
How to cope with unmeasurable premise variables in
Takagi-Sugeno observer design: Dynamic extension

approach

D. Ichalala, B. Marxb,c, S. Mammara, D. Maquinb,c, J. Ragotb,c

aEvry Val d’Essonne University, IBISC-Lab, 40, rue de Pelvoux, 91020, Evry
Courcouronnes, France (email: dalil.ichalal@ibisc.univ-evry.fr)
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Abstract

In this paper, a new strategy to cope with unmeasurable premise variables in
observer design for Takagi-Sugeno (TS) models is proposed. The guiding princi-
ples are the immersion techniques and auxiliary dynamics generation, allowing
to immerge a given TS system with unmeasured state dependent weighting
functions into a larger TS system with weighting functions depending only on
measured variables. This result relaxes the strong conditions used in the design
of observers for TS systems with unmeasurable premise variables. An example
is provided to illustrate the performances of the proposed approach.
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1. Introduction

For economical or physical reasons, sensors cannot always be used to measure
all the system states, thus observer design is a key point in process control or
supervision. Since the seminal works of Luenberger (1971) or Kalman (1960),
linear estimation has drawn a lot of attention. Unfortunately, the accurate
description of a process generally results in a nonlinear model and nonlinear
state estimation can only be solved for very specific model structures (triangular,
linear with output injection, etc). An appealing way to generalize some linear
tools to nonlinear systems is the TS approach proposed by Takagi and Sugeno
(1985), that is based on an exact rewriting of the nonlinear model, at least on a
compact set of the state space, thanks to the sector nonlinearity transformation
(SNT) (Tanaka and Wang, 2001). Nevertheless, if the nonlinearity of the system
involves the state variables, the premise variables (PV) used for the interpolation
between the linear submodels are unmeasurable and the observer design is no
longer a trivial task. Thus, in most of the proposed results, the PV are assumed
to be known, even if it drastically reduces the validity of the TS approach. In
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the present paper observer design for TS systems with state dependent PV is
addressed.

In the last fifteen years, the problem of state estimation of TS systems
with state dependent PV has been investigated but it remains an open research
problem. The first results, based on the Thau-Luenberger observer (Thau, 1973)
and a Lipschitz assumption, were proposed by Bergsten et al. (2002) and then
relaxed by Ichalal et al. (2010) or extended by Lendek et al. (2009) for TS
cascaded systems. Unfortunately, the admissible Lipschitz constant ensuring
the existence of a solution is often very small which limits the applicability
of the approach. In order to avoid this limitation, a new approach based on
the Differential Mean Value Theorem (DMVT) was given in (Ichalal et al.,
2011). More recently, a new solution aims to reduce the conservativeness of the
Lipschitz approach and the computational complexity of the DMVT approach,
by leaving the asymptotic convergence and seeking to bound the estimation
error within the L2 framework in (Ichalal et al., 2009) or with the quasi Input-
to-State Stability (qISS) in (Ichalal et al., 2012).

Another way to generalize the numerous and efficient linear observer designs
to nonlinear systems is to find coordinate transformations that transform the
original nonlinear system into another one with a particular structure: a lin-
ear system modulo output injection (Krener and Isidori, 1983), a state affine
system, a S-system (Savageau and Voit, 1987), a triangular system (Gauthier
and Kupka, 2001), and then design the observer by mimicking the obtained
structure. Among these techniques one should cite the output injection lin-
earization, introduced by Krener and Isidori (1983) and successfully used by
(Kazantzis and Kravaris, 1998; Besançon, 2007, 1999; Souleiman et al., 2003)
and the immersion or dynamics extension introduced by Claude et al. (1983).
Necessary and sufficient conditions to obtain a linear model by immersion have
been given by Levine and Marino (1986). More recently, Besançon and Ticlea
(2007) have pointed out the difficulty (or even the impossibility) to immerse a
nonlinear system into a linear one and have proposed to generalize the target
model structure from linear to state and input affine.

In the present paper, we propose to combine the two previously mentioned
approaches. First, the original nonlinear system is transformed by immersion.
The goal is to extend the state vector such that the original system is immersed
into a larger state affine system or quasi-LPV (q-LPV) with nonlinearities de-
pending only on measurable signals (inputs and outputs). Then, the SNT is
applied on the extended system to obtain a TS system with measurable PV.
Finally, the observer design is performed on the TS with measurable PV. Com-
pared to existing works using immersion technique, the novelty is that the sought
form, namely the q-LPV formalism, is more generic than the previous ones (e.g.
linear with output injection, observable normal forms, polynomial systems, S-
systems). Moreover, in the proposed coordinate transformation the original
state variables to estimate are the n first components of the extended state vec-
tor. Consequently, no inverse transformation is needed to recover the original
state variables.

The paper is organized as follows. in the second section some backgrounds
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on observer design for TS systems are given and the problem is stated. The
third section is devoted to the main result of the paper: a new observer design
algorithm. Simulations and comparisons with existing results are provided in
the fourth section. Before concluding, a brief discussion is exposed.

2. Preliminaries and problem statement

Let us consider a nonlinear system defined by{
ẋ(t) = f(x(t), u(t))
y(t) = Cx(t)

(1)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny are the system state, input and output
vectors. The general goal is to design an observer providing a state estimate,
denoted x̂(t), based on the knowledge of the system input and output.

With the SNT, (1) is written as a TS system defined by ẋ(t) =
r∑
i=1

hi(ξ(t)) (Aix(t) +Biu(t))

y(t) = Cx(t)
(2)

where the nonnegative functions hi, called the weighting functions, satisfy the
convex sum property (i.e. their sum is equal to 1, for all t) and depend on the
so-called premise variable ξ(t). If the PV is accessible, the following observer
can be used ˙̂x(t) =

r∑
i=1

hi(ξ(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t)
(3)

Since the system (2) and the observer (3) share the same PV, the state esti-
mation error e(t) = x(t) − x̂(t) can easily be written as an autonomous TS
system : ė(t) =

∑r
i=1 hi(ξ(t))(Ai−LiCj)e(t). Then, standard stability analysis

results in sufficient LMI conditions to obtain the observer gains (Tanaka et al.,
1998; Tanaka and Wang, 2001) that have been improved by using relaxed LMI
conditions (Márquez et al., 2014; Guerra et al., 2015; González et al., 2016).

If the PV depend on the state and then are unmeasurable, it cannot be used
in the observer and (3) cannot be constructed. In such a case, the observer does
not share the same VP as the TS system (2) but only the estimated ones, as
follows  ˙̂x(t) =

r∑
i=1

hi(ξ̂(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t)
(4)

Consequently, the state estimation error cannot be written as an autonomous
TS system anymore, but it can be turned into the following pseudo-disturbed
TS system

e(t) =

r∑
i=1

hi(ξ̂(t)) (Ai − LiC) e(t) + δ(t) (5)
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where the perturbation-like term δ(t) is given by

δ(t) =

r∑
i=1

(
hi(ξ)− hi(ξ̂)

)
(Aix(t) +Biu(t)) (6)

It is then clear that, because of the δ(t) term, ensuring the stability of (5) is
much more difficult than for an autonomous TS system and the conservative
Lipschitz, DMVT or qISS approaches have to be used.

In the present paper, a new observer design is proposed in order to avoid
the drawbacks of the Lipschitz, DMVT or qISS approaches by bridging the
estimation of TS systems with unmeasurable PV to the one of TS systems
with measurable PV. More precisely, before using the SNT on the nonlinear
system (1), which generally gives rise to a TS system with unmeasurable PV,
the immersion is used in order to express (1) as a q-LPV system with matrices
depending only on measured variables. Then, the SNT can be used in order
to exactly express the new system in TS form. Finally, since the PV of the
obtained TS model are measurable, the classical observer (3) can be used. In
addition, the proposed approach aims to generate new coordinates that contain
the original state vector and then avoid tedious inverse transformation after
immersion.

3. Main result

In order to link the design of TS observer with estimated PV (4) to the less
conservative design of TS observer with measured PV (3), the following 3-step
procedure is proposed.

Firstly, use auxiliary dynamics to define new coordinate and immerse the
nonlinear system (1) into a q-LPV system whose parameters only depend on
the measured signals u(t) and y(t){

ż(t) = A(u(t), y(t))z(t) +B(u(t), y(t))u(t) + ϕ(u(t), y(t))
y(t) = [C 0]z(t)

(7)

Then, apply the SNT to the q-LPV system to obtain the following TS system
with measured PV, on the compact set U × Y, where u ∈ U and y ∈ Y ż(t) =

r∑
i=1

hi(ξ(t)) (Aiz(t) +Biu(t)) + ϕ(u(t), y(t))

y(t) = [C 0]z(t)
(8)

Finally, design the TS observer
˙̂z(t) =

r∑
i=1

hi(ξ(t)) (Aiẑ(t)+Biu(t)+ϕ(u(t), y(t)))

+Li(y(t)−ŷ(t))
ŷ(t) = [C 0]ẑ(t)

(9)
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The PV ξ(t) of (8) and (9) only depends on measurable variables y(t) and u(t),
then the dynamics of the extended state estimation error ez(t) = z(t) − ẑ(t),
readily is an autonomous TS system with measurable PV. Thus, the complex
observer design for TS systems with unmeasurable PV is avoided. Since the
novelty mainly lies in the first step of the proposed procedure, this step is
detailed hereafter.

3.1. Auxiliary dynamics generation

The technique consists in immersing the state space, x ∈ Rn, of the original
system (1) into a larger state space: z ∈ RN , with N ≥ n. This transformation
only affects the state space, but the input-output map of (1) is preserved. In-
deed, this approach can be seen as the extension of the state vector with new
variables coming from the system nonlinearities. The coordinate transformation
procedure is the following.

Step 1.1. The n first new variables are defined by the original state variables:
zi = xi, for i = 1, ..., n.
Step 1.2. For k = 1, . . . , n, write the time derivative of zk(t) according to (1)
as the following q-LPV system with additive nonlinear term ϕ(u, y)

żk(t) =

n∑
i=1

ak,i(u(t), y(t))zi(t)

+
∑̀
i=n+1

ak,i(u(t), y(t))zi(t) + ϕk(u(t), y(t)) (10)

if ak,i = 0 for i > n, no new variables is needed and the algorithm ends. If new
variables zi with i > n are needed, go to step 1.3.
Step 1.3. For each new variable, compute its time derivative according to
(1), separate all the functions depending only on measured variables y and u
and define the remaining nonlinear functions as new variables zk, k > n. By
differentiating these variables it follows

żk(t) =

k∑
i=1

ak,i(u(t), y(t))zi(t)

+
∑̀
i=k+1

ak,i(u(t), y(t))zi(t) + ϕk(u(t), y(t)) (11)

where zi, i = k + 1, ..., ` denote other defined new variables.
Step 1.4. If the time derivative of the k first state variables, żi(t) for i =
1, . . . , k, depend on new variables z` with ` > k, then go to step 1.2. Else :
algorithm ends.

This procedure is similar to the one presented in (Ticlea, 2006) except for the
first step. In the first step of (Ticlea, 2006), the first variables are initialized as
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the ny system outputs while in the present approach the n system states of (1)
are used. This avoids the computation of the inverse transformation. A similar
idea was introduced by Bernard et al. (2015) for high gain observer design by
Jacobian completion.

Moreover, in the existing results using immersion in nonlinear estimation,
the target model took particular forms such (e.g. linear observable form with
output injection, observable state affine model with output injection, S-systems,
etc). Unfortunately, the computation of the coordinate transformation may be
very difficult for such target models. The proposed algorithm aims to transform
the original system into a more generic form (7) and then relaxes the search
of the adequate transformation. One should also note that this coordinate
transformation is not unique, thus transformation that preserves the properties
of the original system (e.g. observability, detectability) should be preferred.

Remark 1. The previous result can be extended to nonlinear systems affected
by unknown inputs (UI) denoted d(t){

ẋ(t) = f(x(t), u(t)) + l(x(t))d(t)
y(t) = Cx(t)

(12)

If the UI is constant, or more generally a time polynomial function satisfying
d(j)(t) = 0 for a positive integer j, the system state can be augmented with
the j − 1 first derivatives of the UI x̃ = [xT dT . . . (d(j−1))T ]T and the previous
algorithm can be applied. If the UI is not a time polynomial, the obtained q-LPV
system is in the form :{

ẋ(t) = A(u(t), y(t))x(t) +B(u(t), y(t))u(t) + E(u(t), y(t))d(t)
y(t) = Cx(t)

(13)

and it may be possible to design decoupling UI observers after obtaining the TS
model with measurable PV. Classical UI Observer can be designed provided the
following condition holds: rank(CE(u, y)) = rank(E(u, y)), ∀y ∈ Y, ∀u ∈ U .
If this condition is not satisfied, the design proposed by Ichalal and Mammar
(2015) can be used. It consists in using some time derivatives of the output and
the input up to finite orders.

4. Example and comparisons

In this section, the proposed approach is compared to the existing approaches
on the Lorenz system (widely used in signal processing for secured communica-
tion, see Cuomo et al. (1993)) defined by

ẋ1(t) = a(x1(t)− x2(t))
ẋ2(t) = bx1(t)− x2(t)− x1(t)x3(t)
ẋ3(t) = cx3(t) + x1(t)x2(t)
y(t) = x2(t)

(14)

where a = −10, b = 28 and c = − 8
3 .
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4.1. Existing approaches

In this first subsection, some existing observer design approaches are applied,
namely the Lipschitz, the DMVT and q-ISS are here detailed.

Lipschitz approach. In the so-called Lipschitz approach, proposed in
(Bergsten et al., 2002; Lendek et al., 2009), the perturbation-like term is as-
sumed to be Lipschitz in the state estimation error. The system (14) is expressed
as the following quasi-LPV form to apply the SNT ẋ(t) =

 a −a 0
b −1 −x1(t)
0 x1(t) c

x(t)

y(t) =
[

0 1 0
]
x(t)

(15)

Defining ξ(t) = x1(t) and assuming that ξmin ≤ ξ(t) ≤ ξmax, the obtained TS
system is

ẋ(t) =

2∑
i=1

hi(ξ(t))Aix(t) (16)

where h1(ξ(t)) = ξ(t)−ξmin

ξmax−ξmin
, h2(ξ(t)) = ξmax−ξ(t)

ξmax−ξmin
and

A1 =

 a −a 0
b −1 −ξmax

0 ξmax c

 , A2 =

 a −a 0
b −1 −ξmin

0 ξmin c


The Lipschitz observer is (4) with Bi = 0, where the PV is the estimated first
state x̂1(t). The state estimation error e(t) obeys to (5) where the perturbation-
like term (6) is defined by

δ(t) =

0 0 0

0 0 −
(
ξ(t)− ξ̂(t)

)
0 ξ(t)− ξ̂(t) 0

x(t) (17)

With ξ(t) = x1(t), it readily follows that
∣∣∣ξ(t)− ξ̂(t)∣∣∣ ≤ ‖e(t)‖. The state

variables of the Lorenz system are bounded by |x2(t)| < σ2 and |x3(t)| < σ3
with σ3 > σ2. Thus the term δ(t) can be bounded as follows

‖δ(t)‖ < γ ‖e(t)‖ (18)

where γ = σ3 is the Lipschitz constant of δ(t). The bounds of the state variable
x1(t), obtained in simulation for x(0) = [0 0 0]T , allow to chose the following
bounds on the PV: ξmin = −20 and ξmax = 20 and the real Lipschitz constant
is γ = 48. According to these assumptions, the sufficient observer existence
conditions are given by the set of 3 LMIs of the Theorem 1 in (Bergsten et al.,
2002). In this procedure, the maximum admissible Lipschitz constant γ∗ can
be computed in the LMI optimization. Using the YALMIP and SEDUMI solver

7



(Lofberg, 2004), it is found to be γ∗ = 2.6667. Since the real Lipschitz constant
γ of the system is greater that the maximum admissible one γ∗, no solution can
be found and the observer design fails.

Differential Mean Value Theorem approach. Following the approach
proposed by Ichalal et al. (2011), the TS model obtained in the previous section
is used. The difference compared to the Lipschitz approach is in the way of
handling the term δ(t) (17). This term can be expressed as follows

δ(t) =

 0
−x3(t)
x2(t)

(ξ(t)− ξ̂(t)) (19)

Since the nonlinear function ξ(t) = x1(x) is differentiable and denoting ξ̂(t) =
x̂1(t), the DMVT states the existence of a constant vector c ∈]x, x̂[ such that

ξ(t)− ξ̂(t) = ξ(x)− ξ(x̂) =
∂ξ

∂xT
(c) (x− x̂) (20)

Since ξ(t) = x1(t), it follows that ∂ξ
∂xT = [1 0 0] and δ(t) becomes

δ(t) =

 0 0 0
−x3(t) 0 0
x2(t) 0 0

 e(t) (21)

The state variables x2(t) and x3(t) are bounded, thus the sector nonlinearity
approach can be applied to (21) to obtain the following TS writing of δ(t)

δ(t) =

4∑
j=1

vj (x2(t), x3(t))Aje(t) (22)

and the state estimation error dynamic (5) becomes an autonomous TS system

ė(t) =

2∑
i=1

4∑
j=1

hi(ξ̂(t))vj (x2(t), x3(t)) (Ai +Aj − LiC) e(t) (23)

Using a quadratic Lyapunov function, the stability analysis of (23) leads to the
following LMI conditions, with P = PT > 0

(Ai +Aj)T P + P (Ai +Aj)− CTKT
i −KiC < 0 (24)

for i = 1, 2 and j = 1, . . . , 4. The observer gains are given by Li = P−1Ki.
Considering the previous numerical values: −20 ≤ x1 ≤ 20, −30 ≤ x2 ≤ 30 and
0 ≤ x3 ≤ 50, a solution to the set of 8 LMIs (24) is obtained and the observer
is designed. Even if the compact set X is enlarged, a solution is found and thus
outperforms the Lipschitz approach.
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Quasi-ISS approach In the quasi-ISS approach (Ichalal et al., 2012), the
same observer (4) is considered. The difference with the Lipschitz and DMVT
approaches is that the term δ(t) is considered as an external bounded perturba-
tion. Following (Ichalal et al., 2012), a solution ensuring ISS is found by solving
3 LMIs.

4.2. Proposed approach with auxiliary dynamics

Before applying the SNT to the original system (14), the proposed algorithm
is first applied.
Step 1.1. Define the new variables zi(t) = xi(t), for i = 1, . . . , 3.
Step 1.2. The time derivatives of the new variables are ż1(t) = a(z1(t)− z2(t))

ż2(t) = bz1(t)− z2(t)− z1(t)z3(t)
ż3(t) = cz3(t) + z1(t)z2(t)

(25)

Two nonlinearities z1(t)z3(t) and z1(t)z2(t) appear in (25). The second one
is already in the adequate form i.e. y(t)z1(t), but, the first one depends on
unknown state variables. A new variable is defined by z4(t) = z1(t)z3(t).
Step 1.3. The time derivative of z4(t) is

ż4(t) = (a+ c)z4(t)− ay(t)z3(t) + y(t)z21(t) (26)

In (26), a new nonlinearity appears and defines a new variable z5(t) = z21(t).
Step 1.3. The time derivative of z5(t) is

ż5(t) = 2az5(t)− 2ay(t)z1(t) (27)

Step 1.4. No new variables need to be defined. End.
With the proposed coordinate change z1(t) = x1(t), z2(t) = x2(t), z3(t) =

x3(t), z4(t) = x1(t)x3(t) and z5(t) = x21(t), the original system (14) can be
immersed into the larger (7) with B(u(t), y(t)) = 0, ϕ(u(t), y(t)) = 0, C = [0 1 0]
and

A(u(t), y(t)) =


−10 10 0 0 0
28 −1 0 −1 0
y(t) 0 − 8

3 0 0
0 0 10y(t) − 38

3 y(t)
20y(t) 0 0 0 −20

 (28)

where A(u(t), y(t)) only depends on the measured variable y(t). Since ξmin ≤
y(t) ≤ ξmax, the following TS system is obtained. ż(t) =

2∑
i=1

hi(y)Aiz(t)

y(t) = Cz(t)
(29)
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with h1(y(t)) = y(t)−ξmin

ξmax−ξmin
, h2(y(t)) = ξmax−y(t)

ξmax−ξmin
and

A1 =


−10 10 0 0 0
28 −1 0 −1 0
ymax 0 − 8

3 0 0
0 0 10ymax − 38

3 ymax

20ymax 0 0 0 −20



A2 =


−10 10 0 0 0
28 −1 0 −1 0
ymin 0 − 8

3 0 0
0 0 10ymin − 38

3 ymin

20ymin 0 0 0 −20

 (30)

Note that (29) is equivalent to (14) in a compact set of the state space. The
design of the TS observer (9) is now trivial by classical LMI optimization. Since,
the extended state estimation error ez(t) = z(t)− ẑ(t) obeys to

ėz(t) =

2∑
i=1

hi(y(t)) (Ai − LiC) ez(t) (31)

its convergence to zero is ensured by solving the two LMIs

PAi −KiC +ATi P − CTKi < 0, i = 1, 2 (32)

and the observer gains are given by Li = P−1Ki (Tanaka and Wang, 2001). Note
that, once z(t) is estimated, the original state estimation directly follows from
x̂i(t) = ẑi(t), for i = 1, . . . , 3, without any inverse transformation. Compared to
the Lipschitz-based approach, the present approach avoids the computation of
the Lipschitz constant and reduces the conservatism related to the corresponding
LMIs.

Using the previously given numerical values, the LMIs (32) are solved and
the observer gains are given by

L1 = 103


−0.129
0.1817
0.0125
−9.841
0.2234

 , L2 = 103


−0.129
0.1817
−0.0125
−9.840
−0.2234


The Figure 1 illustrates the asymptotic state estimation and the Figure 2 depicts
the state estimation errors.

It can be seen that the proposed approach based on auxiliary dynamics out-
performs the three classical approaches (Lipschitz, MVT, qISS). In terms of
numerical complexity, only 2 LMIs are needed. In addition, asymptotic conver-
gence is obtained compared to the qISS approach where only bounded error is
guaranteed. Finally, in the previous approaches, high gains may be obtained
since the objective is to counteract the nonlinear term δ(t) while in the proposed
approach the gains remain small since no δ(t) needs to be counteracted.
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Figure 1: Original state variables (blue lines) and estimated ones (red lines)

5. Discussion

The proposed result aims to extend the system dynamics in order to obtain
a TS model with measurable PV. However, the transformation presented in the
algorithm may fail to provide the adequate system due to an infinite number of
iterations. In order to illustrate this issue, let us consider the following system ẋ1(t) = x1(t)x2(t)

ẋ2(t) = −x1(t)− x22(t)
y(t) = x1(t)

(33)

It is clear that directly applying the SNT inevitably leads to a TS system with
a PV depending on the unmeasured state x2(t). Unfortunately, the proposed
procedure also fails to provide a TS system with measurable PV. Indeed, the
number of iterations is infinite meaning that the algorithm does not converge.
The first step of the algorithm gives z1(t) = x1(t) and z2(t) = x2(t). The time
derivative of z1(t) is under the form ż1(t) = f1(y(t))z(t) since it is given by

ż1(t) = y(t)z2(t) (34)

Considering the second nonlinearity, the algorithm suggests to define the new
variable z3(t) = z22(t) and its time derivative is

ż3(t) = −2z1(t)z2(t)− 2z32(t) = −2y(t)z2(t)− 2z32(t) (35)

Since a new nonlinearity appears in (35), the new variable z4(t) = z32(t) is
defined and its time derivative involves a new nonlinearity z42(t)... and so on.
Then the algorithm does not stop and fails to provide a solution. Some tougher
new variable definitions may be used (here, defining z3(t) = z21(t)z22(t) leads to
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Figure 2: State estimation errors

ż3(t) = −2y3(t)z2(t) and a solution is obtained with N = 3) but they should
be adapted to each particular case and then is out of the scope of the present
study.

One may have noticed that the Lorenz system is a polynomial one Savageau
and Voit (1987) and may know that the SoS (Sum-of-Squares) approach ini-
tiated by Tanaka et al. (2009); Narimani and Lam (2010) is widely used but
unfortunately the case of unmeasurable premise variables is not treated in most
of the existing works on observer design Seo et al. (2011); Han et al. (2017),
only Sala et al. (2011) considered this case but proposed a local result.

6. Conclusion

In the present paper, the problem of observer design for nonlinear systems
via TS systems is investigated. It is shown that using auxiliary dynamics and
immersion techniques before the transformation of the original nonlinear system
into a TS one is interesting to avoid state dependent premise variables and thus
ease the observer design. The proposed algorithm consists in immersing the
original nonlinear system in a larger system while preserving the input-output
map. Then applying the sector nonlinearity transformation, the obtained system
is transformed in TS system with measurable premise variables. The provided
example clearly illustrates the effectiveness of the proposed approach.
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