
HAL Id: hal-01609940
https://hal.science/hal-01609940v1

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable fine-grained metric-based remeshing algorithm
for manycore/NUMA architectures

Hoby Rakotoarivelo, Franck Ledoux, Franck Pommereau, Nicolas Le Goff

To cite this version:
Hoby Rakotoarivelo, Franck Ledoux, Franck Pommereau, Nicolas Le Goff. Scalable fine-grained
metric-based remeshing algorithm for manycore/NUMA architectures. 23rd International Confer-
ence on Parallel and Distributed Computing (Euro-Par 2017), Aug 2017, Santiago de Compostela,
Spain. pp.594–606, �10.1007/978-3-319-64203-1_43�. �hal-01609940�

https://hal.science/hal-01609940v1
https://hal.archives-ouvertes.fr

Scalable Fine-grained Metric-based Remeshing
Algorithm for Manycore/NUMA Architectures

Hoby Rakotoarivelo1,2�, Franck Ledoux1,
Franck Pommereau2, and Nicolas Le-Goff1

1 CEA, DAM, DIF, F-91297 Arpajon, France
{franck.ledoux,nicolas.le-goff}@cea.fr

2 IBISC, Université d’Évry Val d’Essonne, France
{hoby.rakotoarivelo,franck.pommereau}@ibisc.fr

Abstract. In this paper, we present a fine-grained multi-stage metric-
based triangular remeshing algorithm on manycore and NUMA archi-
tectures. It is motivated by the dynamically evolving data dependencies
and workload of such irregular algorithms, often resulting in poor per-
formance and data locality at high number of cores. In this context, we
devise a multi-stage algorithm in which a task graph is built for each ker-
nel. Parallelism is then extracted through fine-grained independent set,
maximal cardinality matching and graph coloring heuristics. In addition
to index ranges precalculation, a dual-step atomic-based synchronization
scheme is used for nodal data updates. Despite its intractable latency-
boundness, a good overall scalability is achieved on a NUMA dual-socket
Intel Haswell and a dual-memory Intel KNL computing nodes (64 cores).
The relevance of our synchronization scheme is highlighted through a
comparison with the state-of-the-art.

Keywords: Irregular parallelism, Manycore, Anisotropic remeshing.

1 Introduction

In computational fluid dynamics, large-scale direct numerical simulations require
a high discretization (mesh) resolution to achieve a good accuracy. Moreover, the
computational domain needs to be periodically re-discretized to avoid degener-
ated or mixed cells in case of lagrangian-based or multi-materials simulations[4].
In this context, triangular mesh adaptation aims at reducing the computational
effort of these simulations while preserving the required accuracy. However, its
parallelization remains challenging due to dynamically evolving data dependen-
cies and workload, resulting in a poor locality and efficiency at high number
of cores. On the other hand, manycore architectures have been emerged in hpc
landscape, with an increasing number of cores but a decreasing memory and
frequency per core, and an asymmetric memory latency in case of numa multi-
socket machines. To take advantage of these architectures, the challenge is to
expose a high concurrency and data locality for such an irregular algorithm.

related works Most of existing parallel remeshing schemes are coarse-grained,
and not suitable to manycore machines. They rely on domain partitioning and
dynamic cell migration for load balancing. They focus on reducing the unavoid-
able synchronization for domain interface consistency, and on finding reliable
heuristics for cell migration [7]. Fine-grained schemes have emerged but most
of them rely on a speculative execution model [2, 5]. In 2015, Rokos et al. de-
vised a clean lock-free scheme in [11, 12], based on an initial idea of Freitag et
al. [6]. Task conflicts are expressed by a graph, and non-conflictual tasks are
then explicitely extracted. To avoid data races, mesh data updates are stacked
locally and committed later. Their solution scaled well on a dual-socket sandy-
bridge machine, but worse on a quad-socket opteron one due to numa effects.
Indeed, data placement is not taken into account on tasklists reduction. Fur-
thermore, their deferred updates scheme involves a lot of data moves, increasing
numa effects while reducing the arithmetic intensity. In [10], we extended their
work by using kernel-specific graphs to increase parallelism, and a combinatorial
map [3] data structure to avoid synchronization for mesh data updates. We at-
tempted a theoretical characterization of performance metrics, based on machine
parameters (e.g bandwidth). Our solution scaled well on a dual-socket haswell
machine, but the contraction kernel suffers from memory indirections on stencil
data retrieval.

contributions This paper is an extension of our preliminary work in [10].
It differs from [10–12] in many points:

1. We use a dual-step atomic-based synchronization scheme for topological up-
dates, with a node-centered data structure. We show that it is a good tradeoff
between data locality and synchronization cost (overhead, data moves). This
way, we improve the efficiency of the contraction kernel which was the main
drawback in [10]. We also show that taking into account the graph number
of connected components would increase the parallelism for this kernel.

2. We use a fine-grained maximal graph matching heuristic for task extraction
in the swapping kernel. We are the first to apply such a scheme in parallel
meshing and we show that it is efficient in practice.

3. Evaluations are made on both a numa dual-socket and a dual-memory ma-
chines. Our results show that the latency-boundness of such an algorithm
is intractable due to its high irregularity, but may be eased by the use of
hyperthreading. Such an evaluation was not yet done on intel xeon-phi KNL

in parallel meshing context.

2 Problem overview

The purpose is to rebuild a discretization (mesh) of a domain Ω, such that the in-
terpolation error of a given solution field u is bounded and equi-distributed on Ω.
It is done by an iterative procedure, and involves a numerical solver and a metric-
based remesher. It ends when a given error treshold is achieved (Algorithm 1).
In our context, a node refers to a mesh point and a cell refers to a mesh triangle.

remeshing To control the interpolation error of u, cells size and density must
fit the variation of the physical solution field over the domain. Basically, it may
be achieved by three ways:

– variational: node sampling is obtained by minimizing an energy function,
and resulting nodes are then triangulated using a Delaunay kernel.

– hyperspace embedding: nodal coordinates, solution field and related gradient
are embedded in R6. The domain is then remeshed in this hyperspace, using
local or global kernels.

– metric-based: a tensor field is associated to each node vi, and encodes cell
size and stretching (anisotropy) prescription in the vicinity of vi. An uniform
mesh is then built in the riemannian metric space induced by the tensor field.

We opt for a metric-based scheme since it is local and preserve well anisotropy
compared to the two others. A standard sequence of operations is used for that
purpose. First, we compute a nodewise tensor field from nodal discrete second
derivatives. A gradation is then performed to smooth out sudden changes in size
requirements. Afterwards, we apply the geometric and topological operations on
mesh, using 4 local kernels:

– the refinement which aims at splitting long edges by recursive cell dissection.
– the contraction which aims at collapsing short edges by vertex merging.
– the swapping which improves cell pair qualities by edge flips.
– the smoothing which improves stencil qualities by relocating nodes using an

anisotropic laplacian operator.

Algorithm 1 Adaptive loop

input: mesh, error and quality tresholds.
output: optimal couple mesh-solution.

repeat
solve the solution field (up) on mesh.
derive a tensor field from (up).
apply gradation on tensor field.
while min. quality not optimal do

refinement
contraction
swapping
smoothing

end while
until error threshold is reached
return couple mesh-solution

Algorithm 2 Kernel parallel stages

repeat
1. filter active nodes/cells.
2. build a task graph G = (V,E)
3. extract non-conflictual tasks
4. apply operations
5. repair topology

until no marked cells

parallelization Remeshing is a data-driven algorithm. Tasks (gradation, re-
finement, contraction, swapping, smoothing) are related to a dynamically evolving
subset of nodes or cells. In fact, processing a task may generate some others,
and need to be propagated. In our case, the required number of rounds is data-
dependent. Finally, tasks within a same round may be conflictual [9].

Here, data dependencies are related to mesh topology, and evolves accordingly:

– gradation, contraction and smoothing involve the vicinity of each active node;
– refinement involves a subset of the vicinity of each active cell;
– swapping involves the vicinity of each active cell pair.

In fact, two issues must be addressed: topological inconsistency and data races.
Indeed, conflictual tasks may invalid the mesh (crosses, holes or boundary loss)
whereas nodal or incidence data may be corrupted if updates are not synchronized.
The former is solved by an explicit parallelism extraction (Section 3), whereas
the later is solved by an explicit synchronization scheme (Section 4).
Kernels are parallelized independently using a fork-join model. Each of them
iteratively performs 5 stages (Algorithm 2). Here, any data updated in a given
stage cannot be used within the same stage.

3 Extracting fine-grained parallelism

For each kernel, we extract a task graph G = (V,E). Their descriptions are given
in Figure 1. However, no graph is required for refinement since cells may be pro-
cessed asynchronously. V is a set of active tasks, and E represents task conflicts.
Parallelism is then extracted through fine-grained graph heuristics (Table 1).

Table 1: Task graphs per kernel and related heuristics

kernel graph extracted from heuristic

gradation mesh primal graph coloring
refinement none –
contraction mesh primal graph indep. set
swapping mesh dual graph matching
smoothing mesh primal graph coloring

contraction For each topological update, mesh conformity must be preserved
such that holes and edge crosses are avoided. However, collapsing two neighbor-
ing nodes may result in a hole, so they cannot be processed concurrently. Thus,
the idea is to extract independent nodes such that they can be processed in a
safe way. For it, we derived a heuristic from a graph coloring scheme in [1]. Here,
the number of connected components σG of G increase through iterations. In
our case, we always pick the lowest available color according to neighbors val-
ues, then the ratio of independent tasks increases according to σG. We resolve
conflicts only for the first color to accelerate the procedure. Also, tie breaks are
based on vertex degree (Algorithm 3). A comparison with a monte-carlo based
heuristic [8] shows that taking the variation of σ is relevant in our context.
Indeed, the ratio of independent nodes on |V| is greater in this case (Figure 2).

(a) mesh = primal graph (b) mesh dual graph (c) cell matching

Fig. 1: Graph descriptions and cell pair matching in swapping kernel

swapping Flipping more than one edge per cell may result in an edge cross. For
each cell Ki, the unique edge e to be flipped, and thus the neighboring cell Kj

sharing e, must be identified. Therefore, we aim at extracting a subset of cell pairs
to be flipped. For it, the idea is to extract a maximal cardinality matching from
the dual graph (Figure 1). To do that, we adapt the karp-sipser’s heuristic. It is
based on vertex-disjoint augmenting path retrievals using depth first searches in
G (Algorithm 4). Here, it is irrelevant to maintain different tasklist according to
cell degrees, since we know that they are whether 2 or 3. The ratio of matched
cells shows that this greedy scheme is convenient for our purposes (Figure 2).

Algorithm 3 Nodes extraction

U← V
repeat
∀v ∈ U, select smallest available
color according to Nv

(do not care about data races)
for vertex v ∈ U in parallel

if col[v] = 1, ∃w ∈ Nv, col[w] = 1
if deg[v] ≥ deg[w] then

add v to R

U← R, R← ∅
until U = ∅
return I← {v | col[v] = 1}

Algorithm 4 Cell matching

M← ∅, visited[]← {0}
for marked cell K in parallel

S← {K} . local stack
repeat

u← S[0]
if compare swap(visited[u])=0 then

for cell v ∈ NK do
if compare swap(visited[v])=0

add (u, v) to M
for w ∈ Nv do

if fetch sub(deg[w],1)=2
push w in S

until S← ∅
return M

gradation and smoothing In these kernels, the computed value of a given
node vi is interpolated from its neighbors N [vi]. However, processing vi and any

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16

In
d
e
p
 (

%
)

contraction iterations

Intel Haswell

shock metivier
shock first-fit

(a) Ratio comparison of our heuristic
(First-fit) and a Monte-Carlo based scheme
(Metivier) on independent nodes extraction.

 80

 85

 90

 95

 100

 105

 110

 0 5 10 15 20 25 30 35

c
e
ll

m
a
tc

h
e
s
 (

%
)

swapping iterations

Intel Haswell

shock round 1
shock round 2
shock round 3

(b) Ratio of matched cells throughout swap-
ping rounds while |V| is decreasing linearly

Fig. 2: Heuristics performance on tasks extraction for contraction and swapping kernels

vj ∈ N [vi] may result in data races. Thus, we aim at extracting a nodal partition
such that no two neighboring nodes will be scheduled concurrently. For that, we
use a fine-grained graph coloring in [1]. In our case, kernels convergence rate
decreases linearly on the number of colors. Thanks to the planarity of the graph,
the practical number of colors remains low (between 5 and 7).

4 Synchronizing for topological updates

In our case, mesh topology is explicitely stored by maintaining incidence lists.
Here, extracting non-conflictual tasks does not avoid data races on topological
data updates. To resolve it, we define an explicit thread synchronization scheme.

cell insertions For the sake of spatial data locality, we store mesh data in
shared flat arrays. Since we don’t use the same pattern for refinement, then
the number of nodes and cells to be inserted cannot be predicted. They can be
stacked locally before being globally copied like in [11, 12], but it would result in
a high amount of data moves. Instead we infer the number of new cells in order
to find the right index range per thread. First, we store the pattern to be applied
for each cell in an array pattern during the filtering step. Then, each thread ti
performs a reduction on pattern within its iteration space (n/p) · [i, i+ 1], with
n the number of tasks and p the number of threads. The result is then stored in
an array offset[i]. Finally a prefix-sum is done on offset to retrieve the right
index ranges per thread for cell insertions.

Table 2: Deferred updates mechanism in [11, 12]
Thread ti stores data of node vk in def op[i][j] list, with j=hash(k) % p.

Finally, each thread ti copy all data in def op[k][i]k=1,p in mesh

updates processed by
co

m
m

it
te

d
b
y

t0 t1 t2 · · · tn−1

t0 def op[0][0] def op[1][0] def op[2][0] · · · def op[n-1][0]
t1 def op[0][1] def op[1][1] def op[2][1] · · · def op[n-1][1]
t2 def op[0][2] def op[1][2] def op[2][2] · · · def op[n-1][2]
...

...
...

...
...

...
tn−1 def op[0][n-1] def op[1][n-1] def op[2][n-1] · · · def op[n-1][n-1]

incidence data updates We use a node-centered data structure: each node
stores the index of cells connected to it. Here, updates may be stacked locally
using the deferred mechanism in [11, 12] (Table 2). Due the huge amount of data
moves, it would increase significantly the overhead of this step (Figure 8). We
use a dual-step synchronization scheme instead. First, cells indices are added
asynchronously in nodal incidence lists (Algorithm 5). For that, threads incre-
ment atomically a nodal offset array deg. Each node is then atomically marked
as to be fixed, since its incidence list may contain obsolete references. Finally,
incidence lists of each marked node are fixed in a separate step (Algorithm 6).

Algorithm 5 step 1: asynch. adds

input: data, n
atomic compare swap(fix[i], 1)
k ← atomic fetch add(deg[i], n)
if n + k exceeds incid[i] capacity then
#pragma omp critical
/* double check pattern */
if not yet reallocated then

realloc incid[i] to twice its capacity
end if
copy data to incid[i][k]

Algorithm 6 step 2: repair sweep

R← ∅ . local to thread
for node vi in mesh in parallel

if fix[i] then
for cell K in incid[i] do

if vi ∈ K then
add K in R

incid[i]← ∅, deg[i]← |R|
sort R and swap with incid[i].

end if

5 Evaluation

Our algorithm is implemented in C++ using OpenMP4 and C++11 capabilities.

benchmark parameters Our code is compiled with the intel compiler suite
(version 15) with -O3 flag enabled. Thread-core affinity is done by setting the
environment variable KMP AFFINITY to scatter on normal mode and compact on

hyperthreading. Benchmarks are run on a numa dual-socket Intel xeon Haswell
E5-2698 v3 machine (2x16 cores at 2.3ghz, 3 cache levels), and an Intel xeon-
phi KNL machine (72 cores at 1.5ghz, 2 cache levels, 4 ht/core). KNL has two
memory: an on-chip MCDRAM at 320 GB/s and a DDR4 at 60 GB/s. We use the
quadrant clustering mode to ease cache misses worst case penalties (Figure 3).

(a) Cache/memory hierarchy in Haswell.
L2/L3 cache latencies ≈ 4.7 ns and 6.4 ns.
Local and remote memory ≈ 18 ns, 40 ns.

(b) KNL quadrant clustering mode. Each
tile consists of a dual-core and a shared L2
cache. Physical addresses are mapped to
tag directories such that memory requests
do not need to go across quadrants.

Fig. 3: Cache and memory organization in Intel Haswell and KNL computing nodes.

We use 3 solution fields with different anisotropy levels for our tests (Figure 4).
For each testcase, an input grid of 1 005 362 cells and 504 100 nodes is used. It is
initially renumbered by a hilbert space-filling curve scheme, but no reordering is
done during the execution. For each run, a single adaptation is performed with 3
rounds. Mesh density factor is set to 0.9, and no metric gradation is performed.

(a) shock (b) gauss (c) waves

Fig. 4: Solution fields used in our benchmarks

strong scaling The mean makespan and scaling efficiency Ep = t1/(p · tp)
are given in Figure 5, with tn the makespan on n threads. Hyperthreading is
systematically used on KNL (4 per core) to hide memory access latency (30 and
28 ns for MCDRAM and DDR4 respectively). We use both MCDRAM and DDR4 by
binding memory through numactl. All testcases behaves similarly and a good
scaling is achieved on both architectures. Surprisingly, there was no significant
improvement in the use of the high bandwidth MCDRAM. Indeed, the algorithm
is not bandwidth-sensitive. The efficiency falls to 30% on KNL on 256 threads due
to high contentions, but scales better than on Haswell on lower number of cores.
Makespan is still improved when using hyperthreading on Haswell, and numa
effects are significantly eased, thanks to a locality-aware data updates scheme.

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64

HT

HT

M
a

k
e
s
p

a
n
 (

s
)

cores

Intel Haswell [1 T/core] vs Intel KNL [4 HT/core]

hsw shock
hsw gauss
hsw waves
KNL shock DDR
KNL shock MCD
KNL gauss MCD
KNL waves MCD
linear

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

HT

E
ff
ic

ie
n

c
y
 (

%
)

cores

Intel Haswell [2 sockets] vs Intel KNL [4 HT/core]

hsw shock
hsw gauss
hsw waves
KNL shock DDR
KNL shock MCD
KNL gauss MCD
KNL waves MCD

Fig. 5: Mean makespan and scaling efficiency on 3 rounds.

overheads per kernel For each kernel, the time spent distribution per step
is given in Figure 6. Overheads related to parallelism extraction and synchro-
nization are depicted in red. These steps do not exceed 15% of the makespan for
all kernels. Furthermore, they are negligible in case of contraction and smooth-
ing. Also, these ratios remain constant despite the number of threads, and scale
at the same rate as other steps. For the refinement, operations are structured
such that no parallelism extraction is required. Moreover, the filtering step does
not require a full consistent mesh topology for adjacency requests, in the sense
that stored incidence lists may contain obsolete references, but each new cell
K : (v0, v1, v2) must be referenced in incidence lists of (vi) ∈ K. For this kernel,
the repair sweep involved in the synchronization scheme is performed once at the
very end of the procedure. For the contraction, the vicinity N [vi] of each node
vi is required by the filtering step in order to find the right vj ∈ N [vi] where
vi should collapse to (even in sequential). Hence, the primal graph is recovered

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
a
ti
o
 (

%
)

cores

Refinement

filter
steiner

split
repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
a
ti
o
 (

%
)

cores

Contraction

primal
filter

indep
merge
repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
a
ti
o
 (

%
)

cores

Swapping

filter
dual

match
flip

repair

 0

 20

 40

 60

 80

 100

2 4 8 16 32

R
a
ti
o
 (

%
)

cores

Smoothing

primal
color
qualit

laplacian

Fig. 6: Time ratio distribution per step for each kernel on Haswell.

at the beginning of each round. This step mainly consist of data accesses but
represents roughly 22% of the overall makespan. It involved a high amount of
cache misses in [10] due to memory indirections when requesting the combina-
torial map data structure. In our case, stencil retrieval involves only one level of
indirection (instead of two), leading to a better scalability (Algorithm 7 and 8).
For swapping, the main overhead is related to graph matching stage with a
mean ratio of 15%. Its convergence is linear to the search depth δG on aug-
menting paths retrievals. This step is highly irregular and is asymptotically in
O(log n) with n the number of vertices of the dual graph. In practice, δG ≈ 4
with static scheduling, and nearly 12 rounds is required for step convergence.
For smoothing, the primal graph is recovered at the beginning of the procedure,
but no synchronization sweep is required since mesh topology remains unchanged.
For this kernel, the unique overhead is related to the graph coloring step. In prac-
tice, a low number of rounds is required for convergence (roughly 3).

Algorithm 7 stencil retrieval of vi

for each K : (p0, p1, p2) ∈ incid[vi] do
if pi = vi then

(j, k) : (i+1 mod 3, i+2 mod 3)
add pj , pk in N [vi]

sort N [vi] and remove duplicates

Algorithm 8 stencil retrieval in [10]

init← vi.edge; cur← init
repeat

add cur.v2 to N [vi]
inv← opp[cur], cur← next[inv]

until cur = init

performance per kernel Task and floating-point operations (flop) rates
per kernel on Haswell are given in Figure 7. Refinement and swapping have
higher task rates since they are both much local and less compute-intensive than
the two others. Refinement involves the vicinity N [K] of each cell K, because
when an edge is split then the two surrounding cells are dissected. However,
the dissection step is purely local because the index of the node to be inserted
is already resolved in the steiner point computation step. Therefore, cells may
be dissected individually. Swapping steps involve the shell of each edge3 to be
flipped which size is constant, whereas contraction and smoothing steps involve
the stencil N [vi] of each node vi, whose size is variable and related to anisotropy.

10
4

10
5

10
6

10
7

10
8

32
2 sockets

64
hyper

 1 2 4 8 16

ta
s
k
s
 /

 s
e

c

threads

Intel Haswell

shock-refine
shock-collapse
shock-swap
shock-smooth

 0.5

 1

 2

 4

 8

 16

 32

 64

32
2 sockets

64
hyper

 1 2 4 8 16

G
F

lo
p

 /
 s

e
c

threads

Intel Haswell

shock-refine
shock-collap
shock-swap
shock-smooth

Fig. 7: Task rate and floating-point operations per second of each kernel on Haswell

All kernels scale well in terms of flop rate. Most of floating-point operations
occur during the filtering step, except for smoothing. This step involves geodesic
distance calculation for refinement and contraction, and cell quality computation
sweep for swapping and smoothing. In our case, the arithmetic intensity (the ra-
tio of flop on the amount of data accesses) remain roughly constant with respect
to the number of threads. Thus data-movement involved by the synchronization
scheme has not a significant impact on flop rate, even on higher number of
threads. Smoothing scales even better since it has higher arithmetic intensity.
In the anisotropic laplacian computation step, coordinates and metric tensor of
a given node vi are interpolated from those of its vicinity N [vi], and reajusted
iteratively such that vi remain inside the geometrical convex hull of N [vi]. Thus,
it involves a better reuse of cached data.

3 The two cells (K1,K2) sharing this edge, and the stencil N [vk] of each vk ∈ Ki

synchronization cost We faithfully implemented the deferred mechanism
used in [11, 12] (Table 2) in order to compare it with our dual-step atomic-based
synchronization scheme for nodal data updates. To reduce numa effects, first-
touch policy is applied and no memory reallocation is performed on both cases.
Makespan and related overheads are given in Figure 8 on Haswell and KNL. Both
schemes scale well, but makespan has doubled in case of the deferred update
scheme. In this case, data movement overhead has a significant impact on total
execution time of the algorithm. Indeed, deferred mechanism overheads are 5
times the overhead of our synchronization scheme for contraction and swapping
kernels.

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64

M
a
k
e

s
p

a
n

 (
s
)

cores

Shock

hsw atomic
hsw deferred
KNL atomic
KNL deferred

 0

 2

 4

 6

 8

 10

 12

refine collapse swap

S
y
n

c
h

ro
n

iz
a

ti
o

n
 t
im

e
 (

s
)

kernels

Shock

hsw atomic
hsw deferred
KNL atomic
KNL deferred

Fig. 8: Cost comparison of atomic-based and deferred synchronization schemes

6 Conclusion

A fine-grained multi-stage algorithm for anisotropic triangular mesh adapta-
tion on manycore and numa architectures is proposed. It is based on explicit
parallelism extraction using fine-grained graph heuristics, and a dual-step syn-
chronization scheme for topological data updates. It follows a fork-join model
and is implemented in C++ using OpenMP4 and auto-vectorization capabilities.
Its scalability is evaluated on both a numa dual-socket Intel Haswell and dual-
memory Intel KNL computing nodes. A good overall scalability is achieved since
a mean efficiency of 48% and 65% is reached on Haswell and KNL on 32 cores.
Due to higher contentions, a lower efficiency (roughly 30%) is achieved on KNL

on 64 cores with 256 threads. Task rate and floating-point operations per sec-
ond scale in a nearly linear way for all kernels. Overheads related to parallelism
extraction as well as synchronization do not exceed 15% of overall makespan.

They remain negligible for contraction and smoothing (5-7%), and scale linearly
on other stages makespan. Further efforts have to be done to reduce the latency-
sensitiveness of the algorithm, and to take advantage of the high bandwidth
on-chip MCDRAM in KNL. Also, a comparison with a task-based version with
work-stealing capabilities would be interesting. It would highlight performance
sensitiveness if whether data locality is privileged at expense of load imbalance
and vice-versa. An extension to a distributed-memory scheme is expected, with
a constraint that the bulk-synchronous property of the algorithm should be pre-
served. In this case, a multi-bulk synchronous parallel bridging model [13] may be
used to theoretically characterize its performance, given bandwidth and latency
at each level of the memory hierarchy.

References

1. Çatalyurek, U., et al.: Graph colouring algorithms for multicore and massively
multithreaded architectures. JPC pp. 576–594 (2012)

2. Chrisochoides, et al.: A multigrain Delaunay mesh generation method for multicore
SMT-based architectures. JPDC pp. 589–600 (2009)

3. Damiand, G., Lienhardt, P.: Combinatorial maps: Efficient data structures for
computer graphics and image processing. A.K.Peters (2014)

4. Del Pino, S.: Metric-based mesh adaptation for 2D Lagrangian compressible flows.
JCP pp. 1793–1821 (2011)

5. Foteinos, et al.: High quality real-time image-to-mesh conversion for finite element
simulations. ICS 27 pp. 233–242 (2013)

6. Freitag, et al.: The scalability of mesh improvement algorithms. IMA Maths pp.
185–212 (1998)

7. Loseille, et al.: Parallel generation of large-size adapted meshes. IMR 24 pp. 57–69
(2015)

8. Métivier, Y., et al.: An optimal bit complexity randomized distributed MIS algo-
rithm. JDC pp. 331–340 (2011)

9. Pingali, et al.: Amorphous data-parallelism in irregular algorithms. Tech. Rep.
09-05, University of Texas (2009)

10. Rakotoarivelo, et al.: Fine-grained locality-aware parallel scheme for anisotropic
mesh adaptation. IMR 25 pp. 123–135 (2016)

11. Rokos: Scalable multithreaded algorithms for mutable irregular data with applica-
tion to anisotropic mesh adaptivity. Ph.D. thesis, Imperial College London (2014)

12. Rokos, et al.: Thread parallelism for highly irregular computation in anisotropic
mesh adaptation. EASC pp. 103–108 (2015)

13. Valiant, L.: A bridging-model for multicore computing. JCSS pp. 154–166 (2011)

