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show that our method is promising.
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1 Introduction

The non-linear complementarity problem (NCP) consists in finding x ∈ Rn

satisfying
x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (1)

where F : Rn → Rn is assumed to be continuous. In the special case where
F is an affine function, (1) is reduced to the linear complementarity problem
(LCP).

The NCP has been very popular due to its numerous applications in econ-
omy, physics, chemistry ... see the monographs [5,7] and references therein.
This problem is a feasibility and not an optimization problem. However, it
is well-known that it is closely related with optimization problems. Indeed,
optimality conditions of many optimization problems may be cast as an NCP.

The family of methods to solve this problem can be divided in two: equation
reformulation methods and merit function methods. In the former, the com-
plementarity problem (1) is reformulated as an unconstrained (non-smooth)
equation solved by a Newton-kind method or an unconstrained minimization
problem depending on the assumptions on F , see [3,4,6,13,15,22]. In the lat-
ter, the complementarity is ensured through a merit function reformulating (1)
as an optimization problem, see [8,9,11,17]. An extensive treatment of these
methods and their extensions can be found in [7]. In the sequel, we focus on
the merit function approach that is the most tractable option if we do not
make any strong assumption on the problem.

A generic formulation of a complementarity problem reformulated as an
optimization problem is given by

min
x∈Rn

Θ(x) s.t. x ≥ 0, F (x) ≥ 0, (2)

where Θ : Rn → R is called a merit function if it satisfies the following
property: x solves (1) if and only if x is the global minimizer of the previous
problem. In this sense, we say that the optimization problem is equivalent
to the complementarity problem. If the set of solutions of (1) is empty, then
either the global optimal value of the objective function is positive or there is
no global minima. It is to be noted that even so F (x) = Mx + q the merit
function, Θ, is not convex in general. Thus, it is fundamental to study the
numerical methods used to solve the optimization problem (2). Due to the
non-convexity, the realistic goal is to compute a local minimum or at least a
stationary point of (2).

Our aim in this article is to use the very efficient local theory designed for
difference of convex (DC) functions by considering a merit function that can
be expressed as a sum of convex and concave functions. Local optimization
approach for DC optimization and DC Algorithm (DCA) were introduced by
Pham Dinh Tao in a preliminary form in the 80’s [25] and extensively developed
since then, see [23] for a review on this method. This approach has been widely
used by many researchers, see a list of references on http://www.lita.univ-
lorraine.fr/∼lethi/index.php/dca.html. This work is motivated by the fact that
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DCA has been successfully applied to many (smooth or non-smooth) large-
scale non-convex programs in various domains of applied sciences. In a recent
article [17], the authors present four formulations of the LCP as a DC opti-
mization problem and show promising numerical results.

Motivated by the recent development of DC approaches to solve the com-
plementarity problems, we study a merit function based on a family of smooth
sub-additive functions that has been used in the literature in the context of
sparse optimization [20] and absolute value equations [1], whose latter can be
reformulated as an LCP.

One of our main results considering this merit function is that stationary
points of (2) are solutions of a concave monotone NCP. Therefore, in this
favorable case, there is no need to study global minima of the problem and this
proves that our approach is not more difficult than equation based approach
in this advantageous cases.

Besides, we prove that the optimization problem (2) with our merit func-
tion is a DC program if F is concave. This property permits us to use the local
theory to solve DC program and in particular DCA. In the case of the general
NCP, assuming a DC composition of F is known, the optimization problem
with our merit function can be reformulated as a DC program through pe-
nalizations. We prove equivalence between local minima of this penalized DC
program and the local minima of (2).

Numerical results on linear complementarity problems, absolute value equa-
tions and non-linear complementarity problems show the interest of the pro-
posed method.

In Section 2, we introduce the merit function that is proved to be theoret-
ically sound for the monotone NCP in Section 3. In Section 4, we show that
this new formulation leads to a DC program that can be solved using DCA
as explained in the Section 5. Finally, in Section 6, we give several numerical
experiments to show the validity of our method compared to existing methods
in the literature on linear and non-linear problems.

2 A Merit Function for Complementarity Problems

In this section, we present a reformulation of the complementarity problem
through a merit function. This function has been first used in [1] as a heuristic
to solve absolute value equations reformulated as mixed linear complementar-
ity problems.

Let us consider the merit function Θ : Rn
+ × Rn

+ → R defined by

Θ(x, F (x)) :=

n∑
i=1

θ(xi) + θ(Fi(x))− θ(xi + Fi(x)), (3)

where functions θ : Rn
+ → [0, 1[ are non-decreasing strictly concave continu-

ously differentiable functions such that θ(0) = 0. Examples of these functions
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for r > 0 are:

(θ1) : θ(x) =
x

x+ r
,

(θ2) : θ(x) =
(
1− e−( x

r )
)k
, for k ≥ 1,

(θlog) : θ(x) =
log(1 + x)

log(1 + x+ r)
.

For r sufficiently small, the functions θ approximate a step function. This
observation already leads to interesting results in sparse optimization in [20]
and in the context of complementarity problems in [1,13].

We use the function Θ to reformulate the NCP as follows

Θ(x, F (x)) = 0, x ≥ 0, F (x) ≥ 0. (4)

The following lemma shows that the functions θ are sub-additive.

Lemma 2.1 For all x ≥ 0 such that F (x) ≥ 0, we have

∀i, θ(xi) + θ(Fi(x)) ≥ θ(xi + Fi(x)),

with equality if and only if xi = 0 or Fi(x) = 0.

Proof Since θ is concave, we obtain

∀z ̸= y ∈ R,∀t ∈ (0, 1), tθ(z) + (1− t)θ(y) ≤ θ(tz + (1− t)y),

with equality if t = 0 or 1 and if z = y. For y = 0 and θ(0) = 0 yields to

θ(tz) = θ(tz + (1− t)y) ≥ tθ(z), ∀t ∈ (0, 1),

with equality if t = 0, 1 or z = 0. Take i ∈ {1, ..., n}, z = xi, y = Fi(x) and
suppose that xi + Fi(x) ̸= 0 (the case xi = Fi(x) = 0 stay true)

θ(xi) + θ(Fi(x))=θ

(
(xi + Fi(x))

xi
xi + Fi(x)

)
+θ

(
(xi + Fi(x))

Fi(x)

xi + Fi(x)

)
,

≥ xi
xi + Fi(x)

θ((xi + Fi(x))) +
Fi(x)

xi + Fi(x)
θ((xi + Fi(x))),

= θ(xi + Fi(x)),

with equality if and only if xi = 0 or Fi(x) = 0. ⊓⊔

It is now straightforward to conclude that finding a global minimum of (4) is
equivalent to solving (1).

Theorem 2.1 Let x ∈ Rn
+ such that F (x) ∈ Rn

+. It holds that

Θ(x, F (x)) = 0 ⇐⇒ xTF (x) = 0.

Proof By Lemma 2.1, Θ is a sum of non-negative terms, therefore Θ is equal
to 0 if and only if all terms are equal to zero. In addition, for a component i
there is equality if and only if xi = 0 or Fi(x) = 0. ⊓⊔
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Using (3) to define a sub-additive merit function, we consider the following
optimization problem:

inf
x∈Rn

Θ(x, F (x)) s.t. x ≥ 0, F (x) ≥ 0. (P)

We denote F the feasible set of (P) defined as

F := {x ∈ Rn | x ≥ 0, F (x) ≥ 0}.

It is to be noted that the feasible set of (P) could be non-convex, unless the
function F is assumed concave. The following result that is given without
proof sums up the possible situations that may arise by solving (P) and their
consequences to our initial aim that is solving (1).

Theorem 2.2 Assume that F : Rn
+ → Rn is a continuous function and that

F is non-empty. Moreover, assume that there is no sequence {xk} ∈ F such
that lim

∥xk∥→∞
F (xk)Txk = 0. Then, exactly one of the following cases arises:

– The global optimal value of (P) is zero and the corresponding point is a
solution of (1);

– The global optimal value of (P) is positive and (1) has no solution.

An assumption similar to the one given in this theorem was used in Corol-
lary 2.6.2 in [7] to guarantee existence of a solution of the (NCP).

3 Sub-Additive Reformulation for the Monotone NCP

In this section, we prove that for a popular class of NCPs finding a stationary
point of (P) is actually sufficient to solve the initial problem. First, let us
introduce the monotone NCP.

3.1 Monotone Complementarity Problems

We focus on NCPs that are said monotone, i.e. F is P function (see definition
below). We give classical definitions and characterization of this family of
complementarity problems.

Definition 3.1 [7] The function F : Rn → Rn is said to be a P0 function iff

max
i:xi ̸=yi

(x− y)i(Fi(x)− Fi(y)) ≥ 0 ∀x ̸= y ∈ Rn.

If this inequality is strict, F is said to be a P function.

Assuming differentiability of the function F this definition reduces to a condi-
tion on the jacobian matrix. We extend the definition of a P0 (resp. P ) function
to a P0 (resp. P ) matrix.

Definition 3.2 [7] A matrix M ∈ Rn×n is said to be a:
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– P0 matrix if all of its principal minors are nonnegative;
– P matrix if all of its principal minors are positive;
– positive semidefinite if M is symmetric and xTMx ≥ 0 for all x ∈ Rn, and

positive definite if xTMx > 0 for all x ∈ Rn(x ̸= 0).

A P matrix is a generalization of a positive definite matrix, while a P0 matrix
is a generalization of a positive semi-definite matrix. In the case of a smooth
function F , then Proposition 3.5.9 of [7] gives the following characterization.

Proposition 3.1 For a continuously differentiable function F , if its transpose
jacobian ∇F (x)T is a P matrix then F is a P function, whereas the transpose
jacobian ∇F (x)T is a P0-matrix if and only if F is a P0 function.

The monotone NCPs are particularly useful since they provide a charac-
terization of the set of solutions of the NCP. The following proposition is a
sum up of results given in [7].

Proposition 3.2 If F is a P function, then (1) has at most one solution.

Among other interesting properties, we show in Lemma 3.1 that some regular-
ity may be obtained for the set F for this family of NCPs. Finally, the following
result from Theorem 3.3.4,[5] gives another characterization of P-matrix.

Proposition 3.3 Let M ∈ Rn×n. M is a P-matrix if and only if

zi(Mz)i ≤ 0 for all i =⇒ z = 0.

3.2 A Sufficient Optimality Condition for the Montone NCP

We assume here that the function F is a continuously differentiable function.
A classical approach in non-linear programming is to study stationary points
of (P) using the classical Karush-Kuhn-Tucker conditions. Let x∗ ∈ F be a
stationary point of (P) if there exists λ, µ ∈ Rn × Rn satisfying

∇Θ(x∗, F (x∗))−∇F (x∗)Tλ− µ = 0,
λTF (x∗) = 0, F (x∗) ≥ 0, λ ≥ 0,
µTx∗ = 0, x∗ ≥ 0, µ ≥ 0.

It holds from non-linear programming theory that a local minimum of (P)
that satisfies a constraint qualification is a stationary point of (P). Let us now
give two examples of classical constraint qualifications. Beforehand, we use the
following notations:

IF (x) := {i = 1, . . . , n | Fi(x) = 0}, and,
I(x) := {i = 1, . . . , n | xi = 0}.

Definition 3.3 We say that x∗ ∈ F satisfies
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– the Linear Independence CQ (LICQ) if the gradients

{∇Fi(x
∗) | ∀i ∈ IF (x∗)} ∪ {∇x∗i | ∀i ∈ I(x∗)}

are linearly independent.
– the Positive Linear Independence CQ (PLICQ) if the only solution to the

equation

0 =
∑
i∈I

µi∇x∗i +
∑
i∈IF

λi∇Fi(x
∗)

with (µ, λ) ≥ 0 is the trivial solution. We say in this case that the gradients

{∇Fi(x
∗) | ∀i ∈ IF (x∗)} ∪ {∇x∗i | ∀i ∈ I(x∗)}

are positively linearly independent.

It is known from [21] that PLICQ is equivalent to Mangasarian-Fromowitz CQ
(MFCQ).

In the special case of a monotone NCP, the following lemma shows that
some constraint qualification holds for the set F .

Lemma 3.1 Let F be a continuously differentiable function from Rn to Rn.
Assume that for all x ∈ Rn, ∇F (x)T is a P matrix. Then, PLICQ holds at
any point x∗ ∈ F . Furthermore, if x∗ satisfies x∗ + F (x∗) > 0, then LICQ
holds at any point x∗ ∈ F .

The assumption that x∗ + F (x∗) > 0 is also well-known in the literature of
complementarity problems under the name of strict complementarity.

In this proof, In denotes the identity matrix of size n × n, and denotes a
submatrix of the jacobian matrix by ∇FI×J := (∇Fij)i∈I,j∈J . Since the sets
of indices are only evaluated at the point x∗ we omit the dependence, i.e.
I = I(x∗) and IF = IF (x∗).

Proof First, let us prove that given x∗ ∈ F if x∗ satisfies x∗+F (x∗) > 0, then
LICQ holds at x∗. Let (λ, µ) ∈ Rn × Rn be such that

0 =
∑
i∈I

µi∇x∗i +
∑
i∈IF

λi∇Fi(x
∗). (5)

Since x∗ satisfies x∗ + F (x∗) > 0, then (5) is a combination of at most n
gradients. We arrange the components of x and F (x) such that xiFi(x) = 0
for i = 1, . . . ,m and xi > 0, Fi(x) > 0 for i = m+ 1, . . . , n, so we can rewrite
the m first equations of (5) as(

I|I| ∇FI×IF
(x∗)T

0 ∇FIF×IF
(x∗)T

)(
µI
λIF

)
= 0.

The jacobian matrix of F is a P matrix and in particular all its princi-
pal minor are non-singular matrices. Computing the Schur complement on the
left-hand side it holds that the matrix is non-singular, therefore µI = λIF

= 0.
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So, LICQ holds at x∗.

Consider the case where there exists an index i such that x∗i +Fi(x
∗) = 0.

Obviously (5) may be a combination of more than n + 1 gradients and so,
LICQ is unlikely to hold. However, we prove that PLICQ holds at x∗. Assume
that (λ, µ) ∈ Rn

+ × Rn
+. We can rewrite the equations in IF as

∇FIF×IF
(x∗)TλIF

= −
(
µI∩IF

0

)
.

Since µ ≥ 0 and λ ≥ 0 by assumption, Proposition 3.3 gives that λIF
=

µI∩IF
= 0. Then, it follows that µI = 0. So, the gradients are positively

linearly independent and the result follows. ⊓⊔

The previous lemma guarantees that any local minimum of (P) is a stationary
point. The following theorem proves that computing a stationary point of (P)
may be sufficient to solve (1).

Theorem 3.1 Let F be a continuously differentiable and assume that for all
x ∈ Rn, ∇F (x)T is a P matrix. Suppose that a solution of (1) exists. Then,
any KKT point of (P) that satisfies the strict complementarity condition, is a
solution of (1).

Proof Through the proof, we denote θ
′
(x) for x ∈ Rn, the vector of compo-

nentwise derivatives of θ, i.e. θ
′
(x) := (θ

′
(xi))1≤i≤n.

Let x ∈ F be a stationary point of (P). Thus, there exists λ, µ ∈ Rn
+ ×Rn

+

such that

0 = θ
′
(x) +∇F (x)T θ

′
(F (x))− θ

′
(x+ F (x))−∇F (x)T θ

′
(x+ F (x))

−∇F (x)Tλ− µ,

λTF (x) = 0, F (x) ≥ 0, λ ≥ 0,

xTµ = 0, x ≥ 0, µ ≥ 0.

We show the result by contradiction. Assume that x is not a solution of the
NCP, then there exists a set of indices J ̸= ∅ such that

J := {i = 1, . . . , n | xi > 0 andFi(x) > 0}.

Denote the sets I1 = {j = 1, . . . , n | xj = 0, Fj(x) > 0}, I2 = {k =
1, . . . , n | xk > 0, Fk(x) = 0}. By the strict complementarity assumption, it
always holds that I1 ∪ J ∪ I2 = {1, . . . , n}.
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Rewriting the previous equation yields 0I1
0J
0I2

 =

 θ
′
(0)

θ
′
(xJ)

θ
′
(xI2)

−

 θ
′
(FI1(x))

θ
′
(xJ + FJ(x))

θ
′
(xI2)

+∇F (x)T
 θ

′
(FI1(x))

θ
′
(FJ(x))

θ
′
(0)


−∇F (x)T

 θ
′
(FI1(x))

θ
′
(FJ(x) + xJ)

θ
′
(xI2)

−∇F (x)T
 0I1

0J
λI2

−

µI1

0J
0I2

 ,

=

 θ
′
(0)− θ

′
(FI1(x))

θ
′
(xJ)− θ

′
(xJ + FJ(x))
0

−

µI1

0J
0I2


+∇F (x)T

 0

θ
′
(FJ(x))− θ

′
(xJ + FJ(x))

θ
′
(0)− θ

′
(xI2)− λI2

 .

The equation on I2 gives

0 = ∇FI2×J(x)
T (θ

′
(FJ(x))− θ

′
(xJ + FJ(x)))

+∇FI2×I2(x)
T (θ

′
(0)− θ

′
(xI2)− λI2),

λI2 =(∇FI2×I2(x)
T )−1∇FI2×J(x)

T (θ
′
(FJ(x))−θ

′
(xJ+FJ(x)))+θ

′
(0)−θ

′
(xI2).

Existence of the inverse of the matrix ∇FI2×I2(x)
T is given by the jacobian

matrix of F being a P matrix.
Replacing λI2 in the equation on J yields to

0 = θ
′
(xJ)− θ

′
(xJ + FJ(x)) +∇FJ×J(x)

T (θ
′
(FJ(x))− θ

′
(xJ + FJ(x)))

+ ∇FJ×I2(x)
T (θ

′
(0)− θ

′
(xI2)− λI2),

0 = θ
′
(xJ)− θ

′
(xJ + FJ(x)) + C(θ

′
(FJ(x))− θ

′
(xJ + FJ(x))).

The matrix C := ∇FJ×J(x)
T −∇FJ×I2(x)

T (∇FI2×I2(x)
T )−1∇FI2×J(x)

T cor-
responds to the Schur complement of the matrix ∇FI2+J×I2+J(x)

T , whose de-
terminant is positive by the P function assumption. Indeed, the determinant
of the Schur complement satisfies

det(∇FI2+J×I2+J(x)
T ) = det(∇FI2×I2(x)

T )det(C),

where, by the P function assumption, det(∇FT
I2+J×I2+J) and det(∇FI2×I2(x)

T )
are both positive.

Furthermore, using the same formula, it can be verified that the principal
minors of C have also a positive determinant. So, C is P-matrix.

Now, by Proposition 3.3, it follows that

C
(
θ
′
(FJ(x))− θ

′
(xJ + FJ(x))

)
has at least one positive component, since θ

′
(FJ(x)) − θ

′
(xJ + FJ(x)) > 0

by strict concavity of θ. However, this leads to a contradiction with the last
equation, since strict concavity of θ also gives that θ

′
(xJ)−θ

′
(xJ+FJ(x)) > 0.

So, this contradicts the existence of the set J and the result follows. ⊓⊔
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We present here a counter-example to show that we cannot reduce the P
function assumption to P0 function.

Example 3.1 Let F (x) =Mx+ q such that

q =

(
−1
0

)
and M =

(
0 1
0 1

)
.

M is a P0 matrix. The point x∗ = (1, 1)T is clearly not a solution of the NCP,
since F (x∗) =Mx∗+q = (0, 1)T . However it is a stationary point of (P) with
λ2 = µ1 = µ2 = 0 and

λ1 = θ′(1) + θ′(0)− 2θ′(2).

Following the notations in the previous proof, we have I1 = ∅, J = 2 and
I2 = 1. The equation on I2 gives

∇FI2×J(x
∗)T (θ

′
(FJ(x

∗))−θ
′
(x∗J + FJ(x

∗)))=−∇FI2×I2(x
∗)T (θ

′
(0)−θ

′
(x∗I2)−λI2),

since ∇FI2×J(x
∗)T = ∇FI2×I2(x

∗)T = 0. The equation on J gives

0 = θ
′
(x∗J)− θ

′
(x∗J + FJ(x

∗)) +∇FJ×J(x
∗)T (θ

′
(FJ(x

∗))− θ
′
(x∗J + FJ(x

∗)))

+∇FJ×I2(x
∗)T (θ

′
(0)− θ

′
(x∗I2)− λI2),

= θ′(1)− θ′(2) + θ′(1)− θ′(2) + θ′(0)− θ′(1)− λ1,

which holds true by definition of λ1.

We now present another affine example, where M is not a P matrix but a
symmetric negative definite one.

Example 3.2 Let F (x) =Mx+ q such that

q =

(
2
2

)
and M =

(
−1 0
0 −1

)
.

In this case, we have

Θ(x, F (x)) = θ(x1) + θ(x2) + θ(−x1 + 2) + θ(−x2 + 2)− θ(2)− θ(2).

Computing the gradient of the objective function equal to zero yields

θ′(x1)− θ′(−x1 + 2) = 0,

θ′(x2)− θ′(−x2 + 2) = 0.

The point x∗ = (1, 1)T satisfies ∇Θ(x∗, F (x∗)) = 0 and therefore is a station-
ary point of (P). However, this point is not a solution of (1).

An open question to this fundamental result is the possibility to remove the
strict complementarity assumption. We left this question to future research.
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4 A DC Formulation of the Sub-Additive Merit Function for the
NCP

A function f is called a DC (difference of convex) function if it can be expressed
as a difference of convex functions g : Rn → R and h : Rn → R such that

f = g − h.

The definition remains true if g and h are concave functions. A so-called DC
program is that of minimizing a DC function over a convex set. A DC function
has infinitely many decomposition g, h but the numerical resolution may be
sensitive to this choice.

We split this section in two parts. First, we consider the formulation (P) in
the case where F is a concave function. Second, we focus on the general case
where we only assume that a DC decomposition of the function F is known.

4.1 The Concave NCP

In this section, we show that if F is a concave function the sub-additive func-
tion (3) is a DC function and the optimization problem (P) is a DC program.
First, let us prove a simple lemma that shows that the composition of concave
functions does not alter the concavity.

Lemma 4.1 Let f be a concave function on Rn, and let ϕ be a non-decreasing
concave function on Rn. Then, h(x) = ϕ(f(x)) is a concave function.

Proof For x, y ∈ Rn and 0 < λ < 1, we have

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y).

Applying ϕ to both sides of the inequality, we get

h((1− λ)x+ λy) ≥ ϕ ((1− λ)f(x) + λf(y)) .

By the concavity of the function ϕ it follows

h((1− λ)x+ λy) ≥ ϕ ((1− λ)f(x) + λf(y)) ≥ (1− λ)h(x) + λh(y).

Thus, h is concave. ⊓⊔

We now prove that the objective function of (P) is a DC function.

Theorem 4.1 Let F be a concave function on Rn
+. Then, (P) is a DC pro-

gram.
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Proof It is clear by concavity hypothesis on F that the set of constraints of
(P) is a convex set. Now, let us verify that the function Θ(x, F (x)) is a DC
function with

g(x) = −
n∑

i=1

θ(xi + Fi(x)) and h(x) = −
n∑

i=1

θ(xi) + θ(Fi(x)).

Since F is a concave function and θ is a non-decreasing concave function we
can apply Lemma 4.1 to conclude that g and h are both convex. ⊓⊔

It is to be noted that the hypothesis to take F concave is not so restrictive,
since it includes the large family of LCPs.

4.2 The General NCP

In the special case where a DC decomposition of the function F is known we
can reformulate (P) as a DC program. Given two convex functions g, h : Rn →
Rn such that

F (x) = g(x)− h(x).

We can reformulate (P) as

inf
x,y∈Rn

Θ(x, y)

s.t. x ≥ 0, y ≥ 0,

y = F (x).

Using the fact that a DC decomposition of F is known the previous problem
becomes

inf
x,y∈Rn

Θ(x, y)

s.t. x ≥ 0, y ≥ 0,

y = g(x)− h(x).

Even so we use a DC decomposition of F and the objective function is a
DC function, the set of constraints in the previous formulation remains non-
convex. To tackle this problem, we try to remove the non-convexity in the
constraints using slack variables and then penalizing the remaining non-convex
constraints. Therefore, we consider the following penalized problem

inf
x,y,t∈Rn×Rn×Rn

Ψ(x, y, t) := Θ(x, y) + τeT (t− y − h(x)) + τeT (t− g(x))

s.t. (x, y, t) ∈ C,

t ≥ g(x), t− h(x) ≥ y,

(Penτ )

where C := Rn
+ ×Rn

+ ×Rn. The link between the initial problem (P) and the
penalized problem (Penτ ) will be studied in Theorem 4.3 and 4.4. First, it is
straightforward to see that the penalized problem is a DC program.
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Theorem 4.2 Given convex functions g, h : Rn → Rn. Then, (Penτ ) is a DC
program.

Proof We already shown in Theorem 4.1 that the function Θ(x, F (x)) is a DC
function if F is a concave function. However, it is to be noted here that we
consider Θ(x, y), which is therefore a DC function.

Besides by convexity of the functions g and h it follows that the penalty
terms in the objective function are concave. Thus, the objective function of
(Penτ ) is a DC function.

A similar argument gives that the constraints of (Penτ ) are convex con-
straints. This completes the proof. ⊓⊔

We now investigate the link between the penalized DC program (Penτ )
and the original problem (P).

Lemma 4.2 Assume that F is non-empty. Let (xτ , yτ , tτ ) be a solution of
(Penτ ) and x̄ be a feasible point of (P), i.e. x̄ ∈ F . Then, for all non-negative
τ it holds that

0 ≤ Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)).

Proof Since x̄ ∈ F , it holds that (x̄, F (x̄), g(x̄)) is a feasible point for (Penτ ).
Thus, by definition of the triple (xτ , yτ , tτ ) we have

Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)) + τeT (g(x̄)− F (x̄)− h(x̄)) + τeT (g(x̄)− g(x̄)),

and since F (x̄) = g(x̄)− h(x̄) we get

Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)).

The non-negativity of the left hand-side is a consequence of Lemma 2.1 and
that (xτ , yτ , tτ ) is feasible for (Penτ ). This completes the proof. ⊓⊔

A direct consequence of this lemma is equivalence of global minima of the
penalized DC program (Penτ ) and the original problem (P).

Theorem 4.3 Assume that (1) has a bounded solution. Then, x∗ is a global
solution of (P) if and only if there exists y∗, t∗ such that (x∗, y∗, t∗) is a global
solution of (Penτ ).

Proof Let x∗ be a solution of (P). Such solution exists, since we assume that
(1) has at least one bounded solution. Then, the triple (x∗, F (x∗), g(x∗)) is
feasible for (Penτ ) and satisfies

Θ(x∗, F (x∗)) + τeT (g(x∗)− F (x∗)− h(x∗)) + τeT (g(x∗)− g(x∗)) = 0,

by Theorem 2.1. This proves one side of the equivalence.
Now, let (xτ , yτ , tτ ) be a global solution (Penτ ). Then, by Lemma 4.2 we

have

0 ≤ Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ )) ≤ Θ(x̄, F (x̄)),
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for all x̄ ∈ F . In particular, consider x̄ to be a solution of (1), then x̄ ∈ F and
by Theorem 2.1 we get

0 = Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ )).

Noticing that the right hand-side is a sum of positive terms yields
0 = Θ(xτ , yτ ),yτ = F (xτ ) and tτ = g(xτ ). By Theorem 2.1 it follows that
xτ is a solution of (1) and also a solution of (P). This completes the proof.
⊓⊔

We now focus on local minima of the penalized formulation. We notice,
as proved in the following lemma, that the function Ψ is non-increasing with
respect to the second variable.

Lemma 4.3 Let τ > θ′(0) and x ≥ 0. Then, the function R+ ∋ y 7→ θ(y) −
θ(x+ y)− τy is a non-increasing function.

Proof Computing the derivative with respect to y of the function R+ ∋ y 7→
θ(y)− θ(x+ y)− τy gives

θ′(y)− θ′(x+ y)− τ.

However, this expression is negative since the functions θ are non-decreasing
and by the concavity θ′(y) ≤ θ′(0) < τ . ⊓⊔

The following result considers the case of local optimality and shows that
computing a local minimum of the penalized formulation is sufficient to find
a local minimum of the initial formulation.

Theorem 4.4 Let τ > θ′(0). For any local minimum (xτ , yτ , tτ ) of (Penτ ),
then xτ is a local minimum of (P).

Proof Let (xτ , yτ , tτ ) be a local minimum of (Penτ ), i.e. there exists δ > 0
such that for all (x, y, t) in the ball of radius δ centered in (xτ , yτ , tτ ), denoted
Bδ(xτ , yτ , tτ ), it holds that

Ψ(xτ , yτ , tτ ) ≤ Ψ(x, y, t).

By construction, it is clear that any feasible point of the problem (P) is also
feasible for the problem (Penτ ). Thus, it follows that if (xτ , yτ , tτ ) satisfies

tτ = g(xτ ) and yτ = g(xτ )− h(xτ ), (6)

then xτ is a local minimum of (P).
Assume by contradiction that expression in (6) is wrong. In other words,

there exists sets Tt ⊂ {1, . . . , n} and Ty ⊂ {1, . . . , n} such that for all i ∈ Tt
and all j ∈ Ty we have

tτ,i > gi(xτ ) and yτ,j < tτ,j − hj(xτ ). (7)
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Let us consider a point (xτ , ȳ, t̄) such that

t̄ :=

{
tτ,i − δ̄/2, if i ∈ Tt,

tτ,i, otherwise,

and

ȳ :=

{
yτ,j + δ̄/2, if j ∈ Ty,

yτ,j , otherwise,

where δ̄ is chosen such that (7) still holds at (xτ , ȳ, t̄).

Obviously, this new point satisfies (xτ , ȳ, t̄) ∈ Bδ(xτ , yτ , tτ ) and so the local
optimality of (xτ , yτ , tτ ) yields to

Ψ(xτ , yτ , tτ ) ≤ Ψ(xτ , ȳ, t̄),

Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ ))

≤ Θ(xτ , ȳ) + τeT (t̄− ȳ − h(xτ )) + τeT (t̄− g(xτ )),

Θ(xτ , yτ )−Θ(xτ , ȳ) + τeT (tτ − yτ )− τeT (t̄− ȳ) + τeT tτ − τeT t̄ ≤ 0,∑
j∈Ty

(θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j))

+2τ
∑
i∈Tt

tτ,i − t̄i ≤ 0,

∑
j∈Ty

(θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j))

+2τ
∑
i∈Tt

δ̄/2 ≤ 0 .

This, however, leads to a contradiction since τ, δ > 0 and that for all j ∈ Ty

θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j) > 0,

since the function y 7→ θ(y)−θ(x+y)−τy is non-increasing for all x, y ≥ 0 and
τ > θ′(0) by Lemma 4.3. It follows that Tt = ∅ and Ty = ∅. Thus, (xτ , yτ , tτ )
satisfies (6) and so it is a local minimum of (P). ⊓⊔

5 Difference of Convex Programming

In this section, we introduce some fundamental properties of a DC program
and an algorithm to tackle this problem so-called DC Algorithm (DCA). For
a complete study on this subject, the readers are referred to [2,23,24] and
references herein.
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5.1 DC Algorithm

Given two convex functions g, h, a DC program consists in finding x ∈ Rn

such that
inf

x∈Rn
g(x)− h(x). (8)

In general this unconstrained formulation encompasses convex constraints by
considering g(x) = g0(x) + χC(x), where g0 is a convex function, C a closed
convex set and χC(x) is the convex indicator function χC(x) = {0 if x ∈
C, +∞ if x /∈ C}.

Recall that for a lower semi-continuous convex function ψ on Rn and x∗ ∈
dom(ψ) := {x | ψ(x) <∞}, the subdifferential of ψ at x∗ is given by

∂ψ(x∗) = {y ∈ Rn | ψ(x) ≥ ψ(x∗) + (x− x∗)T y, ∀x ∈ Rn}.

In the special case, where ψ is a differentiable function, the subdifferential is re-
duced to a singleton and ∂ψ(x∗) = ∇ψ(x∗). As an example the subdifferential
of the convex indicator function for x ∈ C is given as

∂χC(x) = {d ∈ Rn | dT (y − x) ≤ 0, ∀y ∈ C} := NC(x).

The notation NC(x) stands for the normal cone of the set C at x.
The necessary local optimality condition for a DC program is

∂h(x∗) ⊂ ∂g(x∗).

We say that x∗ satisfies the generalized Kuhn-Tucker condition, if it satisfies

∂h(x∗) ∩ ∂g(x∗) ̸= ∅.

We also call such a point a critical point.
DCA is an algorithm that is based on a primal-dual formulation of (8). Let

the conjugate function of g be defined as

g∗(y) := sup
x∈Rn

xT y − g(x).

Then, the dual of (8) is defined as

inf
y∈Rn

h∗(y)− g∗(y). (9)

There is no duality gap as proven in [2]. Furthermore, the following result from
[2,23,24] gives a characterization of the solutions of both problems. Let Pdc

(resp. Ddc) denotes the set of solutions of the primal DC program (8) (resp.
the dual DC program (9)).

Proposition 5.1 Given g, h two proper lower semi-continuous convex func-
tions. It holds true that

[∪y∗∈Ddc
∂g∗(y∗)] ⊂ Pdc and [∪x∗∈Pdc

∂h(x∗)] ⊂ Ddc.
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Based on local optimality conditions and duality in DCA, the idea of DCA
is quite simple: each iteration k of DCA approximates the concave part −h by
its affine majorization (that corresponds to take yk ∈ ∂h(xk)) and minimizes
the resulting convex function (that is equivalent to compute xk+1 ∈ ∂g∗(yk)).
The algorithm is stated explicitly in Algorithm 1.

Data: ϵ the precision tolerance; x0 ∈ Rn an initial point;
1 Begin ;
2 Set k := 0 ;
3 repeat
4 yk ∈ ∂h(xk) ;

5 xk+1 ∈ argmin{g(x)− h(xk)− (x− xk)T yk : x ∈ Rn} ;
6 k := k + 1;

7 until ∥xk − xk−1∥∞ ≤ ϵ;

Algorithm 1: Generic DCA

Convergence properties and its theoretical basis has been analyzed in [2,23,
24]. We remind here the fundamental facts. DCA is a descent method without
line search, thus the sequence {g(xk)− h(xk)} is a decreasing sequence. So, if
the optimal value of (8) is finite, then the sequence {g(xk)−h(xk)} converges.
If g(xk) − h(xk) = g(xk+1) − h(xk+1) or equivalently xk = xk+1 then xk is a
critical point of g − h and the algorithm terminates at iteration k.

Based on the results from Section 4.1 and Section 4.2, DCA can be used
to solve the concave NCP and the general NCP. Note here that assuming
a solution of the NCP exists, the optimal value is bounded below and the
decreasing sequence {g(xk)− h(xk)} converges.

5.2 DCA for the Concave NCP

We now make the link between DCA and Theorem 3.1. We remind that this
theorem proves that a stationary point of (P) with F a concave differentiable
P function is the solution of the NCP assuming such a solution exists. The
following sequence of results states that under classical assumptions DCA
converges to a stationary point of (P).

Lemma 5.1 Let x∗ be a critical point of (8), where we assume that g(x) :=
g0(x) + χC with g0, h differentiable convex functions and C is a closed convex
set. It holds true that

0 ∈ ∇g0(x∗) +NC(x
∗)−∇h(x∗),

where N is the normal cone of C at x∗.

Proof x∗ is assumed to be a critical point of (8), i.e.

0 ∈ ∂g(x∗)− ∂h(x∗).
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Now, by construction of g we have

0 ∈ ∂g0(x
∗) +NC(x

∗)− ∂h(x∗).

The result follows by the differentiability assumption on g and h. ⊓⊔

Lemma 5.2 Let x∗ be a critical point of (8), where we assume that g(x) =
g0(x) + χC with g0, h differentiable lower semi-continuous convex functions
and C is a closed convex set. Furthermore, assume that

NC(x
∗) = L ◦(x∗), (10)

where

L ◦(x∗) :={d ∈ Rn | d =−∇F (x∗)Tλ− µ,min(F (x∗), λ) = 0,min(x∗, µ) = 0}.

Then, x∗ is stationary point of (P).

The cone L ◦(x∗) is sometimes called the polar cone of the linearized cone in
the literature related to Karush-Kuhn Tucker conditions, while the condition
(10) refers to the Guignard constraint qualification that is known to be the
weakest constraint qualification in non-linear programming.

Proof In Theorem 3.1, we define a stationary point of (P) as a point x̄ such
that there exists Lagrange multipliers (λ, µ) ∈ Rn×n that satisfies

∇g0(x∗)−∇h(x∗)−∇F (x∗)Tλ− µ = 0
λTF (x∗) = 0, F (x∗) ≥ 0, λ ≥ 0
(x∗)Tµ = 0, x∗ ≥ 0, µ ≥ 0 .

This can be equivalently written as

0 ∈ ∇g0(x∗)−∇h(x∗) + L ◦(x∗).

Now, using assumption (10) we get

0 ∈ ∇g0(x∗)−∇h(x∗) +NC(x
∗).

However, this condition is satisfied by any critical point x∗ according to Lemma 5.1.
⊓⊔

We can now conclude by the following strong result for DC Algorithm
applied to (P), which has been shown to be a DC program in Theorem 4.1.

Theorem 5.1 Let F be a continuously differentiable concave P -function. As-
sume that a solution of (1) exists. Let {xk} be a sequence generated by Algo-
rithm 1 on (P). Then, any limit point x∗, up to a subsequence, of {xk} that
satisfies the strict complementarity condition is a solution of (1).
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Proof Assuming that F is a P function and that there exists a solution to
(1) yields that this solution is unique. Thus, (P) attains its minimum, whose
optimal value is 0.

Let x∗ be a limit point of the sequence generated by Algorithm 1.
Applying Lemma 5.2, we get that the limit point x∗ is also a stationary

point of (P). Indeed, we have proved in Lemma 3.1 that some constraint
qualification holds at any feasible point of the problem, which is known to
imply (10).

The result follows by applying Theorem 3.1. ⊓⊔

6 Numerics

Through this article, we studied a DC approach to tackle the NCP. In this
section, we present four different experiments applying DCA on the DC for-
mulations that have been introduced in the previous sections, formulation (P)
for the concave NCP and the penalized formulation (Penτ ) for the general
NCP.

First, we present a comparison on a list of LCPs with other DC approaches
that have been suggested recently in [17]. Then, we study an adaptation of
our approach to the absolute value equation and present a comparison of
existing methods as in [1]. These two families of problems belong to the class
of concave NCPs. Finally, we give illustrations of the penalization technique
from Section 4.2 on a non-concave NCP and on two examples of large scale
NCPs.

The algorithms are coded in Matlab on a standard laptop. The convex sub-
problems of DCA, Algorithm 1, are solved using CVX [12]. We consider in all
these examples θ1 = x

x+1 .
No attempt has been made to optimize the performance of the algorithm,

since our aim is to validate our approach and run a preliminary comparison
with other methods. Thus, our main concern is focus on the residuals and in
particular on the number of solved problems.

6.1 Comparisons of DC Methods for LCPs

We compare our method denoted TDC with other DC approaches developed in
[17] denoted as in the paper DCA1, DCA2, DCA3 and DCA4 with respective
initial points x = 0 for DCA1 and DCA2, and x = (0, b) for DCA3 and DCA4.

We run our algorithm on a set of 21 problems originally presented in [17].
The precision is set as ϵ = 10−5. The comparative results are given in Table 1,
where we reported the objective value of the methods at the final point. The
values reported for DCA1, DCA2, DCA3 and DCA4 are those from [17].

Table 1 shows that the method TDC solves all the problem and is then com-
petitive with the best DC approaches from the literature. These experiments
already confirm the validity of our approach. The algorithm only required one
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Pb. TDC DCA1 DCA2 DCA3 DCA4
LCP0 1.01e-08 8.0e-9 1.0e-9 2.56e-6 0.5e-9
LCP1 2.97e-09 4.4e-8 2.0e-9 5.00e-1 1.82e+1
LCP2 6.05e-11 1.2e-9 4.0e-9 7.60e-9 2.3e-9
LCP3 3.51e-09 1.0e-10 1.0e-9 2.21e-4 3.91e+2
LCP4 1.12e-09 1.2e-9 2.0e-9 5.00e-9 3.40e-9
LCP5 7.73e-09 1.3e-9 0.0e-0 1.30e-9 0.0e-0
LCP6 3.44e-11 4.0e-10 1.0e-9 5.98e-2 0.0e-0
LCP6 9.04e-13 6.0e-10 1.0e-9 9.97e-2 0.0e-0
LCP6 1.35e-13 1.0e-10 1.0e-9 12.48e-2 0.0e-0
LCP7 1.48e-10 0.0e-0 3.0e-7 2.92e-6 5.80e-8
LCP7 1.67e-10 1.0e-10 5.0e-7 4.87e-6 7.40e-8
LCP7 1.82e-10 1.0e-10 1.0e-6 9.77e-6 1.20e-7
LCP8 1.03e-10 1.6e-9 3.0e-7 1.14e-6 6.10e-8
LCP8 8.53e-10 2.3e-9 5.0e-7 1.92e-6 1.0e-7
LCP8 5.01e-10 0.0e-0 1.0e-6 3.84e-6 2.00e-7
LCP9 2.24e-09 2.0e-10 1.0e-9 5.98e-2 2.90e-7
LCP9 4.89e-09 2.0e-10 1.0e-9 9.98e-2 6.3e-8
LCP9 4.25e-09 2.0e-10 1.0e-9 1.24e-2 3.30e-8
LCP10 1.45e-09 3.0e-7 0.0e-0 2.0e-10 0.0e-0
LCP10 9.65e-10 5.0e-7 0.0e-0 3.0e-10 0.0e-0
LCP10 9.83e-09 0.0e-0 1.0e-6 6.0e-10 0.0e-0

Table 1 Comparison of the objective values at the solution of five DC methods.

iteration to converge to the solution except for LCP1 (9 iterations) and LCP3
(2 iterations).

6.2 Application to Absolute Value Equations and Comparison

In this section, we apply the same approach to a class of problems that do
not belong exactly to the (1) framework but is very close in the sense that
it can be reformulated as an NCP with an additional affine equality. This
class was widely studied in the last decade and is very often connected to
complementarity problems.

In [1], the authors propose a smoothing technique based on a complemen-
tarity reformulation of the absolute value equation, defined as

Ax− |x| = b, (11)

with A ∈ Rn×n and b ∈ Rn.

In particular, their motivation was to solve the absolute value equation
without any assumption on the data except existence of at least one solution.
This is the same motivation as in this article. Using the same technique as in
[1], (11) can be cast as the following complementarity problem

A(x+ − x−)− (x+ + x−) = b, 0 ≤ x− ⊥ x+ ≥ 0. (12)
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Now, applying the technique proposed in this article yields to consider the
following sub-additive regularized formulation

min
(x−,x+)∈Rn×Rn

Θ(x−, x+)

s.t. A(x+ − x−)− (x+ + x−) = b,

(x−, x+) ≥ 0.

(13)

Then, we can solve (11) using the DC approach discussed earlier on (13).
The following heuristic mentioned in [1] can be rather useful to accelerate

convergence and assure a good precision when we are close to the solution.
After finding the current point xk we solve, if possible, the linear system

(A− diag(δ(xk)))z = b. (14)

If x solves (11), then we solved (11) with the same precision as we solved the
linear system. However, if x does not solve (11), we continue the iterations
with xk. This idea is similar to compute a Newton iteration.

We generate for several n and several values of the parameters one hundred
instances of the problem following [18]:

”Choose a random A from a uniform distribution on [−10, 10], then choose
a random x from a uniform distribution on [−1, 1] and set b = Ax− |x|.”

The difficulty here relies on the fact that the problem may not be uniquely
solvable and thus quite hard to solve. The precision is set as 10−6. We compare
4 methods tailored for general absolute value equations:

– TDC-AVE, which is the DCA on (13) with θ(t) = t/(t+ 0.1);
– TAVE method from [1];
– concave minimization method CMM from [18];
– successive linear programming method LPM from [19].

The initial point used for TDC-AVE is obtained by solving the following linear
program:

min
(x+,x−)∈Rn×Rn

x+ + x− s.t. x+ ≥ 0, x− ≥ 0, A(x+ − x−)− (x+ + x−) = b.

This initial point was already proposed in [1].
Due to the potential difficulty of the equation, we focus on the number

of unsolved problems. We do not include any Newton-kind method in our
comparison, since they are not applicable without additional assumptions on
A.

Table 2 shows the number of unsolved problems among 100 problems for
each value of n. Table 3 presents the number of iterations and the time required
for each method to solve the 100 problems for each value of n.

Overall, these results confirm the validity of our algorithm, since TDC-
AVE solves most of the problems in each case (1 failure over 600 instances)
and improves significantly the existing methods.

For now, the obvious drawback of this approach is that it is more compu-
tationally difficult, since we solve at each step a convex program instead of a
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n TDC-AVE TAVE CMM LPM (LAVE)
32 0 0 9 7
64 0 3 8 13
128 1 8 10 13
256 0 8 11 11
512 0 11 8 10
1024 0 16 7 9

Table 2 Comparison on the number of unsolved problems for 100 hundred randomly gen-
erated AVE of size n.

TDC-AVE TAVE CMM LPM
n ite.(time) ite.(time) ite.(time) ite.(time)
32 204 (36.92) 306 (0.57) 485 (1.83) 248 (0.79)
64 134 (32.92) 491 (2.76) 458 (2.91) 342 (2.52)
128 207 (108.10) 841 (20.94) 568 (19.05) 409 (17.02)
256 143 (358.70) 1129 (361.38) 595 (182.79) 445 (182.04)
512 127 (2025.1) 1469 (3712.2) 499 (1462.6) 400 (1214.2)
1024 111 (18587) 1993 (37356) 479 (11513) 452 (13565)

Table 3 Comparison on the number of iterations and time in seconds for 100 hundred
randomly generated AVE of size n.

linear program. However, it is to be noted that when the dimension grows the
gap is reduced. Although, it was not our main goal in this article and we left
this for further research.

6.3 A Numerical Example of DC Penalization on a General NCP

In this section, we use the theoretical analysis derived in Section 4.2 to solve
the NCP. Let F : Rn → Rn.

We proposed in Theorem 4.2 a DC program, which can be interpreted as
a penalization of the formulation of the NCP using the sub-additive merit
function, (P). The technique used here is to apply DC Algorithm presented in
the previous section to the problem (Penτ ). This approach is only a heuristic,
although Theorem 3.1 and Theorem 4.4 tend to give the intuition that it
should be a good one.

In order to validate our approach, we report the results applied to an
example from [10] and initially proposed in [16], which consider the NCP with

F (x) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x22 + x1 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3

 .

Two solutions are known: x∗ = (
√
6/2, 0, 0, 0.5) and x̄ = (1, 0, 3, 0). The

difficulty in solving this problem arises when a Newton-type method is used,
since the LCP formed by linearizing F around x = 0 has no solution.
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Note that all the components of F are convex functions, and so a trivial
DC decomposition of F is given by

F (x) = g(x)− h(x), with g(x) = F (x) and h(x) = 0.

We choose five random initial points x0 from a uniform distribution on
[−1, 1], we take τ0 = τ1 = 1/(r + 1), r = 0.1 and the precision ϵ = 10−5. Re-
sults are given in Table 4, where we reported the complementarity (xTF (x)),
the solution obtained (sol), the smallest component of F at the solution, the
number of iterations (nb-iter), the distance between y and F (x) and the dis-
tance between t and g(x).

x0 xTF (x) sol ∥min(F (x), 0)∥ nb-iter ∥y − F (Sol)∥ ∥t− g(Sol)∥
x01 0 x∗ 0 36 0 0
x02 0 x∗ 0 98 0 0
x03 0 x̄ 0 734 0 0
x04 0 x∗ 0 90 0 0
x05 0 x∗ 0 61 0 0

Table 4 Sub-additive DC penalization approach to solve the general NCP for five ini-
tial points: x01 = (0.4039 0.0965 0.1320 0.9421)T , x02 = (0.3532 0.8212 0.0154 0.0430)T ,
x03 = (0.0497 0.9027 0.9448 0.4909)T , x04 = (0.4893 0.3377 0.9001 0.3692)T and x05 =
(0.6256 0.7802 0.0811 0.9294)T .

In these five tests, we have a convergence to one of the two solutions x∗ and
x̄ of the problem. It is interesting to notice that as expected by the theoretical
study, when the problem is solved t = g(x) and y = F (x). The results obtained
validate the theoretical part and confirm our approach.

6.4 Large-scale NCPs

We conclude these numerical illustrations by reporting some results of the
same penalty technique from the previous section applied to larger NCPs.

The two examples P1 and P2 from [14] correspond to strongly monotone
function F with

Fi(x) = −xi+1 + 2xi − xi−1 +
1

3
x3i − bi, i = 1, . . . , n (x0 = xn+1 = 0)

and bi = (−1)i for the example P1, bi = (−1)i√
i

for the example P2. In both

cases, a DC decomposition of Fi is given by

gi(x) = −xi+1 + 2xi − xi−1 +
1

3
max(xi, 0)

3 − bi and hi(x) =
1

3
max(−xi, 0)3.

We choose the origin as an initial point, we take τ0 = τ1 = 1/(r+1), r = 0.1 and
the precision ϵ = 10−5. Results are given in Table 5 for n ∈ {500, 1000, 2000},
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P1: n xTF (x) ∥min(x, 0)∥∞ ∥min(F (x), 0)∥∞ time
500 4,31e-6 4,62e-11 3,61e-8 18.48
1000 8,90e-6 4,54e-11 3,71e-8 43.88
2000 1,09e-6 5,15e-11 3,14e-9 150.96

P2: n xTF (x) ∥min(x, 0)∥∞ ∥min(F (x), 0)∥∞ time
500 9,83e-7 4.16e-10 2,41e-7 21,67
1000 1.21e-6 2.40e-10 1.42e-7 56,57
2000 9,58e-7 4,61e-10 2,26e-7 174,72

Table 5 Sub-additive DC penalization approach to solve the general NCP for Problem P1.

where we reported the complementarity (xTF (x)), the feasibility at the solu-
tion and the time in seconds.

In every tests our approach solves the problem up to ϵ, which confirms our
approach. As expected the time required to run the algorithm increases with
respect to the size.

7 Conclusion

In this paper, we proposed a formulation based on sub-additive merit func-
tions for solving non-linear complementarity problems. We have proved that
the reformulated problem is DC program, whenever F is a concave or a DC
decomposition of F is known. Thus, we can use the local algorithm DCA to
solve the problem.

We also proved that in order to solve the monotone concave NCP, it is
sufficient to computing a stationary point of the problem. Besides, when F
is a P function and without any additional assumption except that a DC
decomposition is known, we propose a penalization formulation, whose local
minima are solutions of the NCP.

Numerical experiments on several LCPs and a comparison with other DC
approaches prove the validity of our method. We have presented an application
of absolute value equation and shows that our method proposed is promising.
Finally, we also gave numerical results for some examples when F is non-linear,
including large-scale problems, to confirm our penalization approach.
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