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Abstract: In this article, the authors address the problem of optimal guidance of road network users. In the literature, several routing 
algorithms have been proposed under different approaches to solve this problem. Most adaptive algorithms for optimal path are based 
on the least expected travel time. Another approach has emerged named the SOTA (stochastic on time arrival). This approach based on 
the idea of Frank (1969), which aims to maximize the probability of arriving to a destination node parting from a given node in the 
network and with a given time budget. The authors’ contribution consists here in extending this approach in order to introduce 
robustness towards path failure, in the guidance optimization. The authors propose a model that includes the existence as well as the 
performance of detours for selected paths, in the calculus of the travel time reliability. This new way of calculating travel time 
reliability guarantees a kind of robustness of the optimal guidance strategy. 
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1. Introduction 

The most used way to plan a route in a road network 

is to compute the shortest path between a pair of 

origin/destination zones. Obtaining such optimal path 

in a given network is one of the most studied problems 

in network theory, with vast applications in many 

scientific and engineering fields, particularly in 

transportation engineering. Shortest path algorithms 

are widely available in the literature. In a stochastic 

framework, different performance criteria may lead to 

different optimal routing strategies. Most existing 

works define the optimality basing on LET (least 

expected time) as defined by Dijkstra [1]. Finding LET 

path when random link travel-times are independently 

distributed and does not vary over time is trivial. 

Fortunately, the LET problems have been studied 

broadly and have been extended to other cases. 

A fundamental variant is the adaptive LET problem 

where travel-time on a link will become known and 

deterministic upon the arrival of its destination node 

[2-4]. Correlation between links’ travel-times is 

investigated in Refs. [5, 6]. Another definition of 
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optimality in stochastic routing cited in the literature 

has to do with reliability, knowing that following LET 

path or policy can cause high risk to realize an 

extremely long travel-time. To resolve this problem, 

reliability-based stochastic routing has been widely 

studied. The authors of Refs. [7, 8] defined the optimal 

path as the one that maximize the probability of 

realizing a travel-time equal to or less than a predefined 

value. In Refs. [9, 10], the authors suggested as index 

of optimality, the probability that a path is shorter than 

all other paths. However, all theses proposed 

formulations require enumerating paths and calculation 

multiple integrals, and thus they cannot be easily 

implemented in large-scale networks. As an alternative, 

the authors of Ref. [11] introduced the notion of a 

general utility function and proved that the problem of 

the maximum expected-utility can be reformulated as a 

class of bi-criteria shortest path problems (mean, 

variance) [9, 12]. Fan, Kalaba and Moore [5] defined 

optimality as maximum travel-time reliability and 

proposed an adaptive optimal path algorithm to solve 

this case. This is the SOTA (stochastic on-time arrival) 

problem. In this section, we briefly discuss the concept 

of the SOTA problem and evoke its two existing 

variants, for the convenience of readers and the 

continuity of our discussion in later sections. In the 
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SOTA problem, one seeks to maximize the probability 

of a time arrival at given destination, departing from a 

given origin, with a given travel-time budget. The 

travel-time across every link is a random variable with 

some arbitrary probability distribution. Two primary 

variants can be identified for the SOTA problem. The 

first one consists on finding the most reliable fixed path 

to the destination. This first variant is designated as the 

shortest path problem on-time arrival reliability, or also 

the path-based SOTA problem as explored in Ref. [13]. 

The second one, which is referred as the policy-based 

SOTA problem, consists on calculating a routing 

policy such as, the selection of the next node, at each 

intersection, depends on the current state (remaining 

time budget). The policy-based SOTA problem, is 

solved in discrete-time. In Ref. [14], the authors 

presented a discrete SOTA algorithm that ensures finite 

convergence and runs very well in polynomial. Solving 

the SOTA problem in discrete-time allows computing 

product convolution of arbitrary distributions. The 

computation of the policy requires a subsequent 

maximization step. Unfortunately, this step mixes 

distributions and prevents finding an analytical 

solution in continuous-time. A successive 

approximation method is proposed in Ref. [15] for the 

policy-based SOTA problem. This algorithm is 

improved in Refs. [16, 17] to a dynamic programming 

algorithm and explored the speed-up techniques 

including zero-delay convolution [18], to solve the 

problem in pseudo-polynomial-time. Sabran, 

Samaranayake and Bayen [19] have shown how 

preprocessing methods can be used to further reduce 

the computation time of the SOTA problem. 

Unfortunately, the structure of the SOTA problem 

formulation limits the types of preprocessing methods 

that can be used for this problem, and prevents massive 

running time reductions in the deterministic case. 

Recently, Kobitzsch, Samaranayake and 

Schieferdecker [20] presented a novel approach to 

reduce the immense computational effort of stochastic 

routing based on existing techniques for alternative 

routes. 

In this paper, we focus on the reliable path problem 

that aims to find an adaptive optimal routing strategy, 

which takes into account the existence and the 

performance of alternative detours of the selected paths 

in the road network. That is to say, we assume that one 

or many links of the selected optimal path may fail 

during the travel, and that users may be sensitive to 

path changing. Some users may then prefer paths with 

efficient alternative detours, with respect to paths 

without or with less efficient detours. Our approach is 

based on the idea of Frank [8] considering that a 

reliable path from a given origin to a given destination 

maximizes the probability of realizing a travel time less 

than a given time budget. Thus, we propose an 

adaptation of this approach introducing robustness in 

the selection of the optimal path. We base here on the 

routing model of Samaranayake, Blandin and Bayen 

[16]. From the probability distributions of travel times 

through the links of the network, users evaluate their 

maximum probability to reach their destination in 

given time budgets, and through different possible 

routes. The model takes into account correlations 

between the travel times through the links of the 

network. 

The remainder of this paper is organized as follows. 

In Section 2, the SOTA problem is summarized. The 

formulation of the problem and the description of our 

proposed algorithm for the robust guidance are 

provided in Section 3. Robust optimization and 

complexity analysis are given in Sections 4 and 5, 

respectively. Computational tests are conducted in 

Section 6. In Section 7, conclusions are drawn. 

2. Summary of the SOTA Problem 
Formulation 

In this section, we briefly summarize the original 

SOTA problem for the convenience of readers and for 

the continuity of our discussion in the next sections. 

The details of the approach summarized here are 

available for example in Ref. [15]. 
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We consider the graph ܩሺܰ,  ሻ, where ܰ is the setܣ

of nodes, with |ܰ| ൌ ݊, and ܣ is the set of arcs, with 

|ܣ| ൌ ݉. The set of successor and predecessor nodes 

are denoted by ߁ାଵሺ݅ሻ ൌ ሼ݆|ሺ݅, ݆ሻ א ଵሺ݅ሻି߁ ሽandܣ ൌ

ሼ݇|ሺ݇, ݅ሻ א  ሽ, respectively. The SOTA problem is toܣ

find the best routing strategy from any starting node 

݅ ሺ݅ ൌ 1,2, … … , ݊ሻ  maximizing the probability of 

arriving at the destination node, denoted ݀, within a 

desired time ܶ (time budget). 

Given a node ݅ א ܰ  and a time budget ݐ  ሻݐሺݑ ,

denotes the maximum probability of arriving to the 

destination node ݀ parting from origin node ݅, within 

a time budget ݐ, under the optimal policy. The on-time 

arrival probability ݑሺݐሻ  and the policy (optimal 

subsequent node), denoted by ݏሺݐሻ  at node ݅ , are 

written as follows: 

ሻݐሺݑ ൌ max
א௰శభሺ୧ሻ

න ݐሺݑሻݓሺ െ ݓሻdݓ
௧


 ሺ1ሻ 

݅ א ܰ\ሼ݀ሽ, ݆ א ,ାଵሺ݅ሻ߁ 0  ݐ  ܶ 

ሻݐௗሺݑ ൌ 1, 0  ݐ  ܶ ሺ2ሻ 

ሻݐሺݏ ൌ arg max
א௰శభሺሻ

න ݐሺݑሻݓሺ െ ݓሻdݓ
௧


 ሺ3ሻ 

݅ א ܰ\ሼ݀ሽ, ݆ א ,ାଵሺ݅ሻ߁ 0  ݐ  ܶ 

where, ሺݓሻ is the probability distribution function 

(pdf) of the travel time ݓ on the link ሺ݅, ݆ሻ. The pdf 

 ሻ is assumed to be known and can for example beݓሺ

obtained using historical data or real-time traffic 

information. ݑሺݐሻ  is the maximum probability of 

arriving to destination node ݀  within time ݐ െ ݓ , 

parting from node ݆. 

The meaning of Eq. (1) is that, knowing ݑሺݏሻ, ݈ א

ሼ1,2, … , ݊ሽ, ݏ א ሾ0,  ሿ, a traveler being at node ݅, andݐ

having a time budget ݐ, should choose the link ሺ݅, ݆ሻ 

that maximizes the probability of arriving within time 

ݐ  to the destination node ݀ , with respect to all the 

possible successor nodes ݆ of ݅. Eq. (2) tells simply 

that parting from node ݀, the maximum probability of 

arriving to the same node ݀, within any time budget is 

1. Eq. (3) tells that the optimal successor node for the 

traveler being at node ݅, is given as the argument of the 

maximum taken in Eq. (1).  

To solve the system of nonlinear Eqs. (1) and (2), the 

Picard method of successive approximation is one 

possible approach proposed in Ref. [5]. This fixed 

point method starts with initial approximations to the 

solution and refines these approximations by 

successive iterations. Then, the iterative relationships 

for successive approximations are given as follows: 

ݑ
௧ୀሺݐሻ ൌ 0                           ሺ4ሻ 

א ݅  ሼ1,2, … , ݊ሽ\ሼ݀ሽ, ݐ  א ሾ0,  ሿݐ
ௗݑ

௧ୀሺݐሻ ൌ 1, 0  ݐ  ܶ            ሺ5ሻ 

ݑ
௧ାଵሺݐሻ ൌ max

א௰శభሺ୧ሻ
න ݑሻݓሺ

௧ሺݐ െ ݓሻdݓ
௧


 ሺ6ሻ 

݅ א ܰ\ሼ݀ሽ, ݆ א ,ାଵሺ݅ሻ߁ 0  ݐ  ܶ 

ௗݑ
௧ାଵሺݐሻ ൌ 1, 0  ݐ  ܶ          ሺ7ሻ 

where, the superscript ݅ݎ݁ݐ is the index iteration. The 

function ݑ
௧ሺݐሻ  represents the probability of 

reaching the destination node ݀ if optimal choices are 

made, and using a path with no more than iter 

intermediate nodes. ݑ
௧ሺݐሻ belongs to ሾ0,1ሿ since it 

is a probability, and is increasing with respect to the 

iteration index ݅ݎ݁ݐ. 

0  ݑ
௧ሺݐሻ  ݑ

௧ାଵሺݐሻ  1, א ݎ݁ݐ݅ ܰ, 
א ݅  ሼ1,2, … , ݊ሽ, ݐ  א ሾ0,  ሿݐ

The sequence ሼݑ
௧ሺݐሻሽ௧ ஹ  converges as iter 

increases and the solution reaches the optimal value 

when ݅ݎ݁ݐ  is equal to the number of links in the 

optimal path. A convergence proof is given in Eq. [15]. 

Eqs. (1) and (2) present the simple case of SOTA 

problem where the travel-times on the links of the 

network are uncorrelated. Different variants of the 

SOTA problem with correlation are proposed in the 

literature, e.g., Refs. [5, 16]. We will expose the model 

with correlation proposed in Ref. [16] for the 

continuation of our work in the coming sections. 

Samaranayake, Blandin and Bayen [16] presented a 

simple extension of the SOTA model that considered 

correlation between the link and the upstream 

neighbors via which the link is reached. They proposed 

the following formulation: 

,ݐሺݑ ሻݕ ൌ max
א௰శభሺ୧ሻ

 ݐݐ൫ ൌ ݐݐ | ݓ ൌ
௧



ݐሺݑሻݕ         െ ,ݓ  (8)             ݓሻdݓ
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݅ א ܰ\ሼ݀ሽ, ݇ א ,ଵሺ݅ሻି߁ ݆ א ,ାଵሺ݅ሻ߁ 0  ݐ  ܶ, 0  ݕ

 ܶ െ  ݐ
,ݐௗሺݑ ሻݕ ൌ 1, ݇ א  ଵሺ݀ሻ           (9)ି߁

0  ݐ  ܶ, 0  ݕ  ܶ െ   ݐ

,ݐሺݏ ሻݕ ൌ arg max
א௰శభሺ୧ሻ

 ݐݐ൫ ൌ ݐݐ | ݓ ൌ
௧



ݐሺݑሻݕ െ ,ݓ  (10)  ݓሻdݓ

݅ א ܰ\ሼ݀ሽ, ݇ א ,ଵሺ݅ሻି߁ ݆ א ,ାଵሺ݅ሻ߁ 0  ݐ  ܶ, 0  ݕ

 ܶ െ  ݐ

where, ݐݐ denotes the travel time on link ሺ݅, ݆ሻ, and 

 ൯ is the probability distribution functionݐݐ | ݐݐ൫

(pdf) of ݐݐ , conditioned on ݐݐ . The pdf ሺ. ሻ is 

assumed to be known and can for example be obtained 

using historical data or real-time traffic information. 

ݐሺݑ െ ,ݓ  ሻ is the maximum probability of arrivingݓ

to destination node ݀ within time ݐ െ  parting from ,ݓ

node ݆, conditioned that the travel time on link ሺ݅, ݆ሻ is 

 .ݓ

In our previous articles [21, 22], we focused on the 

routing model presented in Ref. [16] (Eqs. (8)-(10)) 

and we followed the same idea in term of reliability of 

the travel-time of the selected path, but by introducing 

a robustness guarantee in the selected path. The work 

done in this paper is summarized in the next section 

[21]. 

3. Robust Guidance 

In this section, we base on the routing model 

presented in Ref. [16] (Eqs. (8)-(10)) where from the 

probability distributions of travel times through the 

links of the network, users evaluate their maximum 

probability to reach their destination in given time 

budgets, and using different possible routes. The model 

takes into account correlations between the travel times 

through the links.  

We propose here an extension of this approach in 

order to take into account the existence and the 

performance of alternative detours of the selected paths, 

in the calculus of the guidance strategy. We take into 

account the fact that one or many links of the selected 

optimal path may fail during the travel. We then 

consider that users may be sensitive to path changing. 

That is to say, they may prefer paths with efficient 

alternative detours, with respect to paths without, or 

with less efficient detours, even with a loss in the 

average travel time, and/or in its reliability. In order to 

take into account such behaviors, we propose a model 

that includes the existence as well as the performance 

of detours for selected paths, in the calculus of the 

travel time reliability (i.e., the maximum probability of 

reaching a destination node). This new way of 

calculating travel time reliability guarantees a kind of 

robustness of the guidance strategies. That is to say, the 

travel time reliability associated to the obtained 

optimal guidance strategy is not likely to change, 

however, associated adaptive paths change during the 

travel. The variation of the travel time reliability, with 

respect to a network structure changing, is thus 

improved. For that, we propose to calculate for each 

node ݅  the maximum probability ݑሺݐ, ሻݕ  to reach 

the destination node, where we take into account the 

case where the selected path fails before the users who 

selected it reach the destination node; for which case, 

alternative neighboring paths are used. ݑሺݐ,  ሻݕ

denotes, as above, the maximum probability to reach 

the destination node, departing from node ݅ , in a 

time-budget ݐ, and knowing that the user comes from 

node ݇ upstream of ݅, and that the realized travel time 

from ݇  to ݅  is ݕ . However, the mathematical 

definition of ݑሺݐ,  ,ሻ is different from Eqs. (8)-(10)ݕ

and is given below. 

3.1 Calculation of the Probabilities ݑሺݐ,  ሻݕ

We introduce here a modification on Eqs. (1)-(3) in 

order to take into account the existence and the 

performance of alternative paths in the calculated 

optimal routing strategy. The idea here is to replace the 

maximum operator in Eq. (1) by a weighted mean over 

a chosen number of successor nodes. Instead of 

calculating ݑሺݐ, ሻݕ  basing on the successor node 

giving the optimum value of ݑሺݐ, ሻݕ , we propose 

here to consider also other successor nodes of ݅, and 
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we rather calculate ݑሺݐ, ሻݕ  basing on a weighted 

mean over a number of successor nodes of ݅. Let us 

consider the following notation: 

,ݐሺܣ ሻݕ ൌ න ݐݐ൫ ൌ ݐݐ | ݓ

௧


ൌ ݐሺݑሻݕ െ ,ݓ   ݓሻdݕ

݅ א ܰሼ݀ሽ, ݇ א ,ଵሺ݅ሻି߁ ݆ א  ାଵሺ݅ሻ߁

0  ݐ  ܶ, 0  ݕ  ܶ െ  ݐ

We then sort, for a given ሺ݇, ݅ሻ pair, the quantities 

,ݐሺܣ  ሻ on ݆, in a decreasing order, and denote themݕ

,ݐሺܤ  ,.ሻ in that order, i.eݕ

,ݐଵሺܤ ሻݕ  ,ݐଶሺܤ ሻݕ  ڮ  ,ݐఒሺܤ  ሻݕ

We then have 

,ݐሺܣ ሻݕ ؔ ൛ܣሺݐ, ,ሻݕ ݆ א ାଵሺ݅ሻൟ߁ ൌ ሼܤሺݐ, ሻݕ

א ,ݐሺܣ ,ሻݕ ,ݐଵሺܤ ሻݕ  ,ݐଶሺܤ ሻݕ

 ڮ  ,ݐఒሺܤ  ሻሽݕ

We then rewrite the maximum probability for a user 

to reach the destination node ݀  from node ݅  in a 

time-budget ݐ, knowing that the user comes from node 

݇ and that the travel time from ݇ to ݅ is ݕ, as follows:  

,ݐሺݑ ሻݕ ൌ ∑ ,ݐሺܤߖ ሻ          ݕ
ୀଵ  (11) 

݅ ് ݀, ݇ א ଵሺ݅ሻ, 0ି߁  ݐ  ܶ, 0  ݕ  ܶ െ  ݐ

,ݐௗሺݑ ሻݕ ൌ 1                            (12) 

݇ א ,ଵሺ݀ሻି߁ 0  ݐ  ܶ, 0  ݕ  ܶ െ  ݐ

where, ݉  is a parameter giving the number of 

successor nodes taken into account in the sum of    

Eq. (11), ߰ are weighting coefficients satisfying 

 ߖ ൌ 1

ఒ

ୀଵ

 

and where, in case where ݉  ,ݐሺܤ ,|ାଵሺ݅ሻ߁| ሻݕ ൌ

0 for    ାଵሺ݅ሻ|. In this case, ݉ is the number of߁|

successors to be taken into account in the network, 

independent of ݅ . Indeed, one can distinguish the 

following two cases : 

(1) Case 1: ݉   ାଵሺ݅ሻ|, in which case, no more߁|

than the number of successors of i are considered in 

the sum of Eq. (11); 

(2) Case 2: ݉   ାଵሺ݅ሻ|, in wich case, we have߁|
∑ ψ୨୨אశభሺ୧ሻ ൏ ∑ ψ୮ ൌ 1୫

୮ୀଵ . 

In Case 2 above, nodes ݅ that have a small number 

of successors are penalized; they get low values 

,ݐሺݑ  ,ሻ. Therefore, paths passing through these nodesݕ

i.e., paths with small number of alternatives or detours 

shall have low probabilities to be selected as optimal 

paths. One way to choose ݉  would be to take the 

maximum over the cardinals of the sets ߁ାଵሺ݅ሻ  of 

successors of all the nodes of the network: 

݉ ൌ max
אே

 |ାଵሺ݅ሻ߁|

where, | . | denotes the cardinal of a set. 

In order that Eq. (11) will have a meaning, ߰ have 

to be chosen such that ߰ଵ  ߰ଶ  ڮ  ߰. That is to 
say, ψ୮ decrease as ܤሺݐ,  ሻ decrease with respectݕ

to . This dependence of ߰ on ܣሺݐ,  ሻ makes theݕ

model nontrivial. Indeed, instead of taken the 

maximum over ܣሺݐ,  ሻ, with respect to successorsݕ

݅ of  , as in Eq. (1), we take a weighted mean in    

Eq. (11), where the weights are in the same order as the 

one of the quantities ܣሺݐ,  ሻ. Therefore, we need toݕ

first sort the quantities ܣሺݐ,  ሻ, before applying theݕ

mean operator. So the model Eq. (11) needs more 

operations than the model Eq. (1). Finally, let us notice 

that if ݉ ൌ 1, or if ݉  1 and ߰ ൌ 0,   2, then 

Eqs. (1) and (2) coincide with Eqs. (11) and (12). 

Therefore, the model Eqs. (11) and (12) are a kind of 

an extension of the model Eqs. (1) and (2). 

3.2 Calculation of Successor Nodes 

In the calculus of ݑሺݐ,  ሻ by Eq. (11), instead ofݕ

maximizing the quantities ܣሺݐ,  ሻ, we propose toݕ

take a weighted mean of theses quantities, with weights 

߰ , ൌ 1,2, … . ݉ . The optimal guidance strategy is 

then determined by the sequence of successor nodes 

,ݐሺݏ   :ሻ as shown in the following equationݕ

,ݐሺݏ ሻݕ ൌ arg max
א௰శభሺሻ

ቀܣሺݐ,  ሻቁ      (13)ݕ

,ݐሺݏ  ሻ denotes here the optimal successor node ofݕ

node ݅  for a user to reach the destination node, 

knowing that the user comes from node ݇ upstream of 

݅, and that the realized travel time on link ሺ݇, ݅ሻ is ݕ. 

By taking a mean in Eq. (11) rather than the maximum 

(as in Eq. (1)), we do not only take into account the 

path maximizing the probabilities ݑሺݐ, ሻݕ , but we 
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also take into account the existence and the 

performance of alternative deviations at each node. We 

notice here that although Eq. (13) resembles to Eq. (3), 

the resulted successor nodes from the two formulas are 

not necessarily the same, since the quantities ݑሺݐሻ in 

Eq. (3) and ݑሺݐ, ሻݕ  in Eq. (13) are calculated 

differently. 

4. How to Fix the Parameter ࣒ 

As mentioned above, in order that the model Eqs. 

(11) and (12) has a meaning, ߰ have to be chosen 

such that ߰ଵ  ߰ଶ  ڮ  ߰. We will be interested 

here in the case where ݉ ൌ 2 (i.e., we only take into 

account the two best successor nodes of every node ݅). 
In this case, we have two weighting parameters ψଵ and 

߰ଶ, such that ߰ଵ  ߰ଶ ൌ 1. In order to simplify the 

notations, we simply denote ߰ ൌ ߰ଵ, and ߰ଶ is given 

by ߰ଶ ൌ 1 െ ߰ . Therefore, we have only one 

parameter ߰  for the robustness, such that the case 

߰ ൌ 1 corresponds to the case where robustness is not 

taken into account; and that the obtained routing 

strategy is as robust as the parameter ߰ is small. We 

notice here that ߰ should satisfy 1/2  ߰  1, since 

we have ߰ଵ  ߰ଶ.  

Given a travel time budget ߬ and a desired travel 

time reliability p (expressed as the probability that the 

destination will be reached on the time budget ߬ ); 

given an interval ߖ to which the parameter ߰ belongs 

(for example ߖ ൌ  ሺ1 2⁄ , 1ሿ ), optimal weighting 

coefficient ߰כ is determined as given by Eqs. (14) and 

(15) below. 

The desired travel time reliability p being fixed, we 

first calculate the map ߰ հ ܶ௬ሺ, ߰ሻ  giving, for 

every value of ߰ the minimum time budget needed to 

satisfy the desired travel time reliability .  

ܶ௬ሺ, ߰ሻ ൌ ݑ
ିଵ൫ݐ, ,ݕ ߰൯ 

ൌ minሺݐ, ݐ  0, ,ݐሺݑ ,ݕ ߰ሻ   ሻ         (14)

The notation ݑ
ିଵ൫ݐ, ,ݕ ߰൯ means that we take the 

pseudo-inverse of the non-decreasing map ݐ հ

,ݐሺݑ ,ݕ ߰ሻ (Fig. 1). 

Then, the desired travel time budget being fixed, we 

calculate the optimal robustness parameter ߰כ needed 

to satisfy the constraint of travel time budget: 

,ሺ߬כ߰ ሻ ൌ ܶ௬
ିଵ ቀ, ߰ቁ 

ൌ min൫߰, ߰ א ሾ1/2, 1ሿ, ܶ௬ሺ, ߰ሻ  ߬൯  (15) 

The notation ܶ௬
ିଵ ቀ, ߰ቁ  means that we take the 

pseudo-inverse of the non-increasing map ߰ հ
ܶ௬ሺ, ߰ሻ (Fig. 2). 

Therefore, the calculus of ߰כሺ߬, ሻ  consists in 

inversing the maximum cumulative probability 

distribution ݑሺݐ, ,ݕ ߰ሻ  once on the variable ݐ  in 

order to derive, for every fixed value of robustness 

parameter ߰ , the optimal time budget ܶ௬ሺ, ߰ሻ 

needed to  satisfy the  desired travel  time reliability  ; 

 

 
Fig. 1  Calculation of the minimum time budget ࢟ࢀሺ,  .ሻ࣒
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Fig. 2  Calculation of the optimal robustness parameter כ࣒ሺ࣎,  .ሻ
 

and a second time (inversing ܶ௬ሺ, ߰ሻ ) on the 

variable ߰ in order to calculate the optimal robustness 

parameter ߰כ needed to satisfy the constraint on the 

travel time budget. 

The optimization of robustness given by Eqs. (14) 

and (15) is general, in the sense that it includes the case 

where one only likes to optimize travel time reliability, 

and not path-failure robustness. In this case, one can 

just let ߰  belonging to the singleton ሼ1ሽ , i.e., set 

߰ ൌ 1. Moreover, if one tries to optimize robustness, 

but he does not have any margin on the time budget that 

permits this optimization, Eq. (15) will fix 

systematically ߰כ  to the value ߰כ ൌ 1. In the other 

terms, any margin on the travel time budget is first used 

to optimize travel-time reliability, and after that, the 

remaining margin is used to optimize robustness. 

5. Analysis of the Complexity of the 
Algorithm 

To study the complexity of our algorithm, as given 

in Table 1, the discrete form of our algorithm. We 

consider the time ݐ  in its discrete form such as 

ݐ ൌ 0, ,ߜ ,ߜ2 ,ߜ3 … . ,  is the time unit. We ߜ ,where ,ߜܮ

assume that the time budget ܶ  is a multiple of ߜ   

and write ܶ ൌ ߜܮ . If the distribution is continuous,  

the probability of taking time between ݄ and ݄    ߜ

to cross the node ݅  to node ݆  can be written as    

follow: 

ሺ݄ሻ ൌ න ሺ݄ሻd݄
ାఋ


 

If the distribution is discrete, the convolution 

integral can be replaced by a finite sum. Then the 

discrete form of our algorithm is summarized in   

Table 1. 

Proposition 1. The complexity of Algorithm 1 is 

ሺ݉ሺܶߍ ⁄ߜ ሻଶ  ݉ log ݉ሻ. 

Proof. The functions ܣሺ. ሻ  and ሺ. ሻ  are 

vectors of length ܮ. Each link travel-time distribution 

in the network is of length ܶ ⁄ߜ , and the discretized 

probability mass function is computed in time ߍሺܶ ⁄ߜ ሻ 

for each link. As there are ݉ links, then the total time 

is ߍሺ݉ ܶ ⁄ߜ ሻ . In Step 0, there are ݅ݎ݁ݐ  vectors to 

initialize, and each vector is of length ܶ ⁄ߜ . Then the 

initialization is done in time ߍሺ݅ݎ݁ݐ ܶ ⁄ߜ ሻ. In Step 1, 

the algorithm calculates: 

 the sum of the convolution product from ݄ ൌ 0 to 

݄ ൌ ݐ , or more precisely, from ݐ ൌ 1  to ݐ ൌ ܶ ⁄ߜ . 

Then the time complexity of the summation for ݉ link 

is ߍሺ݉ሺܶ ⁄ߜ ሻଶሻ; 

 the sum on the weighting coefficients from  ൌ 1 

to  ൌ ݉. Then the time complexity of this summation 

is ߍሺ݉ ܶ ⁄ߜ ሻ; 

 the quantities ܤ
௧  are sorted in a decreasing 

order, then the complexity of this sorting is ݉ log ݉. 

Therefore, the total complexity to this algorithm is 

ሺ݉ሺܶߍ ⁄ߜ ሻଶ  ݉ log ݉ሻ. 
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Table 1  Algorithm 1.  

Step 0. Initialization 
݉ ൌ max

אே
 ାଵሺ݅ሻ| (maximum number of successor nodes to take into account)߁|

ݎ݁ݐ݅ ൌ 0 (iteration index) 
ݑ

௧ሺݐ, ሻݕ ൌ 0, ݅ א ܰ\ሼ݀ሽ, ݇ א ,ଵሺ݅ሻି߁ 0  ݐ  ,ߜܮ 0  ݕ  ܶ െ   ݐ
ௗݑ

௧ሺݐ, ሻݕ ൌ 1, ݇ א ,ଵሺ݀ሻି߁ 0  ݐ  ,ߜܮ 0  ݕ  ܶ െ   ݐ
Step 1. Update 
For ݅ݎ݁ݐ ൌ 1,2, … … . ܮ with ,ܮ ൌ ܶ ⁄ߜ , 
߬௧ ൌ ݎ݁ݐ݅ כ  ߜ
ௗݑ

௧ሺݐ, ሻݕ ൌ 1, ݇ א ,ଵሺ݀ሻି߁ 0  ݐ  ,ߜܮ 0  ݕ  ܶ െ  ݐ
ݑ

௧ሺݐ, ሻݕ ൌ ݑ
௧ିଵሺݐ, ,ሻݕ ݅ א ܰ, ݅ ് ݀, ሺ݅, ݆ሻ א ,ܣ ݐ א ሾ0, ߬ െ  ሿߜ

ݑ
௧ሺݐ, ሻݕ ൌ ∑ ߰ܤ

௧ሺݐ, ሻݕ
ୀଵ  where ܤ

௧ሺݐ,  ሻ is as in Section 3.1, see Ref. (11)ݕ

݅ א ܰ\ሼ݀ሽ, ݇ א ,ଵሺ݅ሻି߁ ݆ א ݐ ,ାଵሺ݅ሻ߁ א ሾ߬ െ ߜ  1, ߬ሿ, 0  ݕ  ܶ െ  ݐ
 

5. Experimental Results  

we use here the Sioux Falls network to test our 

algorithm (Fig. 3). 

This network is simplified to Sioux Falls test 

networks that contains only 24 zones, 24 nodes and 76 

links (Fig. 4). 

We assume that link travel times on the network of 

Fig. 1 are drawn from bi-variate Gamma distribution. 

More precisely, we assume that the joint probability 

distribution of two successive links of the network is a 

bi-variate Gamma. We base here on the bi-variate 

Gamma distribution from Ref. [23]. In the network of 

Fig. 4, the maximum number of successors over all the 

nodes is equal to 5. Therefore, according to Section 3, 

we take here ݉ ൌ 5. Then, we have five weighting 

coefficients ߰ଵ, ߰ଶ, ߰ଷ, ߰ସ, and ߰ହ. For simplification, 

we assume here that ߰ଷ ൌ ߰ସ ൌ ߰ହ ൌ 0, and denote 

߰ ൌ ߰ଵ and then we have ߰ଶ ൌ 1 െ ߰. To reach the 

destination node 24 parting from node 1, we have 3,856 

elementary paths. We apply Algorithm 1 and derive the 

probabilities ݑሺݐ, ሻݕ  for all origin nodes ݅  of the 

network. In order to illustrate our approach, let us 

consider the following: 

Travel-times on two successor links of the network 

follow a bi-variate Gamma probability distribution, 

with given average travel time vector and 

variance-covariance matrix. We take different values of 

the average travel time for all the links, so that, the path 

consisting of links (2-7-37-39) have large values 

compared to other paths on the network. For every pair 

of two successive links, we take the same covariance 

matrix (variance = 3, covariance = 1.5). We assume that 

we are at Node 1 and that we have spent a time ݕ ൌ 3 

time units on the upstream link, and we seek to reach 

destination Node 24. The maximum time budget we 

consider here is 60 time units. 

We distinguish two scenarios. In the first scenario, 

we keep the number of links for each node, as shown in 

the network of Fig. 4. In the second scenario, we 

penalize (in term of robustness) the passage by Node 2 

by removing link 3. Therefore, Node 2 will have only 

one successor node. The simulations results are given 

by the next figures. 

Figs. 5 and 6 represent the simulation results given by 

the first scenario. 

Figs. 7 and 8 represent the simulation results given by 

the second scenario. 

Figs. 5 and 7 show the maximum probabilities 

,ݐଵ,ଷሺݑ 3ሻ in function of time budget ݐ, and for different 

values of ߖ. Figs. 6 and 8 give the optimal successor 

nodes ݏଵ,ଷሺݐ, 3ሻ in function of time budget ݐ, and for 

different values of ߖ. 

The case ߖ ൌ 1 (dashed line) corresponds to the 

model Eqs. (1) and (2), while the cases ߰ ൏ 1 (solid 

line) correspond to the model Eqs. (11) and (12). We 

see from Fig. 3 that the maximum probability 

,ݐଵ,ଷሺݑ 3ሻ decreases as the values of ߰ decrease. That 

is to say, for lower values of ߰ , lower maximum 

probabilities ݑଵ,ଷሺݐ, 3ሻ are obtained. This is because 

we replaced a maximum operator in Eqs. (1) and (2) by 

a mean value in Eqs. (11) and (12). Indeed, a user taking 
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Fig. 3  Sioux Falls network.  
Source: image from OpenStreetMap.  
 

 
Fig. 4  Sioux Falls test network.  
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Fig. 5  The probability of arriving on time in function of the time budget, and for different values of ࢸ.  
 

 
Fig. 6  The routing policy on Node 1 in function of the time budget, and for different values of ࢸ.  
 

 
Fig. 7  The probability of arriving on time in function of the time budget, and for different values of ࢸ.  
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Fig. 8  The routing policy on node 1in function of the time budget, and for different values of ࢸ.  
 

 
Fig. 9  The probability of arriving on time for .  ൏ ࢸ  . ૡ (first scenario).  
 

 
Fig. 10  The routing policy on node 1 for .  ൏ ߖ  0.8 (first scenario). 
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a lower value of ߰, asks for more path-robustness or 

path-flexibility, and, in the counterpart, he loses in term 

of travel-time reliability. 

The difference ݑଵ,ଷሺݐ, 3, ߰ଵሻ െ ,ݐଵ,ଷሺݑ 3, ߰ଶሻ  can 

then be interpreted as the price of path-robustness 

corresponding to a measure of it, given by the 

difference ߰ଵ െ ߰ଶ. 

In the first scenario (Figs. 5 and 6), for ߰ ൌ 1 

(dashed blue line), the optimal successor node is Node 

3, for all the time budgets up to 44 time units. Then for 

a time budget bigger than 44, the optimal successor 

node is Node 2. Since we do not take into account 

path-robustness here (߰ ൌ 1), it is trivial that paths 

passing from Node 2 are better than those passing by 

Node 3, as we put large values of the average 

travel-time on links (2-7-37-39). For 0.8  ߰ ൏ 1 

(solid line), we can clearly see that, we obtain the same 

strategy as in the case ߰ ൌ 1 . However, for 0.5 ൏߰  0.8 , the optimal policy changes, and Node 3 

becomes the optimal successor node (Figs. 9 and 10). 

That means that, Node 2 which has a lower number of 

successors comparing to the number of successors of 

Node 3 is penalized, i.e., it gets low values ݑሺݐ,  .ሻݕ
Therefore, paths that pass through Node 2, i.e., paths 

with small number of alternatives or detours, have low 

probability to be selected as optimal paths. 

In the second scenario (Node 2 has only one 

successor node), the optimal policy obtained by the two 

cases is clearly different from each other. For ߰ ൌ 1 

(dashed line, Figs. 7 and 8), we obtain the same optimal 

policy as in the first scenario. However, for ߰ ൏ 1 

(solid line, Figs. 7 and 8), the optimal policy changes, 

and Node 3 is the better optimal successor node for 

Node 1. That means that, Node 2 which has only one 

successor node is penalized, and paths that pass 

through that node, i.e., paths with small number of 

alternatives or detours, have low probability to be 

selected as optimal paths. 

From these results, we can conclude that: 

 If a user maximizes the travel time reliability of 

the paths, without taken into account their robustness, 

then he should choose the path that passes from  

Node 2, because it is the one maximizing the 

probability of reaching the destination Node 24 in the 

considered time budget; 

 If a user seeks a guarantee in terms of robustness 

even with a loss in terms of travel time reliability, then 

he should choose the path passing from Node 3. 

7. Conclusions 

This article considers the optimal guidance problem 

of users in road networks, and proposes a new robust 

adaptive strategy. We base on an existing routing 

model, which is a SOTA like algorithm, which we 

extend to take into account robustness of routing 

strategies against path failure. In order to include the 

performance of alternative detours of the selected paths, 

we extended the concept of reliability by introducing a 

new reliability index. The improvement we made here 

allows the selection of an optimal path according to 

two criteria: the reliability of the path in term of travel 

time and the robustness of the path in term of its 

flexibility (i.e., existence and performance of 

alternative detours). Finally, we illustrated our 

algorithm on a small network, with some academic 

scenarios. 
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