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the Alignment Paradigm for Modeling the Self
Alexandre Pitti

Abstract—We propose to develop the notion of Alignment as
one general design principle to understand how to model the
Self. Alignment encompasses the notions of temporal contingency
detection between sensors and motors to calibrate the self, the
spatial alignment between sensors of different reference frames
to represent the physical limits of the body for ego-centered
representation and memory alignment as well behind old and new
memories important for the autobiographical self. Behind this
concept of alignment we identified three complementary neural
mechanisms that may serve to achieve this autonomous con-
struction, namely spike timing-depent plasticity, gain-modulation
and predicitive coding. We review several robotic researches
performed to answer this question in this perspective.

Index Terms—Alignment, Contingency, STDP, Multimodal In-
tegration, Gain-Field, Body Image, Predictive Coding, Working
Memory

I. INTRODUCTION

I propose to review in this manuscript different robotic
researches I have done in the last decade to understand the
development of agency and of self-other differenciation in
robots as infants might do and to find which design principles
should be replicated in robots in my viewpoint. Although
it is now well admitted that the notion of Embodiment is
linked to intelligent and autonomous systems [1], [2], [3],
the design principles behind the very idea of what it means
for an autonomous system to have a body –, agency, self-
recognition, self-other representation, awareness, sensorimotor
expectaction, action observation – are still in a current research
investigation state by roboticists.

In so far, no robot can even roughly recognizing itself on
a mirror, really grasp an objet, understanding where its own
hand is or learning to predict internal or external events and
be surprised if they did not occur as expected. If sensorimo-
tor learning in robots is still poorly achieved by cognitive
architectures, any changes in the sensorimotor configuration
or in the environment achieves to ruin it as any contextual
changes modify just slightly sensorimotor contingencies (like
perceptual illusions, tool-use, changes of reference frame) and
perturb the mapping across the senses.

Thus, it appears that the imprinting of the body in a neural
representation in silico should follow some design principles
and mechanisms to be robust to changes. In this attempt,
we would like to emphasize the concept of Alignment as a
paradigm to understand (and create) a notion of Self in a robot.
For instance, the Alignment Paradigm (AP ) incorporates
the idea of body calibration by that has been enounced by
Rochat [4], [5] and Meltzoff [6], [7], temporal synchronization
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and timing contingency by Watson [8], [9], as well as of spatial
contiguity and dissonance studied by Heed [10], [11], [12].

We propose that Alignment can be one unity measure that
can be quantified, and can be ever causal (unidirectional)
or mutual (bi-directional) and multidimensional. Furthermore,
AP is not necessarily centered to physical interactions, it
conveys also aspects seen in social interactions: as we interact
with others, we can align ourself to the partner as well as to its
motion and to its intention. The social alignment can be in the
opposite way with the partner adjusting its actions to our owns.
And finally, AP can be bidirectional between oneself and its
partner, together aware of the joint motions. In this case, the
mutual alignment cannot be easily separated as it becomes
one joint motion or one joint intention. I suppose this last
stage is at the root of communication with the development of
joint attention, empathy, ethics and theory of mind, which may
be the ground for even broader cognitive skills like abstract
representation, language.

Another dimension of this Alignment hypothesis is ’Mem-
ory’ Alignment, which I define as the recursive and cumulative
capacity to compare current actions to old ones experienced
in the past and stored in the working memory and to decide
either to explore new tracks or to follow old paths that were ad-
vantageous in the past. We possess some intrinsic mechanisms
of predictive coding, reinforcement learning, novelty detection
important for the developping of such auto-biographical mind.
Hesslow and Adolph called this autothelic force the capacity
of Learning-to-Learn [13], [14]. As we acquired more infor-
mation about our environment, we can form some intuition
about the success or failures of our own actions, our working
memory can select which actions to choose whether to align
to old memories or to search for new ones. Some examples
are the A-not-B problem or the mirror test as exemplified in
[15], [16], [17], [18], they are constitutive of the beginning of
a conscious notion of Self in the human brain. The dynamical
comparison between old memories and new actions, known
as predictive coding, permits to construct habits and to form
memory sequences.

All-in-all, I suggest three bio-inspired mechanisms poten-
tially interesting to develop this idea of Alignment for the
construction of the Self, namely (1) the Hebbian learning
mechanism of Spike Timing-Dependent Plasticity (STDP)
which permits to neurons at the neuron level to learn causally
dependent temporal rules, (2) topographic networks based on
the mechanism of Gain Modulation for multimodal integration,
body representation and sensorimotor transformations at the
population level, which can serve for learning a body ego-
centered spatial representation as well as for changing it into
an allocentric perspective, (3) a hierarchical memory system
based on predictive coding for a rule-based episodic memory
at the brain level.
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All these three alignment mechanisms underlying Tem-
poral Contingencies, Body Space and Top-Down Prediction
are compatible with each other and have been investigated
elsewhere by many researchers already. It is not clear however
how they can be combined in the brain to give rise to a seeming
unity to oneself.

II. TEMPORAL ALIGNMENT

One key mechanism for integrating different modalities
into a cohesive neural representation appears to lie in the
temporal encoding done by the synapses. Recent advances
in neurosciences two decades ago have permitted to find
the regulation mechanism based on timing known as Spike
Timing-Dependent Plasticity (STDP, cf. [19], [20]) responsible
for the functional integration in cortical neurons. Similar to
the Hebbian rule of associative learning, STDP reinforces
the synaptic links of the most congruous neurons as well
as their temporal delays. STDP consists on the bidirectional
adaptation mechanism which dynamically regulates the long-
term potentiation (LTP) and long-term depression (LTD) in
synaptic plasticity readjusting the synaptic weights to the
precise timing interval between the initiating and the targeting
neurons [19], [20].

Information processing in distributed neural networks is
performed at a precise temporal resolution of several millisec-
onds. Over time, the most congruous neural pairs aggregate
themselves into coherent neural patterns whereas the less
congruous ones delete their links. Thus, STDP extends the
hebbian rule to the temporal domain and can be defined as
follows: if neuronpre fires at time tpre , then
neuronpost is expected to fire at time tpost.

Keysers proposed that STDP could shape the specific
connectivity and structural organization of the multi-sensory
neurons in parieto-motor circuits to represent actions with
millisecond order precision [21]. It is proposed that the con-
tingent and redundant multimodal information learned in the
sensorimotor circuits sustain then a neural representation of
the body in action [22], [23].

At reverse, various perceptual experiences in the environ-
ment with temporal discrepancies can modulate differently
the levels of integration in the sensorimotor circuits with the
disrupting of sensorimotor integration. For instance, perceptual
illusions like the McGurk effect or the rubber-hand illlusion
may be based on this timely-based mechanism. Rochat in [24]
and also Shimada and colleagues in [25] performed some
visual-delay based contingency detection tests for measuring
self-perception in infants and showed that temporal synchrony
was effective early at birth. Interestingly, their capabilities
for self-perception cover the temporal horizon over 200 and
300 milliseconds above which the feeling of agency was not
perceived. These discoveries give some indications on the level
of temporal binding in sensorimotor coordination.

In several robotic researches, my colleagues and I have
employed the STDP learning rule with spiking neural networks
for temporal binding to study visuo-tactile anticipation during
prehension and action observation in [26], during visuomotor
coordination of a robot head and self-recognition on a mirror

in [27] and recently with Sotaro Shimada to replicate the
rubber-hand illusion with an artificial skin in [28]. In these ex-
periments, we associate the level of synchrony within the net-
work to the level of agency, which means the prediction across
the neurons related to temporal events detection. Depending
on the robotic experience, the incoming information was from
vision (camera), touch (artificial skin) or proprioception (motor
activity) combined at the same time scale with synaptic delays
within the interval range between 0ms and 30ms. We showed
that multimodal integration was quite robust to temporal
delays over 200ms, which were ten times higher than the
capabilities of each neural pairs and that temporal binding
was done at the population level. Therefore, we propose that
the notion of Self or not-Self is distributed over the network
and each neuron contributes to its intermingled representation
in between depending on the current state. This is against
the hypothesis of the grand-mother cells that encod only
specific representations. At reversed, in all our experiments,
the study of the networks structural organization presented
interesting topologies of population coding following the func-
tional organizations of complex networks such as the small-
world networks [29], [30]. These types of networks, similar
to archipelagos with few interaction between the sub-clusters,
have interesting information processing properties for sparse
coding; that is, a distributed representation of information.

One hypothesis is that, depending on timing, temporal
alignment permits to switch the functional organization from
the Self -network into Other-network.

III. BODY ALIGNMENT

Perceiving objects in space is one of first tasks babies
have to deal with during infancy. It is a rather difficult
problem since infants have to represent one object with
multiple sensory modalities (vision, sound, tactile) encoded in
different reference frames (e.g., eye-centered, head-centered
or hand-centered). This curse of dimensionality requires to
construct some mapping between the reference frames relying
on multiple coordinates transformation between the senses.
One brain mechanism I found important is the one of Gain-
Field (GF) modulation, which addresses this problem of spa-
tial transformation and multi-sensory representation [31]. The
gain-field modulation mechanism describes the phenomenon
where the motor and the sensor signals (resp. A and B) mu-
tually influence the amplitude activity of their afferent parietal
neurons (resp. C) such that the corresponding mathematical
function is similar to a multiplication: C = A × B. This
result is surprising because most neurocomputational models
rely on classical summation or integral function. Yet, there
are some advantages to use multiplication to integrate easily
information, like estimating probabilities from two density
probabilities or computing matrix-like 3D transformations.

For instance, multiplicative GF neurons have been found
to monitor nearby objects in the peripersonal space [32],
[33]. These neurons combine diverse incoming information
from multiple modalities to process multiple body-centered
coordinate systems invariant to motion. Similarly, multimodal
GF neurons have been found in the motor cortex to be
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activated with respect to where the hand is moving in the visual
space [34], [35] or the wrist orientation [36]. In both regions,
we observe a neural field activity sensitive to both the preferred
motor activity and the preferred visual orientation [37]. Thus,
these neurons may participate to the construction of a body
image and of the peripersonal space.

Since GF neurons construct body-centered representations
based on the integration of body posture, tactile information
and vision, we believe its mechanism is important not only
for self-perception but also for any kind of sensorimotor
transformation such as those during social interaction like
imitation or joint attention. Based on these considerations, we
think it is highly probable that the GF mechanism contributes
to the functioning of the Mirror Neurons System (MNS).

Their modeling corresponds to multiplicative Radial Basis
Functions (RBFs) or sigma-pi networks [38], [39] to learn
sensorimotor transformations. In image processing, these net-
works are known as gated networks, which have been recently
re-investigated by [40], [41] for affine transformations and
in developmental robotics [42], [43], [44] for multimodal
integration. These multiplicative networks can serve to learn
nonlinear transformations, which are common problems in
robotics to compute direct mapping and inverse kinematics.

In recent researches, we proposed to exploit the properties
of these GF neurons to construct neural networks that process
spatial transformations in body-centered coordinates based
on body posture, tactile information, sound and vision for
self-perception. Sensorimotor coordination was done either
in head-centered coordinates with the binding of audiovisual
signals and of the camera motor position [42] or in arm-
centered coordinates with a robotic arm from visual and tactile
inputs [43], [45]. One result was for instance the construction
of an ego-space around the body based on the integration
of tactile, visual and motor activity. Another result was the
learning of the visual transformation necessary for mapping
the motion of one person in front of the robot camera with
its most probable actions selected from its motor repertoire.
These two results describe how self-other representations and
the correspondence problem may be resolved based on the
Alignment across the modalities.

Furthermore, it is interesting that a super-additive effect sim-
ilar to GF mechanism has been found also in the multimodal
neurons in the Superior Colliculus, which were more sensitive
to the incoming signals of two types of information coming
together rather than ones coming at different timing [46]. The
Superior Colliculus combines temporal alignment as well as
topological alignment of the unimodal maps (visual, tactile
and auditive) to construct an egocentric representation with the
head as reference [47], [48]. We proposed that the minimal
Self for social development was done by this structure at
the foetal stage for mimicry for instance. Simulations of the
Superior Colliculus network with a baby face 3D simulation
with tactile sensors permitted to make the system sensitive
to face-like patterns without encoding this feature, and just
by visual, tactile and motor integration [49]. Recent studies
of human foetus sensitive to face-like patterns [50] and the
study of the superior colliculus newborn monkeys sensitive to
face-like patterns [51] are in line with our hypothesis.

IV. MEMORY ALIGNMENT

Previous sections emphasized the modeling of the present
Self with candidate neural mechanisms that can support tem-
poral binding and multimodal integration. We consider in
this section auto-biographical memory[52] and incremental
learning as an important component and complementary to
the two previous ones.

Auto-biographical memory relies on the idea that we have
the capability to scrutinize our own past actions and to judge
them in comparison to current ones [53]. Based on our self-
judgment, the human working memory (WM) has the ability
to initiate flexible decision-making[54] and to incrementally
learn to optimize its actions in order to perform better later.
Stated like this, it is as if the Self brain was monitoring its
own activity online with regard to its past performances.

One interesting framework that has emerged recently to
describe this Self brain is the one of Predictive Coding (PC)
[3] and of the related mechanism of Free-Energy Minimization
(FEM) [55], [56]. According to PC, the brain is continuously
attempting to minimize the discrepancy or prediction error
between its inputs and its emerging models of the causes
of these inputs via. This is done via neural computations
approximating Bayesian inference[57]. Therefore, its archi-
tecture has to be at least hierarchical so that one neural
circuit makes inferences about the causes of another. One
network (the top layer) anticipates what is expected to be
seen in another network (the bottom layer) and minimizes
the prediction errors for controlling it. According to Seth,
one such Self memory system may display the introspective
capabilities of the human brain to learn interoceptive signals
and to infer hidden causes (active inference) as well as errors
(error-learning) when they can(not) be predicted [57]. Seth
identified the Anterior Insular Cortex (AIC) as a comparator
circuit to be engaged in interoceptive inference usefull for error
learning. In one neurocomputational simulation, we modeled
also the AIC system for error learning [58].The aim of the
study was to describe how recursive and online learning
could be done based on negative reinforcement learning. We
attached the network behavior with the capability of learning-
to-learn because the error detection served for interoceptive
comparison of old memory and the indirect selection of new
actions and therefore the indirect learning of new memories.

AIC is of course not the only place for interoceptive
inference and several overlapping sub-networks appear to
participate to the realization of the Predictive Brain [59] that
could constitute the Self. In previous researches, we modeled
the cortico-hippocampal system in order to investigate the
development of predictive coding and of an autobiographical
memory [60], [61], [62] with the rapid categorization of novel
memories and the consolidation of old ones [63]. Based on
previous developmental studies and neuro-functional analysis
[64], [65], we simulated how the gradual activation of the
neuromodulator Acetylcholine (ACh) activated the functional
re-organization of the hippocampal system to start to detect
novelty and to code sparsely old memories. We could show
that a novelty detection mechanism in combination with habit
learning could create a flexible working memory. The resulting
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system was capable to solve the A-not-B problem, which is a
marker during the first year of cognitive development and of
flexible action selection.

We extended our research on predictive coding with a
recent model based on the iterative free-energy optimization of
recurrent neural networks, which is the acronym for INFERNO
[66]. It consists on two learning systems coupled each other
that attempt to diminish their mutual prediction errors. The
result is the active control of one system on the other. In
sensorimotor tasks, the coupled system is similar to a forward
model and an inverse model, which attempt to dynamically
optimize their models to reduce error prediction to better reach
one goal and to better learn one body dynamics. In memory
sequence tasks, we showed that INFERNO was capable to
retrieve long-range sequences of spikes above 200 iterations
which is above the state of art.

In the perspective of modeling one working memory, to
learn and retrieve memory sequences, we believe that it
encompasses also some important aspects behind designing the
Self and autobiographical memories in one artificial system.
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