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Abstract

Despite the well-known limitations of Optimal Interpolation (OI), it remains

the conventional method to interpolate Sea Level Anomalies (SLA) from

altimeter-derived along-track data. In consideration of the recent develop-

ments of data-driven methods as a means to better exploit large-scale obser-

vation, simulation and reanalysis datasets for solving inverse problems, this

study addresses the improvement of the reconstruction of higher-resolution

SLA fields using analog strategies. The reconstruction is stated as an ana-

log data assimilation issue, where the analog models rely on patch-based and

EOF-based representations to circumvent the curse of dimensionality. We im-

plement an Observation System Simulation Experiment in the South China

sea. The reported results show the relevance of the proposed framework with

a significant gain in terms of root mean square error for scales below 100km.

We further discuss the usefulness of the proposed analog model as a means
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to exploit high-resolution model simulations for the processing and analysis

of current and future satellite-derived altimetric data.

Keywords: Analog Data Assimilation, Sea Level Anomaly, Sea Surface

Height, Interpolation, Data-driven methods

1. Introduction1

The past twenty years have witnessed a deluge of ocean satellite data, such2

as sea surface height, sea surface temperature, ocean color, ocean current,3

sea ice, etc. This has helped building big databases of valuable information4

and represents a major opportunity for the interplay of ideas between ocean5

remote sensing community and the data science community. Exploring ma-6

chine learning methods in general and non-parametric methods in particular7

is now feasible and is increasingly drawing the attention of many researchers8

(Zhang et al., 2016; Lary et al., 2016).9

More specifically, analog forecasting (Lorenz, 1969) which is among the10

earliest statistical methods explored in geoscience benefits from recent ad-11

vances in data science. In short, analog forecasting is based on the assump-12

tion that the future state of a system can be predicted throughout the succes-13

sors of past (or simulated) similar situations (called analogs). The amount of14

currently available remote sensing and simulation data offers analog methods15

a great opportunity to catch up their early promises. Several recent works16

involving applications of analog forecasting methods in geoscience fields con-17

tribute in the revival of these methods, recent applications comprise the pre-18

diction of soil moisture anomalies (McDermott and Wikle, 2015), the predic-19

tion of sea-ice anomalies (Comeau et al., 2017), rainfall nowcasting (Atencia20
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and Zawadzki, 2015), stochastic weather generators (Yiou, 2014), etc. One21

may also cite methodological developments such as dynamically-adapted ker-22

nels (Zhao and Giannakis, 2014a) and novel parameter estimation schemes23

(Horton et al., 2017). Importantly, analog strategies have recently been ex-24

tended to address data assimilation issues within the so-called analog data25

assimilation (AnDA) (Lguensat et al., 2017), where the dynamical model26

is stated as an analog forecasting model and combined to state-of-the-art27

stochastic assimilation procedures such as Ensemble Kalman filters. The re-28

cent applications to high-dimensional fields in Fablet et al. (2017) provide29

the methodological background for this study.30

Producing time-continuous and gridded maps of Sea Surface Height (SSH)31

is a major challenge in ocean remote sensing with important consequences32

on several scientific fields from weather and climate forecasting to opera-33

tional needs for fisheries management and marine operations (e.g. Hardman-34

Mountford et al. (2003)). The reference gridded SSH product commonly used35

in the literature is distributed by the Copernicus Marine and Environment36

Monitoring Service (CMEMS) (formerly distributed by AVISO). This prod-37

uct relies on the interpolation of irregularly-spaced along-track data using an38

Optimal Interpolation (OI) method (Le Traon et al., 1998; Bretherton et al.,39

1976). While OI is relevant for the retrieval of horizontal scales of SSH fields40

greater than ≈ 100km, its Gaussian assumptions cause the small scales of the41

SSH fields to be smoothed. This limitation makes it impossible to resolve42

finer-scale processes (typically from a few tens of kilometers to ≈ 100km)43

which may be revealed by along-track altimetric data. This has led to a44

variety of research studies to improve the reconstruction of the altimetric45
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fields. One may cite both methodological alternatives to OI, for instance46

locally-adapted convolutional models (Fablet et al., 2016) and variational as-47

similation schemes using model-driven dynamical priors (Ubelmann et al.,48

2014), as well as studies exploring the synergy between different sea surface49

tracers, especially the synergy between SSH and SST (Sea Surface Temper-50

ature) fields and Surface Quasi-Geostrophic dynamics (Fablet et al., 2016;51

Klein et al., 2009; Isern-Fontanet et al., 2006, 2014; Turiel et al., 2009b,a).52

In this work, we build upon our recent advances in analog data assimi-53

lation and its application to high-dimensional fields (Lguensat et al., 2017;54

Fablet et al., 2017). We develop an analog data assimilation model for the55

reconstruction of SLA fields from along-track altimeter data. It relies on a56

patch-based and EOF-constrained representation of the SLA fields. Using57

OFES numerical simulations (Masumoto et al., 2004; Sasaki et al., 2008),58

we design an Observation System Simulation Experiment (OSSE) for a case-59

study in the South China sea using real along-track sampling patterns of60

spaceborne altimeters. Using the resulting groundtruthed dataset, we per-61

form a qualitative and quantitative evaluation of the proposed scheme, in-62

cluding comparisons to state-of-the-art schemes.63

The remainder of the paper is organized as follows: Section 2 presents the64

different datasets used in this paper to design an OSSE, Section 3 gives in-65

sights on the classical methods used for mapping SLA from along track data,66

Section 4 introduces the proposed analog data assimilation model. Experi-67

mental results for the considered OSSE are shown in Section 5, and Section68

6 further discuss the key aspects of this work.69
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2. Data: OFES (OGCM for the Earth Simulator)70

An Observation System Simulation Experiment (OSSE) based on numer-71

ical simulations is considered to assess the relevance of the proposed analog72

assimilation framework. Our OSSE uses these numerical simulations as a73

groundtruthed dataset from which simulated along-track data are produced.74

We describe further the data preparation setup in the following sections.75

2.1. Model simulation data76

The Ocean General Circulation Model (OGCM) for the Earth Simulator77

(OFES) is considered in this study as the true state of the ocean. The simu-78

lation data is described in Masumoto et al. (2004); Sasaki et al. (2008). The79

coverage of the model is 75◦S-75◦N with a horizontal resolution of 1/10◦. 3480

years (1979-2012) of 3-daily simulation of SSH maps are considered, we pro-81

ceed to a subtraction of a temporal mean to obtain SLA fields. In this study,82

our region of interest is located in the South China Sea (105◦E to 117◦E, 5◦N83

to 25◦N). This dataset is split into a training dataset corresponding to the84

first 33 years (4017 SLA maps) and a test dataset corresponding to the last85

year of the time series (122 SLA maps).86

2.2. Along track data87

We consider a realistic situation with a high rate of along track data.88

More precisely we use along-track data positions registered in 2014 where89

4 satellites (Jason2, Cryosat2, Saral/AltiKa, HY-2A) were operating. Data90

is distributed by Copernicus Marine and Environment Monitoring Service91

(CMEMS).92
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Figure 1: An example of a ground-truth SLA field in the considered region and its asso-

ciated simulated pseudo-along track.

From the reference 3-daily SLA dataset and real along-track data posi-93

tions, we generate simulated along-track data from the sampling of a ref-94

erence SLA field: more precisely, for a given along-track point, we sample95

the closest position of the 1/10◦ regular model grid at the closest time step96

of the 3-daily model time series. As we consider a 3-daily assimilation time97

step (see Section 2.1 for details), we create a 3-daily pseudo-observation field,98

to be fed directly to the assimilation model. As sketched in Figure 2, for a99

given time t, we combine all along-track positions for times t− 1,t and t+ 1100

to create an along-track pseudo-observation field at time t. We denote by101

s3dAT the simulated 3-daily time series of along-track pseudo-observation102

fields. An example of these fields is given in Figure 1.103
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Figure 2: Sketch of the creation of simulated along-track data at a given time t

3. Problem statement and related work104

3.1. Data assimilation and optimal interpolation105

Data assimilation consists in estimating the true state of a physical vari-106

able x(t) at a specific time t, by combining i) equations governing the dynam-107

ics of the variable, ii) available observations y(1, .., T ) measuring the variable108

and iii) a background or first guess on its initial state xb. The estimated state109

is generally called the analyzed state and noted by xa. Data assimilation is110

a typical example of inverse problems, and similar formulations are known111

to the statistical signal processing community through optimal control and112

estimation theory (Bocquet et al., 2010). We adopt here the unified notation113

of Ide et al. (1997) and formulate the problem as a stochastic system in the114

following:115
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{
x(t) =M(x(t− 1)) + η(t), (1)

y(t) = H(x(t)) + ε(t). (2)

Equation 1 represents the dynamical model governing the evolution of state116

x through time, while η is a Gaussian centered noise of covariance Q that117

models the process error. Equation 2 explains the relationship between the118

observation y(t) and the state to be estimated x(t) through the operator119

H. The uncertainty of the observation model is represented by the ε error,120

considered here to be Gaussian centered and of covariance R. We assume that121

ε and η are independent and that Q and R are known. Two main approaches122

are generally considered for the mathematical resolution of the system (1)-123

(2), namely, variational data assimilation and stochastic data assimilation.124

They differ in the way they infer the analyzed state xa, the first is based on125

the minimization of a certain cost function while the latter aims to obtain126

an optimal a posteriori estimate. We encourage the reader to consider the127

book of Asch et al. (2016) for detailed insights on the various aspects and128

methods of data assimilation.129

A popular data assimilation algorithm that is largely used in the literature130

to grid sea level anomalies from along-track data is called Optimal Interpo-131

lation (OI) (e.g. Le Traon et al. (1998); De Mey and Robinson (1987)), this132

algorithm is also the method adopted in CMEMS altimetry product. Opti-133

mal Interpolation (OI) aims at finding the Best Linear Unbiased Estimator134

(BLUE) of a field x given irregularly sampled observations y in space and135

time and a background prior xb. The multivariate OI equations were derived136

in Gandin (1966) for meteorology and numerous applications in oceanog-137

raphy have been reported since the early work of Bretherton et al. (1976).138
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Supposing that the background state xb has covariance B, and the observa-139

tion operator is linear H = H, the analyzed state xa and the analyzed error140

covariance Pa can be calculated using the following OI set of equations:141


K = BH(R + HBHT )−1 called the Kalman gain (3)

xa = xb + K(y−Hxb) (4)

Pa = (I−KH)B (5)

It worths mentioning that Lorenc (1986) showed that OI is closely related142

to the 3D-Var variational data assimilation algorithm which obtains xa by143

minimizing the following cost function:144

J(x) = (x− xb)TB−1(x− xb) + (y−Hx)TR−1(y−Hx) (6)

While OI had been shown to successfully retrieve large-scale structures in145

the ocean (≥ 150km), a well-known limitation of OI is that the Gaussian-146

like covariance error matrices smooths out the small-scale information (e.g.147

mesoscale eddies) (Ubelmann et al., 2014). OI would then underexploit high148

resolution altimeter data in the context of future altimetry missions, which149

urges to put efforts in trying to improve the method (e.g. Escudier et al.150

(2013a)) or find other alternatives.151

3.2. Analog data assimilation152

Endorsed by the recent development in data-driven methods and data153

storage capacities, the Analog Data Assimilation (AnDA) was introduced as154

an alternative to classical model-driven data assimilation under one or more155

of the following situations (Lguensat et al., 2017):156
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• The model is inconsistent with observations157

• The cost of the model integration is high computationally158

• (mandatory) The availability of large datasets of past dynamics of the159

variables to be estimated. These datasets are hereinafter called catalogs160

and denoted by C. The catalog is organized in a two-column dictionary161

where each state of the system is associated with its successor in time,162

forming a set of couples (Ai,Si) where Ai is called the analog and Si163

its successor.164

Given the considerations above, AnDA resorts to evaluating filtering,165

resp. smoothing, posterior likelihood, i.e. the distribution of the state to166

be estimated x(t) at time t, given past and current observations y(1, .., t),167

resp. given all the available observation y(1, .., T ). This evaluation relies on168

the following state-space model:169

{
x(t) = F(x(t− 1)) + η(t), (7)

y(t) = H(x(t)) + ε(t). (8)

The difference between AnDA and classical data assimilation resides in170

the transition model equation 7. The counterpart of a model-driven operator171

M of Equation 1 is here the operator F which refers to the considered data-172

driven operator, so called, the analog forecasting operator. This operator173

makes use of the available catalog C and assumes that the state forecast can174

be inferred from similar situations in the past. Provided the definitions of the175

analogs and successors given above, the derivation of this operator resorts176

to characterizing the transition distribution i.e. p(x(t)|x(t − 1)). Following177

Lguensat et al. (2017), a Gaussian conditional distribution is adopted:178
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x(t)|x(t− 1) ∼ N (µt,Σt) (9)

where N (µt,Σt) is a Gaussian distribution of mean µt and covariance Σt.179

These parameters of the Gaussian distribution are calculated using the result180

of aK nearest neighbors search. TheK nearest neighbors (analogs)Ak∈(1,..,K)181

of state x(t−1) and their successors Sk∈(1,..,K), along with a weight associated182

to each pair (Ak,Sk) are used to calculate µt and Σt, the forecast state x(t)183

is then sampled from N (µt,Σt). The weights are defined using a Gaussian184

kernel KG.185

KG (u, v) = exp

(
−‖u− v‖

2

σ

)
, (10)

Scale parameter σ is locally-adapted to the median value of the K distances186

‖x(t − 1) − Ak‖2 to the K analogs. Other types of kernels might be con-187

sidered (e.g. Zhao and Giannakis (2014b); McDermott and Wikle (2015)),188

investigating kernel choice is out of the scope of this paper.189

The mean and the covariance of the transition distribution might be cal-190

culated following several strategies. We consider in this work the three analog191

forecasting operators introduced in AnDA (Lguensat et al., 2017):192

• Locally-constant operator: Mean µt and covariance Σt are given by193

the weighted mean and covariance of the K successors Sk∈(1,..,K).194

• Locally-incremental operator: Here, the increments between the K195

analogs and their corresponding successors are calculated Sk∈(1,..,K) −196

Ak∈(1,..,K). The weighted mean of the K increments is then added to197
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the x(t− 1) to obtain µt. While Σt results in the weighted covariance198

of these differences.199

• Locally-linear operator: A weighted least-square estimation of the200

linear regression of the state at time t given the state at time t − 1 is201

performed based on the K pairs (Ak,Sk). The parameters of the linear202

regression are then applied to state x(t−1) to obtain µt. Covariance Σt203

is represented by the covariance of the residuals of the fitted weighted204

linear regression.205

The application of the AnDA framework faces the curse of dimensionality206

i.e. the search of analogs is highly affected by the dimensionality of the207

problem and can be irrelevant for dimensions above 20 (Lguensat et al.,208

2017). As proposed in Fablet et al. (2017), the extension of AnDA models to209

high-dimensional fields may then rely on turning the global assimilation issue210

into a series of lower-dimensional ones. We consider here an approach similar211

to Fablet et al. (2017) using a patch-based and EOF-based representation of212

the 2D fields, i.e. the 2D fields are decomposed into a set of overlapping213

patches, each patch being projected onto an EOF space. Analog strategies214

then apply to patch-level time series in the EOF space.215

Overall, as detailed in the following section, the proposed analog data216

assimilation model for SLA fields relies on three key components: a patch-217

based representation of the SLA fields, the selection of a kernel to retrieve218

analogs and the specification of a patch-level analog forecasting operator.219
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4. Analog reconstruction for altimeter-derived SLA220

4.1. Patch-based state-space formulation221

As stated above, OI may be considered as an efficient model-based method222

to recover large-scale structures of SLA fields. Following Fablet et al. (2017),223

this suggests considering the following two-scale additive decomposition:224

X = X̄ + dX + ξ (11)

where X̄ is the large-scale component of the SLA field, typically issued from225

an optimal interpolation, dX the fine-scale component of the SLA field we226

aim to reconstruct and ξ remaining unresolved scales.227

The reconstruction of field dX involves a patch-based and EOF-based228

representation. It consists in regarding field dX as a set of P × P overlap-229

ping patches (e.g. 2◦ × 2◦). This set of patches is referred to as P , and we230

denote by Ps the patch centered on position s. After building a catalog CP231

of patches from the available dataset of residual fields X − X̄ (see Section232

3.2), we proceed to an EOF decomposition of each patch in the catalog. The233

reconstruction of field dX(Ps, t) at time t is then stated as the analog assim-234

ilation of the coefficients of the EOF decomposition in the EOF space given235

an observation series in the patch space. Formally, dX(Ps, t) decomposes as236

a linear combination of a number NE of EOF basis functions:237

dX(Ps, t) =

NE∑
k=1

αk(s, t)EOFk (12)

with EOFk the kth EOF basis and αk(s, t) the corresponding coefficient for238

patch Ps at time t. Let us denote by Φ(Ps, t) the vector of the NE coefficients239
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αk(s, t). This vector represents the projection of dX(Ps, t) in the lower-240

dimensional EOF space.241

4.2. Patch-based analog dynamical models242

Given the considered patch-based representation of field dX, the proposed243

patch-based analog assimilation scheme involves a dynamical model stated244

in the EOF space. Formally, Equation 9 leads to the following Gaussian245

conditional distribution in the EOF space246

Φ(Ps, t)|Φ(Ps, t− 1) ∼ N (µ(s, t),Σ(s, t)) (13)

We consider the three analog forecasting operators presented in Section 3.2,247

namely, the locally-constant, the locally incremental and the locally-linear.248

The calculation of the weights associated to each analog-successor pair relies249

on a Gaussian kernel KG (Equation 10). The search for analogs in the NE-250

dimensional patch space (in practice, NE ranges from 5 to 20) ensures a better251

accuracy in the retrieval of relevant analogs compared to a direct search in252

the high-dimensional space of state dX. It also reduces the computational253

complexity of the proposed scheme.254

Another important extension of the current study is the possibility of ex-255

ploiting auxiliary variables with the state vector Φ in the analog forecasting256

models. Such variables may be considered in the search for analogs as well as257

regression variables in locally-linear analog setting. Regarding the targeted258

application to the reconstruction of SSH fields and the proposed two-scale259

decomposition (Equation 11), two types of auxiliary variables seem to be260

of interest: the low-resolution component X̄ to take into account inter-scale261
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relationship (Fablet et al., 2016), and Sea Surface Temperature (SST) with262

respect to the widely acknowledged SST-SSH synergies (Fablet et al., 2016;263

Klein et al., 2009; Isern-Fontanet et al., 2014). We also apply patch-level264

EOF-based decompositions to include both types of variables in the consid-265

ered analog forecasting models (Equation 13).266

4.3. Numerical resolution267

Given the proposed analog assimilation model, the proposed scheme first268

relies on the creation of patch-level catalogs from the training dataset. This269

step requires the computation of a training dataset of fine scale data dXtraining,270

this is done by subtracting a large-scale component X̄training from the origi-271

nal training dataset. Here, we consider the large-scale component of training272

data to be the result of a global1 EOF-based reconstruction using a number273

of EOF components that retains 95% of the dataset variance, which accounts274

for horizontal scales up to ∼ 100km. This global EOF-based decomposition275

provides a computationally-efficient means for defining large-scale component276

X̄. This EOF-based decomposition step is followed by the extraction of over-277

lapping patches for all variables of interest, namely X̄training, dXtraining and278

potential auxiliary variables, and the identification of the EOF basis func-279

tions from the resulting raw patch datasets. This leads to the creation of a280

patch-level catalog CP from the EOF-based representations of each patch.281

Given the patch-level catalog, the algorithm applied for the mapping SLA282

fields from along-track data, referred to PB-AnDA (for Patch-Based AnDA),283

1By global, we mean here an EOF decomposition over the entire case study region, by

contrast to the patch-level decomposition considered in the analog assimilation setting.
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involves the following steps:284

• the computation of the large-scale component X̄, here, we consider285

the result of optimal interpolation (OI) projected onto the global EOF286

basis functions.287

• the decomposition of the case study region into overlapping P × P288

patches, here, 20× 20 patches289

• For each patch position s, the application of an analog data assimilation290

scheme, namely the Analog Ensemble Kalman Smoother (AnEnKS)291

(Lguensat et al., 2017), for patch Ps of field dX. As stated in (13), the292

assimilation is performed in the EOF space, i.e. for EOF decomposition293

Φ(Ps, t), using the operator derived from EOF-based reconstruction294

(12) and decomposition (11) as observation model H in (8) and the295

patch-level training catalog described in the previous section. In the296

analog forecasting setting, The search for analogs is restricted to patch297

exemplars in the catalog within a local spatial neighborhood (typically298

a patch-level 8-neighborhood), except for patches along the seashore299

for which the search for analogs is restricted to patch exemplars at the300

same location.301

• the reconstruction of fields dX from the set of assimilated patches302

{dX(Ps, ·)}s. This relies on a spatial averaging over overlapping patches303

(here, a 5-pixel overlapping in both directions). In practice, we do not304

apply the patch-level assimilation to all grid positions. Consequently,305

the spatial averaging may result in blocky artifacts. We then apply306
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Figure 3: Sketch of the proposed patch-based Analog Data Assimilation (PB-AnDA). The

left block details the construction of the patch-based catalogs from the training dataset.

The right block illustrates the process of obtaining the large-scale component of the SLA

reconstructed field. The orange dashed rectangle represents the application of the AnDA

using the catalog and the fine-scale observations. Finally, the green dashed rectangle shows

the final addition operation that yields the reconstructed SLA field.

a patchwise EOF-based decomposition-reconstruction with a smaller307

patch-size (here, 17× 17 patches) to remove these blocky artifacts.308

• the reconstruction of fields X as X̄ + dX.309

5. Results310

We evaluate the proposed PB-AnDA approach using the OSSE presented311

in Section 2. We perform a qualitative and quantitative comparison to state-312

of-the-art approaches. We first describe the parameter setting used for the313
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PB-AnDA as well as benchmarked models, namely OI, an EOF-based ap-314

proach (Ping et al., 2016) and a direct application of AnDA at the region315

level. We then report numerical experiments for noise-free and noisy ob-316

servation data as well the relevance of auxiliary variables in the proposed317

PB-AnDA scheme.318

5.1. Experimental setting319

We detail below the parameter setting of the models evaluated in the320

reported experiments, including the proposed PB-AnDA scheme:321

• PB-AnDA: We consider 20× 20 patches with 15-dimensional EOF de-322

compositions (NE = 15), which typically accounts for 99% of the data323

variance for the considered dataset. The postprocessing step exploits324

17 × 17 patches and a 15-dimensional EOF decomposition. Regard-325

ing the parametrization of the AnEnKS procedure, we experimentally326

cross-validated the number of nearest neighbors K to 50, the number327

of ensemble members nensemble to 100 and the observation covariance328

error in Equation 8 to R = 0.001.329

• Optimal Interpolation: We apply an Optimal Interpolation to the pro-330

cessed along-track data. It provides the low-resolution component for331

the proposed PB-AnDA model and a model-driven reference for eval-332

uation purposes. The background field is a null field. We use a Gaus-333

sian covariance model with a spatial correlation length of 100km and334

a temporal correlation length of 15 days (± 5 timesteps since our data335

is 3-daily). These choices result from a cross-validation experiment.336
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• VE-DINEOF: We apply a second state-of-the-art interpolation scheme337

using a data-driven strategy solely based on EOF decompositions, namely338

VE-DINEOF (Ping et al., 2016). We implement a patch-based version339

of VE-DINEOF to make it comparable to the proposed PB-AnDA set-340

ting. Given the same EOF decomposition as in PB-AnDA, the patch-341

level VE-DINEOF iterates patchwise EOF projection-reconstruction342

of the detail field dX. This scheme is initialized from the along-track343

pseudo-observation field for along-track data positions and X̄ for miss-344

ing data positions. After each projection-reconstruction, we only up-345

date missing data areas. We run this iterative process until conver-346

gence.347

• G-AnDA: With a view to evaluating the relevance of the patch-based348

decomposition, we also apply AnDA at the region scale, referred to as349

G-AnDA. It relies on an EOF-based decomposition of the detail field350

dX. We use 150 EOF components, which accounts for more than 99%351

of the total variance of the SSH dataset. From cross-validation ex-352

periments, the associated AnEnKS procedure relies on a locally-linear353

analog forecasting model with K = 500 analogs, nensemble = 100 en-354

semble members and an observation covariance error in Equation 8 set355

to R = 0.001356

The patch-based experiments were run on Teralab infrastructure using a357

multi-core virtual machine (30 CPUs, 64G of RAM). We used the Python358

toolbox for patch-based analog data assimilation (Fablet et al., 2017) (avail-359

able at github.com/rfablet/PB ANDA). Optimal Interpolation was imple-360

mented on Matlab using Escudier et al. (2013b). Throughout the exper-361
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iments, two metrics are used to assess the performance of the considered362

interpolation methods: i) daily and mean Root Mean Square Error (RMSE)363

series between the reconstructed SLA fields X and the groundtruthed ones,364

ii) daily and mean correlation coefficient between the fine-scale component365

dX of the reconstructed SLA fields and of the groundtruthed ones.366

5.2. SLA reconstruction from noise-free along-track data367

We first perform an idealized noise-free experiment, where the along-track368

observations are noise-free. The observation covariance error in Equation 8369

takes the value R = 0.001. The interpolation performances for this ex-370

periment are illustrated in Table 1. Our PB-AnDA algorithm significantly371

outperforms OI. More specifically, the locally-linear PB-AnDA results in the372

best reconstruction among the competing methods. We suggest that this im-373

provement comes from the reconstruction of fine-scale features learned from374

the archived model simulation data. Figure 4a reports interpolated SSH fields375

and their gradient fields which further confirm our intuition. PB-AnDA in-376

terpolation shows an enhancement of the gradients and comes out with some377

fine-scale eddies that were smoothed out in OI and VE-DINEOF. This is also378

confirmed by the Fourier power spectrum of the interpolated SLA fields in379

Figure 4b.380
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Table 1: SLA Interpolation performance for a noise-free experiment: Root Mean Square

Error (RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and PB-AnDA

w.r.t. the groundtruthed SLA fields. See Section 5.1 for the corresponding parameter

settings.

Criterion RMSE Correlation

OI 0.026 ± 0.007 0.81 ± 0.08

VE-DINEOF 0.023 ± 0.007 0.85 ± 0.07

G-AnDA 0.020 ± 0.006 0.89 ± 0.04

PB-AnDA

Locally-constant 0.014 ± 0.005 0.95 ± 0.03

Locally-Increment 0.014 ± 0.005 0.95 ± 0.03

Locally-Linear 0.013 ± 0.005 0.96 ± 0.02

5.3. SLA reconstruction from noisy along-track data381

We also evaluated the proposed approach for noisy along-track data.382

Here, we run two experiments with an additive zero-mean Gaussian noise383

applied to the simulated along-track data. We consider a noise covariance of384

R = 0.01 (Experiment A) and of R = 0.03 (Experiment B) which is more385

close to the instrumental error of conventional altimeters. Given the resulting386

noisy along-track dataset, we apply the same methods as for the noise-free387

case study.388

We run PB-AnDA using different values for R. For Experiment A, Table389

2 shows that the minimum is reached using the true value of the error R =390

0.01. While for Experiment B, Table 3 shows that the minimum is counter-391
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(a)

(b)

Figure 4: Reconstructed SLA fields using noise-free along-track observation using OI,

DINEOF, G-AnDA, PB-AnDA on the 54th day (February 24th 2012): from left to right,

the first row shows the ground truth field, the simulated available along-tracks for that day,

the ground truth gradient field. The second and third rows show each of the reconstruction

and their corresponding gradient fields, from left to right, OI, VE-DINEOF, G-ANDA and

PB-AnDA. The Fourier power spectrum of the competing methods is also included
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intuitively reached again using value of the error R = 0.01.392

Our algorithm is then compared with the results of the application of the393

competing algorithms considered in this work. Results are shown in Table394

4. PB-AnDA still outperforms OI in terms of RMSE and correlation statis-395

tics in both experiments. The locally-linear version of PB-AnDA depicts the396

best reconstruction performance. We report an example of the reconstruc-397

tion in Figure 5. Similarly to the noise-free case study, PB-AnDA better398

recovers finer-scale structures in Fig.5.a compared with OI, VE-DINEOF399

and G-AnDA. In Fig.5.b, PB-AnDA also better reconstructs a larger-scale400

North-East structure, poorly sampled by along-track data and hence poorly401

interpolated by OI.402

Table 2: Impact of variance of observation error R in AnDA interpolation performance

using noisy along-track data (R=0.01): RMSE of AnDA interpolation for different values

of parameter R. For the same dataset, OI RMSE is 0.039.

R 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmsePB−AnDA 0.035 0.030 0.028 0.025 0.025 0.029 0.044

Table 3: Impact of variance of observation error R in AnDA interpolation performance

using noisy along-track data (R=0.03): RMSE of AnDA interpolation for different values

of parameter R. For the same dataset, OI RMSE is 0.066.

R 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmsePB−AnDA 0.038 0.036 0.035 0.0349 0.037 0.046 0.076

23



Table 4: SLA Interpolation performance for noisy along-track data: Root Mean Square

Error (RMSE) and correlation statistics for OI, VE-DINEOF, G-AnDA and PB-AnDA

w.r.t. the groundtruthed SLA fields. See Section 5.1 for the corresponding parameter

settings.

Criterion RMSE Correlation

R=0.01 OI 0.039 ± 0.005 0.64 ± 0.09

VE-DINEOF 0.035 ± 0.005 0.68 ± 0.09

G-AnDA 0.030 ± 0.005 0.78 ± 0.06

PB-AnDA

Locally constant 0.026 ± 0.005 0.82 ± 0.05

Increment 0.028 ± 0.005 0.81 ± 0.05

Local Linear 0.0245 ± 0.005 0.83 ± 0.05

R=0.03 OI 0.066 ± 0.006 0.41 ± 0.09

VE-DINEOF 0.060 ± 0.006 0.45 ± 0.09

G-AnDA 0.039 ± 0.006 0.67 ± 0.09

PB-AnDA

Locally constant 0.035 ± 0.006 0.688 ± 0.064

Increment 0.036 ± 0.006 0.656 ± 0.07

Local Linear 0.032 ± 0.006 0.708 ± 0.063
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(a)

(b)

Figure 5: Reconstruction of SLA fields from noisy along-track data using OI, DINEOF,

G-AnDA & PB-AnDA on day 225th (a) & 228th (b)25



5.4. PB-AnDA models with auxiliary variables403

We further explore the flexibility of the analog setting to the use of ad-404

ditional geophysical variable information as explained in Section 4.2. In-405

tuitively, we expect SLA fields to involve inter-scale dependencies as well406

as synergies with other tracers. The use of auxiliary variables provide the407

means for evaluating such dependencies and their potential impact on recon-408

struction performance. We consider two auxiliary variables that are used in409

the locally-linear analog forecasting model (7): i) to account for the rela-410

tionship between the large-scale and fine-scale component, we may consider411

variable X̄, ii) considering potential SST-SSH synergies, we consider SST412

fields. Overall, we consider four parameterization of the regression variables413

used in PB-AnDA: the sole use of dX (PB-AnDA-dX); the joint use of dX414

and SST fields (PB-AnDA-dX+SST); the joint use of dX and X̄ (PB-AnDA-415

dX+X̄), the joint use of dX and the groudntruthed version of X̄ denoted by416

X̄GT , (PB-AnDA-dX+X̄GT ). The later provides a lower-bound for the recon-417

struction performance, assuming the low-resolution component is perfectly418

estimated.419

We report mean RMSE and correlation statistics for these four PB-420

AnDA parameterizations in Table 5 for the noisy case-study. Considering421

PB-AnDA-dX as reference, these results show a very slight improvement422

when complementing dX with SST information. Though limited, we report423

a greater improvement when adding the low-resolution component X̄. In-424

terestingly, a significantly greater improvement is obtained when adding the425

true low-resolution information. The mean results are in accordance with426

Fablet et al. (2016), which reported that large-scale SLA information was427
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more informative than SST to improve the reconstruction of the SLA at428

finer scales. Though mean statistics over one year leads to rather limited429

improvement, daily RMSE time series (Figure 6) reveal that for some peri-430

ods, for instance between day 130 and 150, relative improvements in terms431

of RMSE may reach 10% with the additional information brought by the432

large-scale component. In this respect, it may noted that PB-AnDA-dX+X̄433

always perform better than PB-AnDA-dX.434

Table 5: PB-AnDA reconstruction performance using noisy along-track data for different

choices of the regression variables in the locally-linear analog forecasting model: PB-

AnDA-dX using solely dX, PB-AnDA-dX+SST using both dX and SST, PB-AnDA-

dX+X̄ using both dX and X̄, and PB-AnDA-dX+X̄GT using dX and the true large-scale

component X̄GT .

PB-AnDA model RMSE Correlation

R=0.01 PB-AnDA-dX 0.025 ± 0.005 0.83 ± 0.05

PB-AnDA-dX+SST 0.024 ± 0.005 0.83 ± 0.05

PB-AnDA-dX + X̄ 0.023 ± 0.005 0.84 ± 0.05

PB-AnDA-dX + X̄GT 0.021 ± 0.004 0.87 ± 0.04

R=0.03 PB-AnDA-dX 0.032 ± 0.006 0.708 ± 0.06

PB-AnDA-dX+SST 0.031 ± 0.006 0.710 ± 0.06

PB-AnDA-dX + X̄ 0.029 ± 0.006 0.717 ± 0.06

PB-AnDA-dX + X̄GT 0.026 ± 0.005 0.730 ± 0.05

27



Figure 6: Daily RMSE time series of PB-AnDA SLA reconstructions using noisy along-

track data for different choices of the regression variables in the locally-linear analog fore-

casting model: PB-AnDA-dX (light blue), PB-AnDA-dX+SST (orange) and PB-AnDA-

dX + X̄ (green).
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(a)

(b)

Figure 7: (Noisy observation) Reconstruction of SLA fields using PB-AnDA with different

multivariate regression models on day 57th & 237th (b)
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6. Discussion and conclusion435

This work sheds light on the opportunities that data science methods are436

offering to improve altimetry in the era of ”Big Data”. Assuming the avail-437

ability of high-resolution numerical simulations, we show that Analog Data438

Assimilation (AnDA) can outperform the Optimal Interpolation method and439

retrieve smoothed out structures resulting from the sole use of OI both with440

idealized noise-free and more realistic noisy observations for the considered441

case study. Importantly, the reported experiments point out the relevance for442

combining OI for larger scales (above 100km) whereas the proposed patch-443

based analog setting successfully applies to the finer-scale range below 100km.444

This is in agreement with the recent application of the analog data assimila-445

tion to the reconstruction of cloud-free SST fields (Fablet et al., 2017). We446

also demonstrate that AnDA can embed complementary variables in a sim-447

ple manner through the regression variables used in the locally-linear analog448

forecasting operator. In agreement with our recent analysis (Fablet et al.,449

2016), we demonstrate that the additional use of local SST and large-scale450

SLA information may further improve the reconstruction performance for451

fine-scale structures.452

Analog data assimilation can be regarded as a means to fuse ocean models453

and satellite-derived data. We regard this study as a proof-of-concept, which454

opens research avenues as well as new directions for operational oceanogra-455

phy. Our results advocate for complementary experiments at the global scale456

or in different ocean regions for a variety of dynamical situations with a view457

to further evaluating the relevance of the proposed analog assimilation frame-458

work. Such experiments should evaluate the sensitivity of the assimilation459
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with respect to the size of the catalog. The scaling up to the global ocean also460

suggests investigating computationally-efficient implementation of the ana-461

log data assimilation. In this respect, the proposed patch-based framework462

intrinsically ensures high parallelization performance. From a methodolog-463

ical point of view, a relative weakness of the analog forecasting models (9)464

may be their low physical interpretation compared with physically-derived465

priors (Ubelmann et al., 2014). The combination of such physically-derived466

parameterizations to data-driven strategies appear as a promising research467

direction.468

Beyond along-track altimeter data as considered in this study, future469

missions such as SWOT (NASA/CNES) promise an unprecedented coverage470

around the globe. More specifically, the large swath is expected to provide a471

large number of data, urging for the inspection of the potential improvements472

that this new mission will bring compared to classical along-track data. In473

the context of analog data assimilation, the interest of SWOT data may be474

two-fold. First, regarding observation model (8), SWOT mission will both475

significantly increase the number of available observation data and enable476

the definition of more complex observation models exploiting for instance477

velocity-based or vorticity-based criterion. Second, SWOT data might also478

be used to build representative patch-level catalogs of exemplars. Future479

work should investigate these two directions using simulated SWOT test-480

beds (Gaultier et al., 2015).481
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