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Abstract

In this article, we propose a new merit function based on sub-additive functions for solving a general
complementarity problem. This leads to consider an optimization problem that is equivalent to the
NCP. In the case of a concave NCP this optimization problem is a Difference of Convex (DC) program
and we can therefore use DC Algorithm to locally solve it. We prove that in the case of a monotone
NCP, it is sufficient to compute a stationary point of the optimization problem to get a solution of the
complementarity problems. In the case of a general NCP, assuming that a DC decomposition of the
complementarity problem is known, we propose a penalization technique to reformulate the optimization
problem as a DC program. Numerical results on linear complementarity problems and absolute value
equations show that our method is promising.
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1 Introduction

We are interested in finding a solution of the non-linear complementarity problem, which consists in finding
x ∈ Rn satisfying

x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (NCP)

where F : Rn → Rn. In the special case where F is an affine map, (NCP) is reduced to the linear com-
plementarity problem (LCP). Unless explicitly specified no smoothness assumption on F is made unless
continuity. The (NCP) is a feasibility and not an optimization problem. However, it is well-known that it
is closely related with optimization problems. Indeed, optimality conditions of many optimization problems
may be casted as an (NCP). Besides, many applications in economy, physics, chemistry consider equilibrium
problems that are formulated as a complementarity problem see [5, 7] and references therein.

The family of methods to solve this problem can be divided in two: equation reformulation methods
and merit function methods. In the former, the complementarity problem (NCP) is reformulated as an
unconstrained (non-smooth) equation solved by a Newton-kind method or an unconstrained minimization
problem depending on the assumptions on F , see [3, 4, 6, 13, 14, 20]. In the latter, the complementarity is
ensured through a merit function reformulating (NCP) as an optimization problem, see [8, 9, 11, 16]. An
extensive treatment of these methods and their extensions can be found in [7]. In the sequel, we focus on
the merit function approach that is the most tractable option if we do not make any strong assumption on
the problem.

A generic formulation of a complementarity problem reformulated as an optimization problem is given
by

min
x∈Rn

Θ(x) s.t. x ≥ 0, F (x) ≥ 0, (1)
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where Θ : Rn → R is called a merit function if it satisfies the following property: x solves (NCP) if and only
if x is the global minimizer of the previous problem. In this sense, we say that the optimization problem
is equivalent to the complementarity problem. If the set of solution of (NCP) is empty, then either the
global optimal value of the objective function is positive or there is no global minima. It is to be noted that
even so F (x) = Mx + q the merit function is not convex in general. Thus, it is fundamental to consider
merit functions with properties depending on the context and study the numerical methods used to solve
the optimization problem (1). Due to the non-convexity, solving means finding a local minimum or at least
a stationary point of (1).

Our aim in this article is to use the very efficient local theory designed for difference of convex (DC)
functions by considering a new merit function that can be expressed as a sum of convex and concave func-
tions. Local optimization approach for DC optimization and DC Algorithm (DCA) were introduced by
Pham Dinh Tao in a preliminary form in the 80’s [23] and extensively developed since then, see [21] for a
review on this method. This approach has been widely used by many researchers, see a list of references on
http://www.lita.univ-lorraine.fr/ lethi/index.php/dca.html. This work is motivated by the fact that DCA
have been successfully applied to many (smooth or non-smooth) large-scale non-convex programs in various
domains of applied sciences. In a recent article [16], the authors present four formulations of the LCP as a
DC optimization problem and show promising numerical results.

Motivated by the recent development of DC approaches to solve the complementarity problems, we
propose a new merit function based on a family of smooth sub-additive functions that has been used in the
literature in the context of sparse optimization [19] and absolute value equation [1], whose latter can be
reformulated as an LCP.

One of our main result considering this new merit function is that it is sufficient to consider stationary
points of the related optimization problem instead of global minima to recover the solution of a monotone
NCP. In particular, this proves that our approach is not more difficult than equation based approach in
advantageous cases.

Besides, we prove that the optimization problem (1) with our new merit function is a DC program if F
is concave. This property permits us to use the local theory to solve DC program and in particular DCA.
In the case of general NCP, where a DC composition of F is known, the optimization problem with our
new merit function can be reformulated as a DC program through penalizations. We prove equivalence
between local minimum of this penalized DC program and the solution of the NCP. Numerical results on
linear complementarity problem and absolute value equation shows that the new method proposed here is
promising compared to existing methods in the literature.

In Section 2, we introduce the new merit function that is proved to be theoretically sound for monotone
NCP in Section 3. In Section 4, we show that this new formulation leads to a DC program that can be
solved using DCA as explained in the Section 5. Finally, in Section 6, we give several numerical experiments
to show the validity of our method compared to existing methods in the literature.

2 A New Merit Function for Complementarity Problems

In this section, we present a new reformulation of the complementarity problem by introducing a new merit
function. Let us consider the merit function Θ : Rn+ → R defined by

Θ(x, F (x)) :=

n∑
i=1

θ(xi) + θ(Fi(x))− θ(xi + Fi(x)), (2)

2



where functions θ : Rn+ → [0, 1[ are non-decreasing concave continuously differentiable functions such that
θ(0) = 0. Examples of these functions for r > 0 are:

(θ1) : θ(x) =
x

x+ r
,

(θw1) : θ(x) = (1− e−( x
r ))k, for k ≤ 1,

(θlog) : θ(x) =
log(1 + x)

log(1 + x+ r)
.

For r sufficiently small, the functions θ approximate a step function. This observation already leads to
interesting results in sparse optimization in [19] and applied in the context of complementarity problems in
[1, 13].

We use the map Θ to reformulate the (NCP) as follows

Θ(x, F (x)) = 0, x ≥ 0, F (x) ≥ 0. (3)

The following lemma shows that the functions θ are sub-additive.

Lemma 2.1. ∀ x ≥ 0, F (x) ≥ 0 we have

θ(x) + θ(F (x)) ≥ θ(x+ F (x)).

Proof. Since θ is concave we obtain

∀x 6= y ∈ R,∀t ∈ (0, 1), tθ(x) + (1− t)θ(y) ≤ θ(tx+ (1− t)y),

with equality if t = 0 or 1 and if x = y. For y = 0 and θ(0) = 0 yields

θ(tx) = θ(tx+ (1− t)y) ≥ tθ(x), ∀t ∈ (0, 1),

with equality if t = 0, 1 or x = 0. Take i ∈ {1, ..., n} and suppose that xi+Fi(x) 6= 0 (the case xi = Fi(x) = 0
stay true)

θ(xi) + θ(Fi(x)) = θ((xi + Fi(x))
xi

xi + Fi(x)
) + θ((xi + Fi(x))

Fi(x)

xi + Fi(x)
),

≥ xi
xi + Fi(x)

θ((xi + Fi(x))) +
Fi(x)

xi + Fi(x)
θ((xi + Fi(x))),

= θ(xi + Fi(x)),

with equality if and only if xi = 0 or Fi(x) = 0.

It is now straightforward to conclude that finding a global minimum of (3) is equivalent to solving (NCP).

Theorem 2.1. Let x ∈ Rn+, F (x) : Rn+ → Rn+. It holds that Θ(x, F (x)) = 0⇔ xTF (x) = 0.

Proof. By Lemma 2.1, Θ is a sum of non-negative terms, therefore Θ is equal to 0 if and only if all terms
are zero. In addition, for a component i there is equality if and only if xi = 0 or Fi(x) = 0.

Using (2) to define a sub-additive merit function, we consider the following optimization problem:

inf
x∈X

Θ(x, F (x))

s.t. x ≥ 0, F (x) ≥ 0,
(P)

where X is a bounded convex subset of Rn. A box is a typical choice of X . We denote F the feasible set of
(P) defined as

F := {x ∈ X | x ≥ 0, F (x) ≥ 0}.
It is to be noted that the feasible set of (P) could be non-convex, unless the function F is assumed concave.
The following result that is given without proof sum up the possible situations that may arise by solving (P)
and their consequences to our initial aim that is solving (NCP).
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Theorem 2.2. Assume that F : Rn+ → Rn is a continuous function and that F is non-empty. Then, (P)
attains its extrema and exactly one of the following cases arises:

• The global optimal value of (P) is zero and the corresponding point is a solution of (NCP);

• The global optimal value of (P) is positive and (NCP) has no solution.

3 Sub-Additive Reformulation for Monotone NCP

In this section, we prove that for a popular class of (NCP) finding a stationary point of (P) is actually
sufficient to solve the initial problem. First, let us introduce the monotone NCP.

3.1 Monotone Complementarity Problems

We focus in this section on the (NCP) that are said monotone. We give classical definitions and characteri-
zation of this family of complementarity problems.

Definition 3.1. [7] The function F : Rn 7→ Rn is said to be a P0 function iff

max
i:xi 6=yi

(x− y)i(Fi(x)− Fi(y)) ≥ 0 ∀x 6= y ∈ Rn.

If this inequality is strict, F is said a P -function.

Assuming differentiability of the map F this definition reduces to a condition on the jacobian matrix.
We extend the definition of a P0 (resp. P ) function to a P0 (resp. P ) matrix.

Definition 3.2. [7] A matrix M ∈ Rn×n is said to be a:

• P0 matrix if all of its principal minors are nonnegative (the principal minor is the determinant of Mii

where i ∈ {1, ...n});

• P matrix if all of its principal minors are positive;

• positive semidefinite if xTMx ≥ 0 for all x ∈ Rn, and positive definite if xTMx > 0 for all x ∈ Rn(x 6=
0) (with M is symmetric).

P -matrix is a generalization of positive definite matrix, while P0-matrix is a generalization of positive
semi-definite matrix. In the case of a smooth function F , then Proposition 3.5.10 of [7] gives the following
characterization.

Proposition 3.1. For a continuously differentiable function F , if its transpose jacobian ∇F (x)T is a P-
matrix then F is a P-function, whereas the transpose jacobian ∇F (x)T is a P0-matrix if and only if F is a
P0-function.

Those family of NCP are particularly useful since they characterize the set of solution of the NCP. The
following proposition is a sum up of results given in [7].

Proposition 3.2. If F is a P-function, NCP has at most a solution.

Among other interesting properties, we will show in Lemma 3.1 that some regularity may be obtained
for the set F for these family of (NCP).
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3.2 Sufficient Optimality Condition for Montone NCP

We assume here that the function F is a continuously differentiable function. About non-linear optimization
problems, a classical approach is to study stationary points of (P) using the classical Karush-Kuhn-Tucker
conditions. Let x∗ ∈ F be a stationary point of (P) if there exists (λ, µ) ∈ Rn+ × Rn+ that satisfies

∇Θ(x∗, F (x∗))−∇F (x∗)Tλ− µ = 0,
λTF (x∗) = 0, F (x∗) ≥ 0, λ ≥ 0,
x∗,Tµ = 0, x∗ ≥ 0, µ ≥ 0.

It holds from non-linear programming theory that a local minimum of (P) that satisfies a constraint qual-
ification is a stationary point of (P). Let us now give two examples of classical constraint qualification
(CQ).

Definition 3.3. We say that x∗ ∈ F satisfies

• Linear Independence CQ (LICQ) if the gradients

{∇Fi(x∗) ∀i ∈ {i|Fi(x∗) = 0}} ∪ {∇x∗i ∀i ∈ {i|x∗i = 0}}

are linearly independent.

• Mangasarian-Fromowitz CQ (MFCQ) if the only solution to the equation

0 =

m∑
i=1

µi∇x∗i +

m∑
i=1

λi∇Fi(x∗),

with for all i ∈ {1, . . . , n} min(λi, Fi(x
∗)) = 0 and min(µi, x

∗
i ) = 0 is the trivial solution. We say in

this case that the gradients

{∇Fi(x∗) ∀i ∈ {i|Fi(x∗) = 0}} ∪ {∇x∗i ∀i ∈ {i|x∗i = 0}}

are positively linearly independent.

In the special case of a monotone NCP, that is an (NCP) with F a P-function, some constraint qualification
holds for the set F .

Lemma 3.1. Let F be a continuously differentiable map from Rn to Rn. Assume F is P-function. Then,
MFCQ holds at any point x∗ ∈ F . Furthermore, if x∗ satisfies x∗ + F (x∗) > 0, then LICQ holds at any
point x∗ ∈ F .

The assumption that x∗ + F (x∗) > 0 is also well-known in the literature of complementarity problems
under the name of strict complementarity.

Proof. By definition, MFCQ holds at a point x∗ if the gradients of the active constraints are positively-linearly
independent and LICQ holds at a point x∗ if the gradients of the constraints are linearly independent. First,
let us prove that given x∗ ∈ F if x∗ satisfies x∗ + F (x∗) > 0, then LICQ holds at x∗. Let (λ, µ) ∈ R2n be
such that

0 =

m∑
i=1

µi∇x∗i +

m∑
i=1

λi∇Fi(x∗) , (4)

where µi = 0 for i ∈ I := {i ∈ {1, . . . , n} | x∗i > 0}, λi = 0 for i ∈ J := {i ∈ {1, . . . , n} | Fi(x∗) > 0}. Since
x∗ satisfies x∗ + F (x∗) > 0, then (4) is combination of m gradients. We arrange the components of x and
F (x) such that xiFi(x) = 0 for i = 1, . . . ,m and xi > 0, Fi(x) > 0 for i = m + 1, . . . , n, so we can rewrite
(4) as (

IJ ∇FJ×I(x∗)T
0 ∇FI×I(x∗)T

)(
µJ
λI

)
= 0.
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By continuity of F it holds that the jacobian matrix of F is a P-matrix by Proposition 3.1 and in
particular all its principal minor are non-singular matrices. By computing the Schur complement on the
left-hand side it holds that the matrix is non-singular and so µJ = λI = 0. So, LICQ holds at x∗.

Consider the case where there exists an index i such that x∗i + Fi(x
∗) = 0. Obviously (4) may be a

combination of at least n+ 1 gradients and so, LICQ can not hold. However, we prove that MFCQ holds at
x∗.

Let SC := {i ∈ {1, . . . ,m} | x∗i = Fi(x
∗) = 0} and assume that (λ, µ) ∈ R2n

+ . We can rewrite (4) as IJ\SC ∇FJ\SC×SC(x∗)T ∇FJ\SC×I\SC(x∗)T

0 ∇FSC×SC(x∗)T ∇FSC×I\SC(x∗)T

0 ∇FI\SC×SC(x∗)T ∇FI\SC×I\SC(x∗)T

 µJ\SC
µSC + λSC
λI\SC

 = 0.

The left-hand side is obviously non-singular since ∇FI+SC×I+SC(x∗)T is non-singular. So, it follows that
µJ\SC = µSC + λSC = λI\SC = 0, which leads to µJ = λI = 0 by non-negativity of µ and λ. Thus, the
gradients

{∇Fi(x∗) ∀i ∈ {i|Fi(x∗) = 0}} ∪ {∇x∗i ∀i ∈ {i|x∗i = 0}}

are positively linearly independent and the result follows.

The previous lemma guarantees that any local minimum of (P) is a stationary point. The following
theorem guarantees that computing a stationary point of (P) may be sufficient to solve (NCP).

Theorem 3.1. Let F be a continuously differentiable P function. Assume that a solution of (NCP) exists.
Then, any KKT point of (P) that satisfies the strict complementarity condition is a solution of (NCP).

Proof. Let x ∈ F be a stationary point of (P). Thus, there exists λ, µ ∈ Rn × Rn such that

θ
′
(x) +∇F (x)T θ

′
(F (x))− θ′(x+ F (x))−∇F (x)T θ

′
(x+ F (x))−∇F (x)Tλ− µ = 0,

λTF (x) = 0, F (x) ≥ 0, λ ≥ 0,
xTµ = 0, x ≥ 0, µ ≥ 0.

We show the result by contradiction. Assume that x is not a solution for (NCP) then there exists a set
of indices J non-empty such that for all i ∈ J it holds that xi > 0 andFi(x) > 0. Denote the sets I1 =
{j = 1, . . . , n | xj = 0, Fj(x) > 0}, I2 = {k = 1, . . . , n | xk > 0, Fk(x) = 0}. By the strict complementarity
assumption, it always holds that I1 ∪ J ∪ I2 = {1, . . . , n}.

Rewriting the previous equation yields 0I1
0J
0I2

 =

 θ
′
(0)

θ
′
(xJ)

θ
′
(xI2)

−
 θ

′
(FI1(x))

θ
′
(xJ + FJ(x))

θ
′
(xI2)

+∇F (x)T

 θ
′
(FI1(x))

θ
′
(FJ(x))

θ
′
(0)

−∇F (x)T

 θ
′
(FI1(x))

θ
′
(FJ(x) + xJ)

θ
′
(xI2)


−∇F (x)T

 0I1
0J
λI2

−
 µI1

0J
0I2

 ,

=

 θ
′
(0)− θ′(FI1(x))

θ
′
(xJ)− θ′(xJ + FJ(x))

0

+∇F (x)T

 0

θ
′
(FJ(x))− θ′(xJ + FJ(x))

θ
′
(0)− θ′(xI2)− λI2

−
 µI1

0J
0I2

 .

The equation on I2 gives

0 = ∇FI2×J(x)(θ
′
(FJ(x))− θ

′
(xJ + FJ(x))) +∇FI2×I2(x)T (θ

′
(0)− θ

′
(xI2)− λI2),

∇FI2×I2(x)TλI2 = ∇FI2×J(x)T (θ
′
(FJ(x))− θ

′
(xJ + FJ(x))) +∇FI2×I2(x)T (θ

′
(0)− θ

′
(xI2)),

λI2 = (∇FI2×I2(x)T )−1∇FI2×J(x)T (θ
′
(FJ(x))− θ

′
(xJ + FJ(x))) + θ

′
(0)− θ

′
(xI2).

Existence of the inverse of the matrix ∇FI2×I2(x)T is given by the jacobian matrix of F being a P-matrix.
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The equation on J and replacing λI2 yields

0 = θ
′
(xJ)− θ

′
(xJ + FJ(x)) +∇FJ×J(x)T (θ

′
(FJ(x))− θ

′
(xJ + FJ(x)))

+ ∇FJ×I2(x)T (θ
′
(0)− θ

′
(xI2)− λI2)

0 = θ
′
(xJ)− θ

′
(xJ + FJ(x)),

+ (∇FJ×J(x)−∇FJ×I2(x)T (∇FI2×I2(x)T )−1∇FI2×J(x)T )(θ
′
(FJ(x))− θ

′
(xJ + FJ(x))).

The matrix ∇FJ×J(x)T −∇FJ×I2(x)T (∇FI2×I2(x)T )−1∇FI2×J(x)T correspond of the Schur complement of
the matrix∇FTI2+J×I2+J , whose determinant is positive by the P-function assumption. Since the determinant

of ∇FI2×I2(x)T is also positive, it holds that the Schur complement is also a P-matrix. It follows that
(∇FJ×J(x)T −∇FJ×I2(x)T (∇FI2×I2(x)T )−1∇FI2×J(x)T )(θ

′
(FJ(x))− θ′(xJ + FJ(x))) is positive.

Furthermore by concavity of θ it holds that θ
′
(xJ) − θ

′
(xJ + FJ(x)) is also positive. Thus, the last

equation can not hold. This is a contradiction with the existence of the set J . So, the result follows.

We present here a counter-example to show that we can not reduce the P-function assumption to P0.

Example 3.1. Let F (x) = Mx+ q such that

q =

 −1
1
0

 and M =

 0 a b
0 1 0
0 0 1

 ,

where

a = −bθ
′(1)− θ′(2)

θ′(2)− θ′(3)
and b =

1

1− θ′(1)−θ′(2)
θ′(2)−θ′(3)

.

Then, x∗ = (1, 1, 1)T is a stationary point of (P). However, it is not a solution of the (NCP).

We now present another example where the matrix is not a P-matrix but a symmetric negative definite.

Example 3.2. Let F (x) = Mx+ q such that

q =

(
2
2

)
and M =

(
−1 0
0 −1

)
.

In this case, we have

Θ(x, F (x)) = θ(x1) + θ(x2) + θ(−x1 + 2) + θ(−x2 + 2)− θ(2)− θ(2).

Computing the gradient of the objective function equal to zero yields

θ′(x1)− θ′(−x1 + 2) = 0,

θ′(x2)− θ′(−x2 + 2) = 0.

The point x∗ = (1, 1)T satisfies ∇Θ(x∗, F (x∗)) = 0 and therefore is a stationary point of (P). However, this
point is not a solution of (NCP).

An open question to this fundamental result is the possibility to remove the strict complementarity
assumption. We left this question to future research.
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4 A DC Formulation of the Sub-Additive Merit Function for the
NCP

A function f is called a DC (difference of convex) function if it can be expressed as a difference of convex
functions g : Rn → R and h : Rn → R so that

f = g − h.

The definition remains true if g and h are concave functions. A so-called DC program is that of minimizing
a DC function over a convex set. A DC function has infinitely many decomposition g,h but the numerical
resolution may be sensitive to this choice.

We split this section in two parts. First, we consider the formulation (P) in the case where F is a concave
function. Second, we focus on the general case where we only assume that a DC decomposition of the
function F is known.

4.1 Concave NCP

In this section, we show that if F is a concave function the sub-additive function (2) is a DC function and
the optimization problem (P) is a DC program. First, let us prove a simple lemma that shows that the
composition of concave functions does not alter the concavity.

Lemma 4.1. Let f be a concave function on Rn, and let φ be a concave function on Rn, which is non-
decreasing. Then, h(x) = φ(f(x)) is a concave function.

Proof. For x and y in Rn and 0 < λ < 1, we have

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y).

Applying φ to both side of the inequality, we get

h((1− λ)x+ λy) ≥ φ ((1− λ)f(x) + λf(y)) .

By concavity of the function φ it follows

h((1− λ)x+ λy) ≥ φ ((1− λ)f(x) + λf(y)) ≥ (1− λ)h(x) + λh(y).

Thus, h is concave.

We now prove that the objective function of (P) is a DC function.

Theorem 4.1. Let F be a concave function on Rn+. Then, (P) is a DC programming problem.

Proof. It is clear by concavity hypothesis on F that the set of constraints of (P) is a convex set. Now, let
us verify that the function Θ(x, F (x)) is a DC function with

g(x) = −
n∑
i=1

θ(xi + Fi(x)) and h(x) = −
n∑
i=1

θ(xi) + θ(Fi(x)).

Since, F is a concave function and θ is a non-decreasing concave function we can apply Lemma 4.1 to
conclude that g and h are both convex.

It is to be noted that the hypothesis to take F concave is not so restrictive since it includes the large
family of LCPs.
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4.2 General NCP

In the special case where a DC decomposition of the function F is known we can reformulate (P) as a DC
program. Given two convex functions g, h : Rn → R such that

F (x) = g(x)− h(x),

we can reformulate (P) as

inf
x,y∈Rn

Θ(x, y)

s.t. x ≥ 0, y ∈ [0, sup{F (x) : x ≥ 0}],
y = F (x).

Using the fact that a DC decomposition of F is known the previous problem becomes

inf
x,y∈Rn

Θ(x, y)

s.t. x ≥ 0, y ∈ [0, sup{F (x) : x ≥ 0}],
y = g(x)− h(x).

Even so we use a DC decomposition of F and the objective function is a DC function, the set of constraints
in the previous formulation remains non-convex. To tackle this problem, we try to isolate the non-convexity
using slack variables and then penalize the remaining non-convex constraints. Therefore, we consider the
following penalized problem

inf
x,y,t∈Rn×Rn×Rn

Ψ(x, y, t) := Θ(x, y) + τeT (t− y − h(x)) + τeT (t− g(x))

s.t. (x, y, t) ∈ C,
t ≥ g(x), t− h(x) ≥ y,

(Pen)

where C := Rn+ × Rn+ × Rn. The link between the initial problem (P) and the penalized problem (Pen) will
be studied in Theorem 4.3 and 4.4. First, it is straightforward to see that the penalized problem is a DC
program.

Theorem 4.2. Given convex functions g, h : Rn → Rn. Then, (Pen) is a DC program.

Proof. We already showed in Theorem 4.1 that the function Θ(x, F (x)) is a DC function if F is a concave
function. However, it is to be noted here that we consider Θ(x, y), which is therefore a DC function.

Besides by convexity of the functions g and h it follows that the penalty terms in the objective function
are concave. Thus, the objective function of (Pen) is a DC function.

A similar argument gives that the constraints of (Pen) are convex constraints. This completes the
proof.

We now consider the link between the penalized DC program (Pen) and the original problem (P).

Lemma 4.2. Assume that F is non-empty. Let (xτ , yτ , tτ ) be a solution of (Pen) and x̄ be a feasible point
of (P), i.e. x̄ ∈ F . Then, for all non-negative τ it holds that

0 ≤ Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)).

Proof. Since x̄ ∈ F , it holds that (x̄, F (x̄), g(x̄)) is a feasible point for (Pen). Thus, by definition of the triple
(xτ , yτ , tτ ) we have

Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)) + τeT (g(x̄)− F (x̄)− h(x̄)) + τeT (g(x̄)− g(x̄)),
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and since F (x̄) = g(x̄)− h(x̄) we get

Ψ(xτ , yτ , tτ ) ≤ Θ(x̄, F (x̄)).

The non-negativity of the left hand-side is a consequence of Lemma 2.1 and that (xτ , yτ , tτ ) is feasible for
(Pen). This completes the proof.

A direct consequence of this lemma is equivalence of global minimum between the penalized DC program
(Pen) and the original problem (P).

Theorem 4.3. Assume that (NCP) has a bounded solution. Then, x∗ is a global solution (P) if and only
x∗ is global solution of (Pen).

Proof. Let x∗ be a solution of (P). Such solution exists, since we assume that (NCP) has at least one
bounded solution. Then, the triple (x∗, F (x∗), g(x∗)) is feasible for (Pen) and satisfies

Θ(x∗, F (x∗)) + τeT (g(x∗)− F (x∗)− h(x∗)) + τeT (g(x∗)− g(x∗)) = 0,

by Theorem 2.1. This proves one side of the equivalence.
Now, let xτ be a global solution (Pen). Then, by Lemma 4.2 we have

0 ≤ Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ )) ≤ Θ(x̄, F (x̄)),

for all x̄ ∈ F . In particular, consider x̄ to be solution of (NCP), then x̄ ∈ F and by Theorem 2.1 we get

0 = Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ )).

Noticing that the right hand-side is sum of positive terms yields 0 = Θ(xτ , yτ ),yτ = F (xτ ) and tτ = g(xτ ).
By Theorem 2.1 it follows that xτ is a solution of (NCP) and also a solution of (P). This completes the
proof.

We now focus on local minimum of the penalized formulation. We notice, as proved in the following
lemma, that the function Φ is non-increasing with respect to the second variable.

Lemma 4.3. Let τ > θ′(0) and x ≥ 0. Then, the function y ∈ R 7→ θ(y)− θ(x+ y) + τy is a non-increasing
function.

Proof. Computing the derivative with respect to y of the function y ∈ R+ 7→ θ(y)− θ(x+ y) + τy gives

θ′(y)− θ′(x+ y)− τ.

However, this expression is negative since the functions θ are non-increasing and by concavity θ′(y) ≤ θ′(0) <
τ .

The following result consider the case of local optimality and show that computing a local minimum of
the penalized formulation is sufficient to find a local minimum of the initial formulation.

Theorem 4.4. Let τ > θ′(0). Any local minimum of (Pen) is a local minimum of (P).

Proof. Let (xτ , yτ , tτ ) be a local minimum of (Pen), i.e. there exists δ > 0 such that for all (x, y, t) in the
ball of radius δ centered in (xτ , yτ , tτ ), denoted Bδ(xτ , yτ , tτ ), it holds that

Ψ(xτ , yτ , tτ ) ≤ Ψ(x, y, t).

By construction, it is clear that any feasible point of the problem (Pen) is also feasible for the problem
(P). Thus, it follows that if (xτ , yτ , tτ ) satisfies

tτ = g(xτ ) and yτ = g(xτ )− h(xτ ), (5)
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then it is also a local minimum of (P).
Assume by contradiction that expression in (5) is wrong. In other words there exists sets Tt ⊂ {1, . . . , n}

and Ty ⊂ {1, . . . , n} such that for all i ∈ Tt and all j ∈ Ty we have

tτ,i > gi(xτ ) and yτ,j < tτ,j − hj(xτ ). (6)

Let us consider a point (xτ , ȳ, t̄) such that

t̄ :=

{
tτ,i − δ̄/2, if i ∈ Tt,
tτ,i, otherwise,

and

ȳ :=

{
yτ,j + δ̄/2, if j ∈ Ty,
yτ,j , otherwise,

where δ̄ is chosen such that (6) still holds at (xτ , ȳ, t̄).
Obviously, this new point satisfies (xτ , ȳ, t̄) ∈ Bδ(xτ , yτ , tτ ) and so the local optimality of (xτ , yτ , tτ )

yields

Ψ(xτ , yτ , tτ ) ≤ Ψ(xτ , ȳ, t̄),

Θ(xτ , yτ ) + τeT (tτ − yτ − h(xτ )) + τeT (tτ − g(xτ )) ≤ Θ(xτ , ȳ) + τeT (t̄− ȳ − h(xτ )) + τeT (t̄− g(xτ )),

Θ(xτ , yτ )−Θ(xτ , ȳ) + τeT (tτ − yτ )− τeT (t̄− ȳ) + τeT tτ − τeT t̄ ≤ 0,∑
j∈Tj

θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j) + 2τ
∑
i∈Tt

tτ,i − t̄i ≤ 0,

∑
j∈Tj

θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j) + 2τ
∑
i∈Tt

τ δ̄/2 ≤ 0 .

This however leads to a contradiction since τ, δ > 0 and that for all j ∈ Tj

θ(yτ,j)− θ(ȳj)− θ(xτ,j + yτ,j) + θ(xτ,j + ȳj) + τ(ȳj − yτ,j) > 0,

since the function y 7→ θ(y)− θ(x+ y) + τy is non-increasing for all x, y ≥ 0 and τ > θ′(0) by Lemma 4.3. It
follows that Tt = ∅ and Ty = ∅. Thus, (xτ , yτ , tτ ) satisfies (5) and so it is a local minimum of (P).

5 Difference of Convex Programming

In this section, we introduce some fundamentals properties of a DC program and an algorithm to tackle this
problem so-called DCA. For a complete study on this subject, the readers are referred to [2, 21, 22] and
references herein.

5.1 DC Algorithm

Let us remind the definition of a DC program. Given two proper lower semi-continuous convex functions
ḡ, h, a DC program consists in finding x ∈ Rn such that

inf
x∈Rn

g(x)− h(x). (7)

In general this unconstrained formulation encompass convex constraints by considering g(x) = g0(x)+XC(x),
where g0 is a proper lower semi-continuous convex function, C a closed convex set and XC(x) is the convex
indicator function XC(x) = {0 if x ∈ C, +∞ if x /∈ C}.
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Recall that for a lower semi-continuous convex function ψ on Rn and x̄ ∈ dom(ψ) := {x | ψ(x) < ∞},
the subdifferential of ψ at x̄ is given by

∂ψ(x̄) = {y ∈ Rn | ψ(x) ≥ ψ(x̄) + (x− x̄)T y, ∀x ∈ Rn}.

In the special case, where ψ is differentiable function, the subdifferential is reduced to a singleton and
∂ψ(x̄) = ∇ψ(x̄). As an example the subdifferential of the convex indicator function for x ∈ C is given as

∂XC(x) =

{
{0}, ∀x ∈ int(C),

{d ∈ Rn | dTx ≤ 0}, if x ∈ bd(C)

= {d ∈ Rn | dT s ≤ 0,∀s ∈ C} := NC(x).

The notation NC(x) stands for the normal cone of the set C at x.
The necessary local optimality condition for a DC program is

∂h(x∗) ⊂ ∂g(x∗) .

We say that x∗ satisfies the generalized Kuhn-Tucker condition, if it satisfies

∂h(x∗) ∩ ∂g(x∗) 6= ∅ .

We also call such a point a critical point.
DCA is an algorithm that is based on a primal-dual formulation of (7). Let the conjugate function of g

be defined as
g∗(y) := sup

x∈Rn

xT y − g(x).

Then, the dual of (7) is defined as
inf
y∈Rn

h∗(y)− g∗(y). (8)

There is no duality gap as proven in [2]. Furthermore, the following result holds true from [2, 21, 22] gives
a characterisation of the solutions of both problems. Let Pdc (resp. Ddc) denotes the set of solution of the
primal DC program (7) (resp. the dual DC program (8))

Proposition 5.1. Given g, h two proper lower semi-continuous convex functions. It holds true that

[∪y∗∈Ddc
∂g∗(y∗)] ⊂ Pdc

and
[∪x∗∈Pdc

∂h(x∗)] ⊂ Ddc.

Based on local optimality conditions and duality in DCA, the idea of DCA is quite simple: each iteration k
of DCA approximates the concave part −h by its affine majorization (that corresponds to taking yk ∈ ∂h(xk))
and minimizes the resulting convex function (that is equivalent to compute xk+1 ∈ ∂g∗(yk)). The algorithm
is stated explicitly in Algorithm 1.

1 x0 ∈ Rn an initial point;
2 k := 0 ;

3 while k==0 or ‖xk − xk−1‖∞ > ε do
4 yk ∈ ∂h(xk) ;

5 xk+1 ∈ arg min{g(x)− h(xk)− (x− xk)T yk : x ∈ Rn} ;
6 k := k + 1;

Algorithm 1: Generic DCA
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Convergence properties and its theoretical basis has been analysed in [2, 21, 22]. We remind here the
fundamental facts. DCA is a descent method without line search, thus the sequence {g(xk) − h(xk)} is
a decreasing sequence. So, if the optimal value of (7) is finite, then the sequence {xk} converges. If
g(xk) − h(xk) = g(xk+1) − h(xk+1) or equivalently xk = xk+1 then xk is a critical point of g − h and the
algorithm terminate at iteration k.

5.2 DCA For Concave NCP

We now make the link between DCA and Theorem 3.1. We remind that this theorem proves that a stationary
point of (P) with F a concave differentiable P-function is the solution of the (NCP) assuming such a
solution exists. The following sequence of results states that under classical assumptions DCA converges to
a stationary point of (P).

Lemma 5.1. Let x∗ be a critical point of (7), where we assume that ḡ(x) = g(x) + ξC with g, h are
differentiable lower semi-continuous convex functions and C is a closed convex set. It holds true that

0 ∈ ∇g(x∗) +NC(x∗)−∇h(x∗),

where N is the normal cone of C at x∗.

Proof. x∗ is assumed to be a critical point of (7), i.e.

0 ∈ ∂ḡ(x∗)− ∂h(x∗).

Now, by construction of ḡ we have

0 ∈ ∂g(x∗) +NC(x∗)− ∂h(x∗).

The result follows by differentiability assumption on g and h.

Lemma 5.2. Let x∗ be a critical point of (7), where we assume that ḡ(x) = g(x) + ξC with g, h are
differentiable lower semi-continuous convex functions and C is a closed convex set. Furthermore, assume
that

NC(x∗) = L ◦(x∗), (9)

where
L ◦(x∗) := {d ∈ Rn | d = −∇F (x∗)Tλ− µ with min(F (x∗), λ) = 0,min(x∗, µ) = 0}.

Then, x∗ is stationary point of (P).

The cone L ◦(x∗) is sometimes called the polar cone of the linearised cone in the literature related to
Karush-Kuhn Tucker conditions, while the condition (9) refers to the Guignard constraint qualification that
is known to be the weakest constraint qualification in non-linear programming.

Proof. In Theorem 3.1, we define a stationary point of (P) as a point x̄ such that there exists Lagrange
multipliers (λ, µ) ∈ Rn×n that satisfies

∇g(x∗)−∇h(x∗)−∇F (x∗)Tλ− µ = 0
λTF (x∗) = 0, F (x∗) ≥ 0, λ ≥ 0
(x∗)Tµ = 0, x∗ ≥ 0, µ ≥ 0 .

This can be equivalently written as

0 ∈ ∇g(x∗)−∇h(x∗) + L ◦(x∗).

Now, using assumption (9) we get

0 ∈ ∇g(x∗)−∇h(x∗) +NC(x∗).

However, this condition is satisfied by any critical point x∗ according to Lemma 5.1.
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We can now conclude by the following strong result for DC algorithm applied to P, which has been shown
to be a DC program in Theorem 4.1.

Theorem 5.1. Let F be a continuously differentiable concave P -function. Assume that a solution of (NCP)
exists. Let {xk} be a sequence generated by Algorithm 1 on P. Then, any limit point, up to a subsequence,
of {xk} that satisfies the strict complementarity condition is a solution of (NCP).

Proof. Assuming that F is a P-function and that there exists a solution to (NCP) yields that this solution
is unique. Thus, P attains its minimum, whose optimal value is 0.

The optimal value is bounded and the sequence {g(xk)− h(xk)} is a decreasing sequence, so Algorithm
1 converges to a critical point. Applying Lemma 5.2, we get that the limit point is also a stationary point
of P. Indeed, we have proved in Lemma 3.1 that some constraint qualification holds at any feasible point of
the problem, which is known to imply (9).

The result follows by applying Theorem 3.1.

6 Numerics

Through this article, we studied two DC approaches to tackle the NCP. In this section, we present three
different experiments applying DCA on the DC formulations that have been introduced in the previous
sections, equation (P) for concave NCP and the penalized formulation (Pen) for general NCP.

First, we present a comparison on a list of LCP problems with other DC approaches that have been
suggested recently in [16]. Then, we study an adaptation of our approach to the absolute value equation
and present a comparison of existing methods as in [1]. These two family of problems belong to the class of
concave NCP. Finally, we give an example of the penalization technique from Section 4.2 on a non-concave
NCP.

The algorithms are coded in Matlab 2014b on a standard laptop. The convex sub-problems of DCA,
Algorithm 1, are solved using CVX [12].

6.1 Comparisons with DC Methods for LCP

We compare our method denoted TDC with other DC approaches developped in [16] denoted as in the paper
DCA1, DCA2, DCA3 and DCA4 with respective initial points x = 0 for DCA1 and DCA2, and x = (0, b)
for DCA3 and DCA4. DCA1 and DCA4 are iterative methods with quadratic convex sub-problems that we
solve using CVX. DCA2 is an iterative method with linear sub-problems that we solve using linprog. DCA3
is an iterative method with standard operations. The initial point for TDC is set here at x = 0. We use the
function θ1 = t/(t+ 1) to define the merit function in TDC.

We run our comparison on a set of 25 problems that are described in Appendix A. This set includes
the original problems presented in [16] and some given in [10]. Instances LCP10 to LCP14 are studied for
dimensions 300, 500 and 1000. The precision is set as ε = 10−5.

The comparative results are given in Table 1 and Table 2. We are interested in the following aspects:
the residuals, computed as max(xT (Mx + q), ‖min(x, 0)‖∞, ‖min(Mx + q, 0)‖∞), the number of iterations
and the time. No attempt has been made to optimize the performance of the algorithm, since our aim is
to validate our approach and run a preliminary comparison with other methods. Thus, our main concern is
focus on the residuals and in particular on the number of solved problems.

Table 1 shows that the method TDC is the only one to solve all the problems. Although, DCA1 and
DCA4 only fail on respectively 2 (LCP2, LCP3) and 5 problems (LCP6,LCP8, LCP14), although LCP6 is
almost solved using DCA4. These experiments already confirm the validity of our approach.

In Table 2, we expect DCA1 and DCA4 to be faster than TDC, since they only solved convex quadratic
sub-problems compared to convex problems. This is confirmed by the results. However, for a large part of
the problems, TDC remains in the same order of time than the others methods. For 4 instances (LCP6 and
the three LCP10), TDC spend significantly less time than DCA4.
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Pb. TDC DCA1 DCA2 DCA3 DCA4

LCP0 0.000000 0.000000 0.000000 0.000000 0.000000
LCP1 0.000000 0.000000 0.000000 0.010928 0.000000
LCP2 0.000000 3.000000 1.191969 0.183023 0.000000
LCP3 0.000000 2.000000 14056.152537 1.000000 0.000000
LCP4 0.000000 0.000000 0.000000 0.000000 0.000000
LCP5 0.000000 0.000000 30.422537 0.005219 0.000000
LCP6 0.000000 0.000000 453.572844 0.205609 0.000014
LCP7 0.000000 0.000000 0.000000 0.000000 0.000000
LCP8 0.000000 0.000000 0.000000 0.000000 0.000173
LCP9 0.000000 0.000000 0.000000 0.000000 0.000000
LCP10 0.000000 0.000000 0.000000 0.996569 0.000000
LCP10 0.000000 0.000000 0.000000 0.997942 0.000000
LCP10 0.000000 0.000000 0.000000 0.998971 0.000004
LCP11 0.000000 0.000000 2136417.272448 0.000655 0.000000
LCP11 0.000000 0.000001 3567004.210504 0.000489 0.000000
LCP11 0.000000 0.000000 7143507.495324 0.000339 0.000000
LCP12 0.000000 0.000000 3620054.331657 0.001033 0.000000
LCP12 0.000000 0.000000 6014566.787304 0.000791 0.000000
LCP12 0.000000 0.000000 12000859.009675 0.000571 0.000000
LCP13 0.000000 0.000000 41406.616317 0.742913 0.000000
LCP13 0.000000 0.000000 51818.790221 0.857770 0.000000
LCP13 0.000000 0.000000 53590.477924 0.938882 0.000002
LCP14 0.000000 0.000000 3457018.895431 0.997783 0.007906
LCP14 0.000000 0.000009 5431724.049730 0.999193 0.012113
LCP14 0.000000 0.000004 11314010.430384 0.999793 0.017590

Table 1: Comparison on the residuals max(xT (Mx + q), ‖min(x, 0)‖∞, ‖min(Mx + q, 0)‖∞) of five DC
methods.

Besides, it is interesting to note that for most of the instances (22/25), TDC requires only one iteration.
The three remaining problems seem to be difficult, since it is LCP2 and LCP3, the two failures of DCA1,
and LCP6, which is only approximately solved by DCA4 with 24 iterations.

All in all, these preliminary results are very encouraging. Further research should explore time optimiza-
tion and instances with very large dimension.

6.2 Application to Absolute Value Equation and Comparison

In [1], the authors propose a smoothing technique based on a complementarity reformulation of the absolute
value equation, defined as

Ax− |x| = b (10)

with A ∈ Rn×n and b ∈ Rn.
In particular, their motivation was to solve the absolute value equation without any assumption on the

data except existence of at least one solution. This is the same motivation as in this article. Using the same
technique as in [1], (10) can be casted as the following complementarity problem

A(x+ − x−)− (x+ + x−) = b, 0 ≤ x− ⊥ x+ ≥ 0. (11)

Now, applying the technique proposed in this article yields to consider the following sub-additive regularized
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Pb. TDC DCA1 DCA2 DCA3 DCA4

LCP0 1 (4.310494) 0 (0.000636) 1 (2.255981) 1 (0.000052) 1 (0.655963)
LCP1 1 (0.087655) 1 (0.077509) 1 (0.016695) 116 (0.001562) 1 (0.071924)
LCP2 9 (0.981270) 2 (0.150380) 2 (0.009943) 1057 (0.012527) 4 (0.366921)
LCP3 18 (1.828030) 2 (0.162421) 2 (0.010436) 1002 (0.012531) 11 (1.041105)
LCP4 1 (0.104623) 0 (0.000037) 1 (0.012372) 1 (0.000063) 1 (0.093485)
LCP5 1 (0.098558) 1 (0.090425) 2 (0.073538) 46 (0.000611) 1 (0.076413)
LCP6 2 (0.188896) 1 (0.079031) 2 (0.010363) 18498 (0.223561) 24 (2.416563)
LCP7 1 (0.129127) 0 (0.000028) 1 (0.006391) 1 (0.000036) 1 (0.142373)
LCP8 1 (0.098097) 0 (0.000024) 1 (0.005906) 1 (0.000038) 3 (0.375995)
LCP9 1 (0.118442) 0 (0.000027) 1 (0.008533) 1 (0.000061) 1 (0.121109)
LCP10 1 (2.032424) 1 (0.782662) 1 (0.658506) 3 (0.000803) 1 (6.102593)
LCP10 1 (6.511099) 1 (1.754187) 1 (2.801324) 3 (0.004826) 1 (31.286924)
LCP10 1 (49.815355) 1 (8.815220) 1 (24.645624) 3 (0.020579) 1 (426.055509)
LCP11 1 (0.127772) 1 (0.151737) 2 (0.036948) 101 (0.024243) 1 (0.121978)
LCP11 1 (0.150208) 1 (0.109892) 2 (0.064879) 105 (0.158833) 1 (0.140689)
LCP11 1 (0.216863) 1 (0.162223) 2 (1.620359) 110 (0.721783) 1 (0.222982)
LCP12 1 (0.125809) 1 (0.104318) 2 (0.026417) 232 (0.042913) 1 (0.119623)
LCP12 1 (0.130139) 1 (0.117876) 2 (0.061030) 241 (0.396976) 1 (0.128972)
LCP12 1 (0.202222) 1 (0.158284) 2 (1.618803) 252 (1.711475) 1 (0.209815)
LCP13 1 (2.881841) 1 (0.249691) 2 (0.489375) 12456 (2.689871) 1 (1.258522)
LCP13 1 (15.979708) 1 (0.744162) 2 (2.049274) 8376 (12.453357) 1 (7.303410)
LCP13 1 (211.015326) 1 (3.918635) 2 (5.199419) 5346 (34.129436) 1 (74.023011)
LCP14 1 (0.137329) 1 (0.136163) 2 (0.028150) 20000 (5.148445) 3 (0.471519)
LCP14 1 (0.192593) 1 (0.150660) 2 (0.092064) 20000 (32.703992) 3 (0.583343)
LCP14 1 (0.235936) 1 (0.217084) 2 (1.619427) 20000 (126.621461) 3 (0.889027)

Table 2: Comparison on the number of iterations and time (in parenthesis) in seconds of five DC methods.

formulation

min
(x−,x+)∈Rn×Rn

Θ(x−, x+)

s.t. A(x+ − x−)− (x+ + x−) = b,

(x−, x+) ≥ 0.

(12)

Then, we can solve (10) using DC approach discussed earlier on the problem (12).
The following heuristic mentioned in [1] can be rather useful to accelerate convergence and assure a good

precision when we are close to the solution. After finding the current point xk we solve if possible the linear
system

(A− diag(δ(xk)))z = b. (13)

If x solves (10), then we solved (10) with the same precision as we solved the linear system. However, if
x does not solve (10), we continue the iteration in r with xk. This idea is similar to compute a Newton
iteration.

We generate for several n and several values of the parameters one hundred instances of the problem
following [17]:

”Choose a random A from a uniform distribution on [−10, 10], then choose a random x from a uniform
distribution on [−1, 1] and set b = Ax− |x|.”

The difficulty here relies on the fact that the problem may not be uniquely solvable and thus quite hard
to solve. The precision is set as 10−6. We compare 4 methods tailored for general absolute value equations:
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• TDC-AVE, which is the DCA on (12) with θ(t) = t/(t+ 0.1);

• TAVE method from [1];

• concave minimization method CMM from [17];

• successive linear programming method LPM from [18].

The initial point used for TDC-AVE is obtained by solving the following linear program:

min
(x+,x−)∈Rn×Rn

x+ + x−

s.t. x+ ≥ 0, x− ≥ 0, A(x+ − x−)− (x+ + x−) = b.

This initial point was already proposed in [1].
Due to the potential difficulty of the equation, we focus on the number of unsolved problems. We do not

include any Newton-kind method in our comparison, since they are not applicable without assumptions on
A.

n TDC-AVE TAVE CMM LPM (LAVE)

32 0 0 9 7
64 0 3 8 13
128 1 8 10 13
256 0 8 11 11
512 0 11 8 10
1024 0 16 7 9

Table 3: Comparison on the number of unsolved problem for 100 hundreds randomly generated AVE of size
n.

TDC-AVE TAVE CMM LPM
n ite.(time) ite.(time) ite.(time) ite.(time)

32 204 (36.9269) 306(0.5783) 485(1.8362) 248 (0.7955)
64 134(32.9252) 491(2.7602) 458(2.9125) 342(2.5223)
128 207 (108.1083) 841(20.9437) 568(19.0521) 409 (17.0269)
256 143 (358.7079) 1129 (361.3884) 595 (182.7998) 445 (182.0419)
512 127 (2025.1) 1469 (3712.2) 499 (1462.6) 400 (1214.2)
1024 111 (18587) 1993 (37356) 479 (11513) 452 (13565)

Table 4: Comparison on the number of iterations and time in seconds for 100 hundreds randomly generated
AVE of size n.

This confirms the validity of our algorithm, since TDC-AVE solves most of the problem in each case (1
failure over 600 instances) and improves significantly the existing methods.

For now, the obvious drawback of this approach is that it is more computationally difficult, since we
solve at each step a convex program instead of a linear program. However, it is to be noted that when the
dimension grows the gap is reduced. Although, it was not our main goal in this article and we left this for
further research.
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6.3 A Numerical Example of DC-Penalization on a General NCP

In this section, we use the theoretical analysis derived in Section 4.2 to solve the NCP. Let F : Rn → Rn.
We proposed in Theorem 4.2 a DC program, which can be interpreted as a penalization of the for-

mulation of the NCP using the sub-additive merit function, (P). The technique used here is to apply DC
Algorithm presented in the previous section to the problem (Pen). This approach is only a heuristic, although
Theorem 3.1 and Theorem 4.4 tend to give the intuition that it should be a good one.

In order to validate our approach, we report the result of this approach to an example from [10] and
initial proposed in [15], which consider the NCP with

F (x) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x22 + x1 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3

 .

Two solutions are known: x∗ = (
√

6/2, 0, 0, 0.5) and x̄ = (1, 0, 3, 0). The difficulty in solving this problem
arises when a Newton-type method is used, since the LCP formed by linearizing F around x = 0 has no
solution.

Note that all the components of F are convex functions, and so a trivial DC decomposition of F is given
by

F (x) = g(x)− h(x), with g(x) = F (x) and h(x) = 0.

In a similar way as in the previous numerical tests, the convex problems are solved using CVX in
Matalb. We choose five random initial points x0 from a uniform distribution on [−1, 1], we take τ0 =
τ1 = 1/(r + 1), r = 0.1 and the precision ε = 1e − 5. Results are given in Table 5, where we reported the
complementarity (xTF (x)), the solution obtained (sol), the smallest component of F at the solution, the
number of iterations (nb-iter), the distance between y and F (x) and the distance between t and g(x).

x0 (xk)T (g(xk)− h(xk)) sol mini Fi(x) nb-iter ‖y − F (Sol)‖ ‖t− g(Sol)‖

(0.4039;0.0965; 0.1320 ;0.9421) 0 x∗ 0 36 0 0
(0.3532;0.8212;0.0154;0.0430) 0 x∗ 0 98 0 0
( 0.0497;0.9027;0.9448;0.4909) 0 x̄ 0 734 0 0
(0.4893;0.3377;0.9001;0.3692) 0 x∗ 0 90 0 0
(0.6256;0.7802;0.0811;0.9294) 0 x∗ 0 61 0 0

Table 5: Numerics on Non-Linear Complementarity Problems for five tests

In this five tests, we have a convergence to one of the two solutions x∗ and x̄ of the problem. It is
interesting to notice that as expected by the theoretical study, when the problem is solved t = g(x) and
y = F (x). The results obtained validate the theoretical part and confirms our approach.

7 Conclusion

In this paper, we have proposed a new formulation based on concave functions for solving nonlinear com-
plementarity problems (NCP). We have proved that the problem is DC program when F is a concave or a
DC function, in this case, we used a penalization function to solve the problem. We also proved for solving
the NCP with the assumption of monotony, it suffices to computing a stationary point for our problem.
Numerical experiments on several LCP problems and a comparison with other DC approaches proves the
efficiency of our study. We have presented an application of absolute value equation and shows that our
method proposed is promising. We also give some numerical results for a example when F is nonlinear to
validate our approach.
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A Description of LCP Test Problems from Section 6.1

In this appendix, we describe the datas of the LCP used in the numerical tests in Section 6.1.

LCP0

M =

(
1 1
1 1

)
and q =

(
1 1

)T
.

LCP1
Mas in LCP0 and q =

(
−1 −1

)T
.

LCP2

M =

 0 −1 2
2 0 −2
−1 1 0

 and q =
(

3 −6 1
)T
.

LCP3
M as in LCP2 and q =

(
−3 6 −1

)T
.

LCP4

M =


0 0 10 20
0 0 30 15
10 20 0 0
30 15 0 0

 and q =
(

1 1 1 1
)T
.

LCP5
M as in LCP4 and q =

(
−1 −1 −1 −1

)T
.

LCP6

M =


11 0 10 −1
0 11 10 −1
10 10 21 −1
1 1 1 1

 and q =
(

50 50 23 −6
)T
.

LCP7

M =

 0 1 0
0 0 1
0 −1 1

 and q =
(

0 0 1
)T
.
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LCP8
M as in LCP6 and q =

(
50 50 1 6

)T
.

LCP9

M =

 0 1 0
0 0 −2
0 2 −1

 and q =
(

0 0 1
)T
.

LCP10

M =


1 2 2 . . . 2
2 5 6 . . . 6
...

...
...

...
...

2 6 10 . . . 4n− 3

 and q =
(
−1 −1 . . . −1

)T
.

LCP11

M =


4 −2 0 . . . 0
1 4 −2 . . . 0
...

...
...

...
...

0 0 0 . . . 4

 and q =
(
−1 −1 . . . −1

)T
.

LCP12

M =


4 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . −1 4

 and q =
(
−1 −1 . . . −1

)
.

LCP13

M =


1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

...
...

0 0 0 . . . 1

 and q =
(
−1 −1 . . . −1

)
.

LCP14
M = diag(1/n, 2/n, . . . , 1) and q =

(
−1 −1 . . . −1

)T
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