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Multivalued contractions and applications to functional differential equations

By a multivalued mapping from X into itself we shall mean, throughout this note, an element of F (X, C(X)). Let T : X → C(X) be such a multivalued mapping. By an iterative sequence generated by some x ∈ X, we mean a sequence (x n ; n ∈ N ) in X, defined as x 0 = x and x n+1 ∈ T x n , for every n ∈ N .

In the same context, z ∈ X is called a fixed point of T iff z ∈ T z.

The main aim of this note is to give some sufficient metric conditions implying existence of fixed points of a multivalued mapping on the one hand, and an approximation of these fixed points by an iterative sequence, on the other hand. The main results (presented in the next section) might be compared with those of Covitz and Nadler [START_REF] Covitz | Multi-valued contraction mappings in generalized metric spaces[END_REF]; see also Nadler [START_REF] Nadler | Multi-valued contraction mappings[END_REF]. Finally, in the last section, an application is given to a certain class of "multivalued" functional differential equations with transformed argument.

The main results

Throughout this section, (X, d) is a complete g.m.s. We introduce the notations

(i) P = {f ∈ F (R + , R + ); f (0) = 0, f (t) < t, ∀t > 0}, (ii) Q = {f ∈ F (R + , R + ); f (0) = 0, f (t) > t, ∀t > 0}, (iii) P 1 = {f ∈ P ; ∞ n=0 f (n) (t) < ∞, ∀t > 0}.
(Here, f (n) stands for the n-th iterate of f , ∀n ∈ N ).

A multivalued mapping T : X → C(X) is said to be a normal multivalued contraction (abbreviated n.m.c.) with respect to a f : R + → R + , iff it satisfies (2.1) x, y ∈ X, τ > 0, d(x, y) ≤ τ =⇒ D(T x, T y) ≤ f (τ ). Now, one may state and prove the first main result of this note.

Theorem 2.1 Let T : X → C(X), f ∈ P , g ∈ Q be such that (2.2) T is a n.m.c. with respect to f (2.3) g • f ∈ P 1 (2.
4) X(T ) := (x ∈ X; X(x) ∩ T x = ∅} is not empty. Then, for every x ∈ X(T ), there exist an iterative sequence (x n ; n ∈ N ) in X(x) generated by x, a real number ρ > 0, and an element z ∈ X(x), such that

(a) z ∈ T z (i.e.: z is a fixed point of T ), (b) x n → z as n → ∞, in the sense that d(x n , z) ≤ ∞ m=n (g • f ) (m) (τ )
, for any τ ≥ ρ and n ∈ N .

Proof Let x ∈ X(T ) be given and put x 0 = x; we may assume x 0 / ∈ T x 0 . From (2.4), there is an element x 1 ∈ X(x 0 ) ∩ T x 0 ; hence, 0 < ρ := d(x 0 , x 1 ) < ∞; moreover (as before), we may assume

x 1 / ∈ T x 1 . Fix α ≥ ρ(> 0). From (2.2), D(T x 0 , T x 1 ) ≤ f (α) < (g • f )(α) (because, x 1 / ∈ T x 1 implies f (α) > 0).
Taking into account Lemma 1.1, there is an

x 2 ∈ T x 1 with d(x 1 , x 2 ) < (g•f )(α); without loss, assume that x 2 / ∈ T x 2 . Again invoking (2.2), D(T x 1 , T x 2 ) ≤ f ((g • f )(α)) < (g • f ) (2) (α) (since, x 2 / ∈ T x 2 implies f ((g • f )(α)) > 0).
Then, by the same procedure as above, there is a

x 3 ∈ T x 2 with d(x 2 , x 3 ) < (g • f ) (2) (α), etc
. By induction, we get an iterative sequence (x n ; n ∈ N ) generated by x 0 , satisfying

d(x n , x n+1 ) ≤ (g • f ) (n) (α), for every n ∈ N .
From (2.3), (x n ; n ∈ N ) is a Cauchy sequence; so, by completeness, x n → z as n → ∞, for some z ∈ X. By (2.2), T is continuous; hence, lim n T x n = T z; and, since (x n+1 ∈ T x n , ∀n), conclusion (a) follows by a limit process. Now, let τ ≥ ρ be arbitrary fixed. As τ ≥ d(x 0 , x 1 ), the above evaluations are clearly valid, and hence,

d(x n , x n+p ) ≤ n+p-1 m=n (g • f ) (m) (τ ) ≤ ∞ m=n (g • f ) (m) (τ ), ∀n, p ∈ N, p ≥ 1.
Performing the limit as p → ∞, conclusion (b) follows as well; and so, the proof is complete.

As an important particular case, let the mapping f ∈ P be defined by f (t) = λt, for any t ≥ 0 and some λ ∈]0, 1[. Then, the mapping g ∈ Q, defined by g(t) = µt, for any t ≥ 0 and some µ ∈]1, 1/λ[ has, the property g • f ∈ P 1 . Note that, in this way, Theorem 2.1 above reduces to Theorem 5 of Nadler [START_REF] Nadler | Multi-valued contraction mappings[END_REF]; see also Covitz and Nadler [START_REF] Covitz | Multi-valued contraction mappings in generalized metric spaces[END_REF].

A multivalued mapping T : X → C(X) is said to be a strong multivalued contraction (abbreviated s.m.c.) with respect to an f : R

+ → R + , provided (2.1') if x, y ∈ X, τ > 0 satisfy d(x, y) ≤ τ , then, for every u ∈ T x (resp. T y) there is a v ∈ T y (resp. T x) with d(u, v) ≤ f (τ ).
It is important to remark that, from Lemma 1.2, every s.m.c. is a n.m.c. Now, the second main result of this note is Theorem 2.2 Let T : X → C(X) and f ∈ P be such that (2.2') T is a s.m.c. with respect to f (2.3') f ∈ P 1 (2.4') X(T ) = {x ∈ X; X(x) ∩ T x = ∅} is not empty. Then, for every x ∈ X, there exist an iterative sequence (x n ; n ∈ N ) in X(x) generated by x, a ρ > 0, and a z ∈ X(x), such that

(a') z ∈ T z (z is a fixed point of T ) (b') x n → z as n → ∞, in the sense that d(x n , z) ≤ ∞ m=n f (m) (τ )
, for any τ ≥ ρ and any n ∈ N .

Proof Let x ∈ X(T ) be a given element and put x 0 = x; without loss, one may assume x 0 / ∈ T x 0 . From the definition of X(T ), there is an x 1 ∈ T x 0 with 0 < ρ := d(x 0 , x 1 ) < ∞. Let α ≥ d(x 0 , x 1 ) be arbitrary fixed. From (2.2'), there exist an x 2 ∈ T x 1 with d(x 1 , x 2 ) ≤ f (α); then, an x 3 ∈ T x 2 with d(x 2 , x 3 ) ≤ f (2) (α); and so on. By induction, we get an iterative sequence (x n ; n ∈ N ) generated by x, satisfying

d(x n , x n+1 ) ≤ f (n) (α), for every n ∈ N .
The remaining part of the argument is the same as in Theorem 2.1; and so, we may consider that the proof is complete.

An application

In what follows, n ≥ 1 is a given positive integer. Let (R n , ||.||) be the Euclidean n-dimensional space endowed with a given norm ||.||. Let X (resp. A) denote the set of all continuous x : R + → R n (resp., a : R + → R + ). For every x ∈ X, define ||x|| ∈ A by ||x||(t) = ||x(t)||, for every t ∈ R + ; and for every g ∈ A, let ||.|| g : X → R + be defined as: for every x ∈ X,

||x|| g = inf{λ ∈ R + ; ||x|| ≤ λg}, if {λ ∈ R + ; ||x|| ≤ λg} = ∅; ||x|| g = ∞, if {λ ∈ R + ; ||x|| ≤ λg} = ∅.
It is simple to verify that (X, ||.|| g ) is a generalized Banach space; or, equivalently: (X, d g ) is a complete g.m.s., where

d g (x, y) = ||x -y|| g , x, y ∈ X (the associated metric).
For every g ∈ A, denote also

X g = {x ∈ X; ||x|| g < ∞}, C g (X) = {Y ∈ P(X); Y is ||.|| g -closed}.
At this point, we make a useful remark. Namely, let t → t be a mapping in F (R + , P(R + )). In this case, for every x ∈ X, t ∈ R + , k(x)(t) may be considered as being defined only by the values of x in the set t. Concerning the choice of the above mapping, two cases are of a great interest in the study of a (C.P.) A. Suppose that (3.6) holds. Then, (C.P.) is called a nonanticipative multivalued functional differential equation with transformed argument. Particular cases of (3.6) are, of course, t = {t}, t ∈ R + (the "ordinary" case), t = [0, t], t ∈ R + (the "functional" case; cf. Corduneanu [START_REF] Corduneanu | Sur certain équations fonctionnelles de Volterra[END_REF]).

B. Suppose (3.7) holds. Then, (C.P.) is called an anticipative multivalued functional differential equation with transformed argument. From such a perspective, the main result of this section may be compared with the related ones in Oberg [START_REF] Oberg | On the local existence of solutions of certain functional differential equations[END_REF] and Turinici [START_REF] Turinici | Volterra functional equations with transformed argument[END_REF].
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 36 t ⊆ [0, t], for any t ∈ R + , (3.7) t∩]t, ∞[ = ∅, for any t ∈ R + .

Now, let x → k(x) be a mapping from X to P(X); and x 0 ∈ R n be a fixed element. Consider the "multivalued" Cauchy problem (C.P.) x (t) ∈ k(x)(t), t ∈ R + , x(0) = x 0 .

The following existence and approximation result concerning the solutions of (C.P.) may be stated. Theorem 3.1 Suppose that there exist a mapping a → h(a) from A into itself, and a couple g ∈ A, f ∈ P 1 such that (3.1) for every x ∈ X, the set K(x) of all y ∈ X with

for all t ∈ R + , and some µ > 0, u ∈ k(y 0 ), is not empty. Then, for every y 0 ∈ X 0 , there exists a sequence (y [m] ; m ∈ N ) in y 0 + X g and a z ∈ y 0 + X g , such that (a) z is a solution of (C.P.) (b) y [0] = y 0 , and (y [m+1] ) ∈ k(y [m] ), for any m ∈ N (c) (y [m] ; m ∈ N ) converges to z, in the sense that

Proof Let T : X → C g (X) be the multivalued mapping defined by (3.5) T x = K(x), for every x ∈ X.

Let x, y ∈ X, τ > 0 be such that ||x -y|| g ≤ τ . From the definition of ||.|| g , ||x -y|| ≤ gτ . Let u ∈ T x (resp. T y). From (3.5),

) be the associated element given by (3.2), and let v ∈ X be defined by v(t) = x 0 + t 0 v(s)ds, t ∈ R + . Clearly, v ∈ T y (resp. T x) on the one hand and (again by (3.2)) ||u -v|| ≤ h(gτ ), on the other hand. But then, from (3.3),

showing that T is a s.m.c, with respect to f . Finally, (3.4) says that for every y 0 ∈ X 0 there is a u ∈ T y 0 with ||y 0 -u|| g ≤ µ < ∞. Thus, Theorem 2.2 applies to (X, d g ), T and f ; hence the conclusion.