoselectivities [41]. The method goes
through a four-component/one-pot synthesis and paves the way to novel compounds 48 containing
three contiguous stereocenters including a quaternary one (Scheme 12). As for the previous example,
N-Me indoles were exclusively used as substrates and only one example with N-H was reported.
In both cases, catalyst recovery has been realized through first (i) loading onto a fluorous silica gel
cartridge for solid-phase extraction (F-SPE) [42] followed by (ii) elution with 80:20 MeOH/H2O for
products and other non-fluorous components and 100% MeOH for the catalyst XV. Overall, catalyst is
recovered in more than 91% yield and >97% of optical purity.
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Scheme 12. Synthesis of spiro-γ-lactam oxindoles via cascade reaction catalyzed by catalyst XV.

Recently, Enders and co-workers have described the asymmetric preparation of
trifluoromethylated 3,3′-pyrrolidinyl-dispirooxindole derivatives bearing four contiguous stereogenic
centers among which two are vicinal [43]. The Michael-Mannich [3 + 2] cycloaddition takes place
in the presence of oxindoles 42 and 49 through thiourea-based derivative XXI catalysis (Scheme 13).
Concerning the scope, several olefinic oxindoles 42 (containing electron-neutral, electron-donating
or electron-withdrawing groups in the benzene ring) as well as trifluoroethyl isatin ketimines 49
(bearing electron-donating or a 5-F groups in the benzene moiety) are well tolerated. To replace
the Boc protecting group by a Me group on the nitrogen of substrate 42 did not hamper the
enantioselectivities. Under the optimized conditions (i.e., XXI (10 mol %) in CCl4 at 4 ◦C for 12 h)
the authors described 17 novel 3,3′-pyrrolidinlyl-dispirooxindoles 50 in good yields (60–92%),
moderate-to-good diastereoselectivities (4:1 to >20:1 d.r.) and enantioselectivities (72–93% ee).
In addition, scale up on a gram scale of the reaction was realized conserving high yields and keeping
the same levels of selectivities.
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Scheme 13. Domino Michael-Mannich [3 + 2] cycloaddition for the asymmetric synthesis of
3,3′-pyrrolidinlyl-dispirooxindoles 50.

4.3. Double Michael Addition Sequence

A double Michael cascade reaction sequence, that allowed for a stereoselective [3+2] and [4+2]
spiroannulation process, gave rise to both five- and six-membered β-nitro spirocarbocyclic oxindoles
respectively [44]. After the screening of several thiourea-based organocatalysts, Quintavalla and
co-workers have identified Takemoto’s catalyst XIII (10 mol %) as the most effective in terms of
yields and selectivities. By combining 2-(2-oxoindolin-3-ylidene)-acetic esters 32 and nitroenoates 51
as donor/acceptor compounds, novel spirooxindoles densely functionalized were isolated via this
Michael-Michael cascade process (Schemes 14 and 15). Noteworthy to mention, the authors foreground
that upon varying the double bond geometry (E or Z) of nitroesters 51, the configuration of the spiro
quaternary stereocenter is inverted affording C3-epimers. This observation is valid for both five-(52)
and six-membered (53) spirooxindoles. If the absolute configuration of the spiro center was determined
accordingly to the E/Z geometry of nitroesters double-bonds, the remaining stereocenters were forged
under the catalyst XIII control.
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Scheme 15. Synthesis of β-nitro spirocyclohexane indolinones 53 via double Michael cascade in the
presence of Takemoto’s catalyst XIII.

4.4. Aldol/Lactonization/Elimination Sequence

An enantioselective domino reaction involving an unprecedented one-pot
aldol/lactonization/elimination sequence has been developed, in 2016, yielding a broad range of
3-spiro-α-alkylidene-γ-butyrolactone oxindoles 58 (Scheme 16) [45]. The reaction is performed in the
presence of β-nitro indolin-2-ones 54 and paraformaldehyde 55 as starting materials and it is catalysed
by bifunctional Cinchona-derived thiourea XVI (10 mol %) in dichloromethane at 0 ◦C or room
temperature. While 54 was used as a 1:1 mixture of C3 epimers, where both the Cα and Cβ absolute
configuration were fixed and known [46], the expected products were isolated with well-established
C3 quaternary spirocenter. Even though the two well defined Cα and Cβ stereocenters are destroyed
during the domino process, it is interesting to mention that the only stereolabile C3 center of 54
became the unique controlled and defined one present on the final products. It was postulated that the
reaction might proceed through an aldol reaction between 54 and 55 to afford the acyclic intermediate
56 which bears three stereodefined centers including the fixed C3 quaternary one. Then, lactonization
affords the cyclic lactone 57 which in turn loses its nitro group through HNO2 extrusion to afford the
expected compounds 58 (Scheme 16).
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Scheme 16. Synthesis of 3-spiro-α-alkylidene-γ-butyromactone oxindoles 58 in the presence of
Cinchona-derived thiourea catalyst XVI.

4.5. Friedel-Crafts/Hemiketalization Sequence

The Kesavan group has published a straightforward synthesis of several oxindole-fused
naphthopyran derivatives 60 by combining oxindole α-ketoester 29 and 2-naphthol 59 and using
a sequence of Friedel-Crafts-hemiketalization reactions [47]. Under the optimized conditions (i.e., XI
(5 mol %), in 1,1,1-trifluoromethyl benzene at room temperature) N1-protected oxindoles afforded
the expected products in good yields and enantioselectivities. However, unprotected N-H oxindoles
conducted to lower yields and selectivities probably due to competitive binding of the N-H site with
the catalyst that might partially hamper the catalytic activity (Scheme 17).Molecules 2017, 22, 1636 14 of 28 
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4.6. Miscellaneous

The synthesis of spiro-3,4-dihydropyrans 62 bearing three stereocenters with vicinal quaternary
ones has been reported by Kesavan and co-workers through the use of catalyst XI (5 mol %) in
toluene at room temperature (Scheme 18a) [48]. Supported by the obtained syn configuration of the
secondary alcohol and the cyclopentanone moiety, the authors defend an inverse-electron-demand
hetero-Diels-Alder reaction pathway of oxindole α-ketoester 29 with cyclic β-oxoaldehyde 61 rather
than a cascade transformation via Micheal addition/hemiketalization. An efficient enantioselective
[3+2] cyclization of 3-isothiocyanate oxindoles 63 and trifluoromethylated 2-butenedioic acid diester
64 or 65 paved the way to the synthesis of spirooxindoles with a CF3-containing all-carbon stereogenic
center 66 (Scheme 18b) [49]. Interestingly, the authors highlighted the possibility to obtain either
isomers (i.e., epimers at C4 position) in the presence of the same catalyst XIV (20 mol %) at different
temperatures. This observation relies on the ability of isomerization of dimethyl maleate 64 into
dimethyl fumarate 65 through azomethine ylide intermediate in the presence of the amine moiety of
aminals [50].
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5. Squaramide Catalysts

Inspired by the ability of urea/thiourea derivatives to promote high stereoselective organocatalytic
reactions, several research groups have been engaged in the construction of alternative and
complementary catalysts that involve in their architecture less explored H-bond donor motifs. Among
others, in 2008 Rawal and co-workers postulated the potential of squaramide catalophores [51].
Specifically, over the years, several thorough studies have recognized that secondary squaramides
featured by two H-bond donors (NH) and two H-bond carbonyl acceptors (C=O) should easily establish
a strong hydrogen bond network with acceptors and donors as well as with mixed acceptor-donor
systems (Figure 5a).

Additionally: (i) the conformational restriction due to the aromaticity enhancement of the
cyclobutendione core upon the delocalization of nitrogen lone pairs, which make the two N-H bonds
coplanar with the rigid “squara structure” and (ii) the distance between the two N-H that is of
0.6 Å broader than in thioureas, make squaramide derivatives not only a valuable alternative to the
urea/thiourea counterpart but also a class of more wide-range applicable organocatalysts (Figure 5b).

Herein we are going to depict selected recent examples that demonstrate their remarkable ability in
various cascade reactions involving an oxindole derivative as substrate and the catalophores depicted
below (Figure 6).
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5.1. Double Michael Addition Sequence

As stated before, oxindole derivatives have been a privileged substrate in organocatalysis.
Specifically, as consequence of its unique electron-demand, α-alkylidene oxindoles have been often
involved in cascade reactions mainly relying on Michael addition promoted by both C-nucleophiles
and hetero atoms. In such a scenario, squaramide derivatives clearly have ever played a predominant
role since their undiscussed ability as bifunctional catalysts [52]. Notably in this field Zhao and
Du devoted their efforts not only to the design and synthesis of novel more efficient squaramide
organocatalysts but also to the preparation of uncommon cascade reagents that should be suitable to
build quite complex and densely functionalized carbocycles. Thus, in 2015, their group reported the
first squaramide asymmetric protocol for the synthesis of chiral spiro[pyrrolidine-3,3′-oxindole]s 67
(Scheme 19). The optimized cascade aza-Michael/Michael addition sequence, distinguished for its
mild conditions (i.e., −10 ◦C in CH2Cl2) and quite low catalyst loading (5 mol %), was easily applied
to a broad substrate scope achieving the desired products 67 in high yields with excellent diastereo-
(up to >99:1 d.r.) and enantioselectivities (from 93% ee to >99% ee in almost all cases).
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Remarkably, the reaction could be repeated even on gram scale without any loss in both
yield or stereoselectivity. The authors reasoned that such an outstanding stereocontrol should
be ascribed to the squaramide moiety that contemporarily activates and orients the (E)-tert-butyl
3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate 32 as well as the hydroquinine framework
and enhances the nucleophilicity of the tosylaminomethyl enone 68 (Scheme 20). In the aza-Michael
addition, the settled H-bond network (A) drives the nitrogen attack only from the Si face of the
substrate to furnish the intermediate B where the enone group undergoes an intramolecular Michael
addition on the Si face via the transition state C, which rapidly provides the product 67 and restores
the catalyst XXIII.

The just disclosed reaction mechanism and the consequent stereochemical outcomes prompted
the authors to replace the α,β-unsaturated esters with α-alkylidene succinimides 69 structurally similar
to the oxindole counterpart [53]. The previously developed squaramide-catalysed approach in even
milder conditions (i.e., room temperature and THF as solvent) guaranteed the formation of highly
functionalized spirooxindoles 70 in elevated yield and stereocontrol (up to 97:3 d.r., up to 98% ee).
In Scheme 21 it is reported the most representative examples of the produced library, which was also
synthesized in gram scale without any loss in term of stereoinduction.
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Once validated the efficiency of their squaramide XXIV as catalyst, in 2016 Zhao and Du designed
the new cascade reagent 72 featured by both an active nucleophile center and an electrophile site
(Scheme 22) [54]. The authors demonstrated their hypothesis fruitfully employing the developed donor
Michael acceptor reagent 72 in a tandem Michael/Michael reaction which smoothly furnished highly
functionalized bispirooxindole-tetrahydrofurane scaffolds 73 bearing four contiguous stereocenters.
Despite the number of different substituents introduced on each oxindole framework, the overall
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process never failed to give the expected products 73 in very high levels of optical purity (>20:1 d.r.,
up to >99% ee) and moderate-to-high yields (58–96% yield).Molecules 2017, 22, 1636 18 of 28 
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5.2. Michael Addition/Cyclization Reaction Sequence

A second highly exploited reaction sequence that straightforwardly furnishes complex spiro
compounds involves a Michael addition followed by a fast cyclization reaction (see also Section 4.1).
Among all the possible substrate/reagent systems largely reported in literature, Yuan and co-workers
chose the previously investigated 3-hydroxyoxindoles 75 and 3-aminooxindoles 76 as initial Michael
donor and the α,β-unsaturated acylphosphonates as Michael acceptor [55]. Such an uncommon
electron poor counterpart was mainly selected due to the lability of the C-P bond that simplifies
the phosphonate group removal. Relying on the efficiency of squaramide organocatalyst XXV
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together with the designed starting molecules, the authors developed a highly stereoselective
Michael/cyclization cascade sequence able to afford a broad spectrum of spirocyclic oxindoles
78 and 79. Indeed, applying the initial optimized conditions (i.e., CH3CN or CH2Cl2 as solvent,
room temperature), the overall reaction proceeded without any loss in stereoslectivity (up to >99:1
d.r.; 71–97% ee) and yield (up to 98%) when (i) the Michael donor was either a 3-hydroxy or a
3-aminooxindoles (75 and 76 respectively), which afford to the spiro γ-lactones (78 for X = O) and
γ-lactames (79 for X = N), as well as (ii) substituents quite different in terms of electron demand and
steric hindrance were introduced on both nitrogen and aromatic ring.

A slight drop in the stereoinduction was observed when the β position of the α,β-unsaturated
acylphosphonate 74 was decorated with excessively bulky groups (Scheme 23). The observed
efficiency should be due to the dual activation of the catalyst that (i) promotes the enolyzation of the
3-hydroxyoxindoles and (ii) exposes the Re face of the α,β-unsaturated acyl phosphonate to the attack
from the Si-face of the just generated nucleophile.
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Scheme 23. Organocatalysed Michael/cyclization cascade reaction for the construction of spirocyclic
oxindole-γ-lactones/lactams.

More recently, the similar squaramide-quinine based catalyst XXVI (10 mol %) was effective
when α,β-unsaturated N-acylated succinimides 80 were chosen as the initial Michael acceptor and
3-hydroxyoxindoles 75 as the nucleophilic counterpart (Scheme 24). [56] Specifically, after having
carefully optimized the reaction conditions (i.e., CH2Cl2 as solvent, −10 ◦C as best temperature),
Du and co-workers validated their protocol by performing the proposed asymmetric cascade
Michael/cyclization reaction on various Michael donor/acceptor systems obtaining the corresponding
spirooxindoles lactones 78 in good yields (75–89%). Although the stereochemical outcomes were
always excellent in term of enantioselectivity (96–99% ee), the diastereomeric ratios seemed to be more
easily affected by various substituents introduced both on the enone system and on the oxindole
moiety (from 75:25 to >95:25 d.r.). Afterwards, once assigned the correct configuration to the generated
stereocenter, the authors provided a mechanistic study that pointed out how the quinine-derived
squaramide XXVI should act as bifunctional catalyst. As depicted in Scheme 24, the tertiary amine
unit deprotonates the 3-hydroxyoxindole while the squaramide moiety binds the resulting nucleophile
(A) which in turn, attacks the electrophile already activated by the protonated amine (B). The Michael
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adduct C undergoes an intramolecular cyclization which removes the succinimide auxiliary and
generates the expected spirooxindole 78.

Exploiting the well-known reactivity of 3-isothiocyano oxindoles conferred by the strongly electron
withdrawing NCS group, Du and co-workers reported also the preparation of more complex pyrrolidinyl
spirooxindoles employing either chalcones 82 [57] or maleimides 84 [58] as acceptor counterpart
(Scheme 25). In both cases the extremely similar quinine-derived squaramide XXVII (10 mol %) and
XXVIII (5 mol %) resulted to be the best catalysts in the same reaction condition (i.e., CH2Cl2, 0 ◦C).
The desired spirocyclic products 83 and 85 were achieved in high yields (87-99%) and excellent diastereo-
(up to >99:1 d.r.) and enantioselectivities (up to 99% ee) triggered by a complex H-bond network where the
organocatalyst enable the stereocontrolled attack of the oxindole donors toward either the electron-poor
chalcones 82 or maleimides 84.
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Scheme 25. Du’s research toward the preparation of pyrrolidinyl spirooxindoles 83 and 85 employing
respectively chalcones 82 and maleimides 84.

The substitution of quinine moiety with a tertiary ethylenediamine framework decorated
with naphthyl groups opened the door to the synthesis of pharmacologically interesting
dihydropyranoindole derivatives. Indeed, Zhao and co-workers performed a Michael
addition/cyclization sequence at relatively low temperature (−20 ◦C) in CH2Cl2 employing the
squaramide derivative XXIX as organocatalyst able to join together the isatine-based trifluoroacrylates
86 and the malonitrile 15 (Scheme 26) [59]. The hypothesized products 87, bearing a novel
trifluoromethylated all-carbon-substituted stereocenter, were almost always isolated with excellent
yields (91–99%) and high level of optical purity (86–99% ee). Unfortunately, the optimized protocol
failed not only when less hindered substituents (R2 = Me, Ac) were introduced as protecting groups
in the oxindole unit, but also when the malonitrile 15 was replaced with the less reactive ethyl
cyanoacetate 88. Noteworthy, in the latter case, nearly analogous outcomes in term of yields (38–79%)
and stereocontrol (85–98% ee) were accomplished only when the squaramide catalyst XXIX was
substituted with the (1R, 2R)-diphenyl-1,2-diamine derived bifunctional thiourea XII.

The just depicted results, one more time, confirm the complementary use of thiourea-based and
squarate derived organocatalyst for the stereoselective preparation of complex bioactive products.
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5.3. Miscellaneous

In 2012 Casiraghi and co-workers illustrated how 3-alkylidene oxindoles could also react
as vinylogous nucleophile in order to functionalize the γ-position in the presence of a suitable
electrophile [60,61]. Inspired by this evidence as well as by subsequent Casiraghi’s researches concerning
the Mukaiyama type aldol reactions [62], Han and Chang postulated the creation of biologically
relevant 3-hydroxyoxindole framework relying on the nucleophilicity of 3-alkylidenes 90 and the
undeniable electrophilicity of isatins 91 [63]. Surprisingly, instead of obtaining the expected aldol adduct,
the spirooxindole dihydropyranones 93 were isolated by using the chiral Cinchona alkaloid-squaramide
bifunctional organocatalyst system XXVIII (Scheme 27). The stereochemical outcome of the overall
reaction was not influenced by the introduction of different substituents (i.e., in terms of either electron
demand or steric hindrance) on both substrates (87–99% ee). A slight drop down was observed in the yield
only when a NO2 group decorated the electrophilic aromatic ring (R3 = NO2). Without going in fine details,
the authors suggested two models for explaining the dual activation of both nucleophile and electrophile
(Scheme 27, B and C) which could account for the Si face addition of the s cis-enolate in the initial aldol
reaction. Once obtained the intermediate A, the surprising replacement of the lactam C-N bond with
a lactone C-O bond occurs delivering the product 93 after protonation and catalyst regeneration.

Such an uncommon behaviour of amide C-N bond was also recently detected by Zhao and
co-workers during their studies concerning the organocatalytic Friedel-Crafts/lactonization domino
reaction (Scheme 28) [64]. Actually, the authors reported a remarkable example of the employment of
squaramide catalophore XXX in the asymmetric synthesis of dihydrocoumarins, a ubiquitous scaffold
in bioactive natural products. Specifically, the formal [3+3] protocol involved an initial Friedel-Crafts
alkylation of naphthols at the Cβ position of the 3-ylidene oxindoles 94 (A, Scheme 28) followed by an
unexpected intramolecular cyclization with a C-N bond cleavage of the lactam moiety by the phenolic
hydroxyl group (B, Scheme 28).
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Although the lactonization occurred to disadvantage of the chemically inert oxindole unit,
the overall process proceeded under very mild conditions (i.e., CH2Cl2 at low temperature) and
affording attractive outcomes in term of yields (60–99%) and stereoselectivity (>20:1 d.r., 80–98% ee)
when both α- and β-naphthols (95 and 97) were alternatively used as nucleophiles (Scheme 28).

Cinchona-derived squaramides have shown their potential as organocatalysts even when they
are involved in more complex domino reactions. An interesting example was reported by Lu and
co-workers in 2015 who initially optimize a simple Diels-Alder/aromatization sequence and then,
by adding an excess of oxindole moiety, observed a Diels-Alder/Michael/aromatization domino
process (Scheme 29) [65]. The reactions always proceeded smoothly under very mild conditions (i.e.,
CH2Cl2 at room temperature) and with quite low catalyst loading (10 mol % of XXVI) providing
the expected carbazolespirooxindole derivatives 101 in moderate-to-good yields (48–90%) and
interesting stereoinduction (from 4:1 to >20:1 d.r., 60–99% ee). Unfortunately, for the product 102 with
six contiguous stereocenters furnished by the triple domino reaction, it was not possible to define the
stereochemical outcome mainly due to the arduous separation of the complex diastereomeric mixture.Molecules 2017, 22, 1636 24 of 28 
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6. Miscellaneous

The impressive reactivity of oxindole derivatives has found several notable applications
even when phosphoric acids, a less explored class of catalophores are employed as Brønsted
acid organocatalyst. Among the very few reported examples, Shi and co-workers rationally
designed a chiral phosphoric acid (CPA)-catalyzed Michael addition/intramolecular Friedel-Crafts
cascade reaction toward the construction of cyclopenta[b]indole and spirooxindole frameworks [66].
Specifically, the authors supposed that, in order to promote the initial vinylogous Michael addition,
the CPA XXXI could simultaneously activate throughout a complex H-bond network both the
7-vinylindoles 103 as nucleophile and the electrophilic vinyliminium C, which should be generated in
situ form the 3-indolylmethanols 104. Subsequently the transient adduct B should undergo, always
assisted by the dual H-bond activation of CPA XXXI, the intramolecular Friedel-Crafts reaction to
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restore the initial aromatic indolic structure and furnish the expected complex spirooxindole systems
105 (Scheme 30).Molecules 2017, 22, 1636 25 of 28 
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As shown by the examples depicted here, when newly developed organocatalysts meet oxindole 
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multiple cascade reactions. Such outstanding results and all the future predictable improvements not 
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Scheme 30. (CPA)-catalyzed Michael addition/intramolecular Friedel-Crafts cascade reaction toward
the construction of cyclopenta[b]indole and spirooxindole scaffold. A–C are postulated intermediates
on the mechanism of the reaction.

The authors demonstrated their hypothesis successfully performing the diastereo- and
enantioselective synthesis of several cyclopenta[b]indole derivatives 105 starting from a series of
7-vinylindoles 103 and various isatin-derived 3-indolylmethanols 104. Comparing the obtained
results, it was clear that the stereoinduction was essentially not affected by the different nature of
the substituents on both acceptor and donor partners. Conversely, they dramatically influenced the
overall reactivity. Particularly, electron-donating groups on C7-functionalised indoles gave much
higher yields than the electron-withdrawing groups, while it was less explainable the electronic effect
due to substituents on the isatin units.

7. Conclusions

As shown by the examples depicted here, when newly developed organocatalysts meet oxindole
derivatives, one of the most widespread frameworks in Nature, it is possible to achieve impressive
levels of molecular complexity featured by the formation of multiple stereogenic centers upon multiple
cascade reactions. Such outstanding results and all the future predictable improvements not only are
going to constantly provide easier and easier access to a broad spectrum of highly valuable complex
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compounds, but also to furnish a better understanding of Nature’s modes of action and ultimately
even reach an almost similar degree of perfection.
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