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ABSTRACT 

Human interactions are driven by multi-level perception-action loops. Interactive behavioral models are typically built using rule-based methods or 

statistical approaches such as Hidden Markov Model (HMM), Dynamic Bayesian Network (DBN), etc. In this paper, we present the multimodal 

interactive data and our behavioral model based on recurrent neural networks, namely Long-Short Term Memory (LSTM) and Bidirectional LSTM 

(BiLSTM) models. Speech, gaze and gestures of two subjects involved in a collaborative task are here jointly modeled. The results show that the 

proposed deep neural networks are more effective than the conventional statistical methods in generating appropriate overt actions for both on-line and 

off-line prediction tasks. 
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1. Introduction  

Face-to-face communication is one of the most natural and 

effective form of human communication in our daily life. 

Modeling human-to-human multimodal interactive behavior is 

one of the prerequisites to endow artificial agents – virtual 

avatars or social robots – with conversational skills. There are 

classically two main approaches to this challenging issue: rule-

based vs. machine learning methods. 

In data-driven rule-based methods, researchers analyze the 

recordings of human interactions and try to semi-automatically 

find patterns in multimodal streams. Computational frameworks 

are then proposed to operationalize those findings. Such systems 

usually incorporate set of rules that map perceptual cues to 

multimodal actions via an intermediate estimation of 

communicative intentions. For example, the BEAT system [1] 

generates nonverbal behaviors from text by enriching the 

linguistic structure with language tags such as rheme/theme 

contrasts, objects and actions. Lee and Marsella [2] similarly 

propose a Nonverbal Behavior Generator system to generate 

behaviors according to communicative functions. Thorisson [3] 

further proposes an event-based language where a finite state 

machine (FSM) describes an interaction scenario as a series of 

states with pre-conditions and post-actions structured in three 

hierarchical layers (reactive, process and content). However, 

hand-crafted rules have difficulty in taking into account the many 

factors conditioning the multimodal behaviors (task, personality, 

social context, emotion, gender, etc.) while maintaining a fine-

grained life-like variability. 

Another popular approach is based on machine learning 

techniques which try to find behavior regularities directly from 

data. For example, Otsuka et al. [4] proposed Dynamic Bayesian 

Networks (DBN) to estimate addressing and turn taking (“who 

responds to whom and when?”) while using the conversational 

regime as a latent variable. Mihoub et al [5] estimated interaction 

units using Hidden Markov Models (HMM) to generate the gaze 

of an interlocutor from his own speech activity together with the 

gaze and speech activity of his partner. Mihoub et al [6] further 

showed that DBN outperform both full- and semi-HMM in 

predicting co-verbal behaviors in a “put that there” game. 

Actually, few works have been devoted to the modeling of joint 

behaviors while incredible amount of research have been 

successfully dealing with recognition of human activities from 

multimodal behaviors [7] [8] and vice-versa [9] [10]. 

2. State of the art: predicting interactive behaviors with RNN 

Recently, Recurrent Neural Networks (RNN) have been 

shown to outperform statistical models in sequence recognition. 

Gated recurrent units (GRUs) and Long-Short Term Memory 

(LSTM) cells have been introduced to cope with long-term 

temporal dependencies. These cells add gates to inputs – and 

outputs for LSTM – of the processing units. These overcome the 

vanishing problem of simple RNN. Because of their ability to 

modulate between short- and long-term dependencies, they are 

particularly suited for building latent spaces that mediates input-

to-output co-variations. Therefore, LSTM becomes state of art of 

many applications related to sequential data such as statistical 

language modeling [11], machine translation [12], and 

description generation from image [13], etc. Another advantage 

of LSTM is that it can learn timing intervals between sub-

patterns in sequences [14]. Such coordination patterns are 

particularly crucial to multimodal behaviors such as those 

involved in natural human robot interaction (see section 5.2). 

Most of LSTM-based models have been proposed so far for 

the recognition of human activities. For example, Ordóñez et al 

combined Convolution Neural Network (CNN) with LSTM to 

build a DeepConvLSTM framework which is able to recognize 

human activities from wearable sensors with minimal pre-

preprocessing [15]. Furthermore, Tsironi et al also build a CNN-

LSTM to learn gestures which have varying duration and 

complexity [16]. Tian et al [17] performed successful emotional 

recognition in spontaneous dialogue with LSTM. 

Fewer works have been devoted to the generation of 

interactive behaviors. Alahi et al [18] used LSTM with social 

pooling of hidden states which combines the information from all 

neighboring states to predict human trajectories in crowded 

space. Ravichandar et al [19] built a promising model of 

sequential tasks using LSTM in order for one robot to predict 

what human will do next. LSTM-based conversation models 

[Joty, S. and Hoque, E., 2016] have also recently proposed to 

predict turns in two-party conversations. 

In this paper, we present multimodal interactive behavioral 

models based on recurrent neural networks, namely Long-Short 

Term Memory (LSTM) RNN and Bidirectional LSTM 

(BiLSTM), that predict gaze and arm gestures in a collaborative 

human-human task. 

 

 

Figure 1: An example of the “put that there” interaction filmed by a 

camera placed on instructor’s head [6] 

3. Interactive data 

The dataset
1
 used as interactive data in this paper has been 

collected by Mihoub et al [6]. This face-to-face interaction 

involves an instructor and a manipulator who performed a 

collaborative task called “put that there”. The experimental 

setting is shown in Figure 1. In this scenario, the manipulator 

should move cubes from a reservoir to a chessboard, following 

instructions given by the instructor. The instructor is the only one 

to know the target arrangement of the cubes, while the 

manipulator is the only one being able to move the cubes. 

Therefore, this task requires the instructor and manipulator to 

cooperate: share knowledge and coordinate their sensory-motor 

abilities Each of our instructor/manipulator dyads performed 10 

games consisting in reproducing a target arrangement of ten 

cubes, with an implicit control of the gaze and hand gestures 

thanks to the initial and final disposition of the cubes. This 

balanced statistical coverage of behaviors provides an interesting 

benchmark to collect human strategies used to maintain mutual 
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 http://www.gipsa-lab.fr/projet/SOMBRERO/data.html 



attention and coordinate multimodal deixis (finger pointing, 

head, gaze, etc.) towards objects and locations. 

The data here include 30 games performed by one instructor 

and 3 different partners, in order to replicate an arrangement of 

10 cubes on the chessboard from an initial random layout in the 

reservoir. The mean duration of a game is around 80 seconds. 

The total duration of interactive data is about 30 minutes. 

The interactive audiovisual data were complemented by 

motion capture (gestures as well as eye tracking). All raw streams 

are resampled at 25Hz. Additional annotations were performed 

using Elan [20] and Praat [21]. The final observations consist of 

5 streams of discrete variables: 

 IU: each game is further segmented into interaction 

units – that could be also termed as elementary skills or 

sub-tasks – describing the sequential organization of a 

repetitive elementary interaction. We distinguish 

between 6 different IUs mirroring the activities of the 

instructor: get instruction from tablet, seek the cube to 

be manipulated, point the cube, indicate target position 

of the cube, check the manipulation and validate the 

result. These IU pace the activities of both agents that 

are characterized by the following observations: 

 MP: Manipulator gestures with: rest, grasp, manipulate, 

put, none 

 SP: speech of instructor about: manipulated cube, 

reference cube, relative positioning, else, none 

 GT: region of interest pointed by the instructor’s index: 

rest, manipulated cube, target location, reference cube 

or none 

 FX: region of interest fixated by the instructor’s gaze: 

manipulator’s face, reservoir, task space, manipulated 

cube, target location, reference cube, tablet, else. 

The challenge is to predict the instructor’s co-verbal gestures 

GT and FX given his verbal activity (SP) and the interlocutor’s 

gestures (MP). The behavioral models proposed below should 

thus generate endogenous co-verbal behaviors from endogenous 

verbal behaviors and exogenous percepts. 

4. Training regression models 

We compare below the performance of three regression 

models in predicting endogenous co-verbal behaviors: Discrete 

Hidden Markov Model (DHMM), Dynamic Bayesian network 

(DBN) vs. Long-short term memory (LSTM) recurrent neural 

network (RNN). We tested two versions of each model: (1) off-

line models that perform estimations once the whole sequence 

has been observed and (2) on-line models that perform 

estimations incrementally at each time frame. 

4.1. Hidden Markov Models 

A multimodal interactive model based on HMM was proposed 

in [5]. In this model, each interactive unit (IU) is modeled by one 

Discrete Hidden Markov Model (DHMM) that models joint 

multimodal sensorimotor behaviors via its hidden states. Eq. (1) 

defines parameters of the DHMM models 
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where 1 ...p P  is the index of the interaction unit (here P = 6 

corresponding to 6 IUs) 

The observation vectors (with T is length of the observation 

sequence) are separated in two parts: the perceptual streams and 

the action streams illustrated in eq. (2) 
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(a) Training with joint perception and action streams 

 
(b) Estimating hidden states from perception stream and then generating 

action stream 

Figure 2. Schematic of HMM-based multimodal interactive modeling: (a) 

training (b) generating. Each interaction unit is modeled by a DHMM 

with fully-connected states. The syntactic organization of these 

elementary interaction units is described by a fully-connected bi-gram 

model. Transition probabilities within DHMM and between DHMMs are 

drawn with gray and black arrowed lines respectively. Cyan arrows 

represent emission probabilities connecting states with perception and 

action streams. They are simultaneously trained at training stage (a). At 

generation (b), perception streams are used to estimate distributions of 

hidden states and action streams. 

 

Each DHMM is trained using Expectation and Maximization 

(EM) algorithm. The DHMMs are trained with streams aligned 

with IUs. Transition probabilities between the DHMMs – i.e. 

between their input and output states – are described by a bi-gram 

model, i.e. a fully connected transition matrix, notably because 

repetitions of IUs or of couples of IUs are sometimes necessary 

to fulfill the task. At training stage, all data streams are available, 

while in testing only the endogenous verbal stream and 

exogenous observations are available as shown in Figure 2a. 

After training, two sub-models (a hidden state decoder and an 

action generator) are thus extracted and used in two steps as 

shown in Figure 2b. Firstly, the hidden state decoder estimates 

sensorimotor states from perceptual observations only shown in 

Eq.(3). The decoding of sensorimotor state sequence is 

performed offline by Viterbi alignment and online by a bounded 

Short-Time Viterbi algorithm with no look-ahead. 

 a rg m ax , 
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where S is the sequence of states, 
S is the optimized 

sequence estimated from the Viterbi algorithms. 



Next, the action generator determines actions from these 

estimated states as shown in Eq. (4). 
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where A
O is the stream of actions generated by the generation 

model. 

The DHMM model with fully-connected states is 

implemented with 5 hidden units for each single DHMM using 

PMTK3 toolkit of Matlab [22]. Mihoub [5] showed that the 

results were not improved by using 6 or 7 unit states. 

4.2. Dynamic Bayesian networks 

A Dynamic Bayesian network (DBN) is a Bayesian network 

(BN) with variables linked by temporal dependencies. The 

network is a probabilistic graphical model that features the 

probabilistic relationships between random variables via a 

directed graph (DAG) in which nodes represent random variables 

and edges present conditional dependencies. A DBN has the 

ability to deal with uncertainty and to model complex temporal 

relationship among variables thanks to the intra-slice and inter-

slice dependency structures which can be learnt from data by 

measuring mutual information between children and parent nodes 

as illustrated in Figure 3. In addition, parameters of DBN model 

can be also learnt by Expectation and Maximization method 

 
Figure 3. The learned structure of the DBN model: gray circles cue 

the predicted variables in the inference stage (reproduced from [6]). 

The learned DBN model can be used for inference with 

junction tree algorithm. There are several inference methods to 

estimate the sequence of actions either on-line or off-line. The 

filtering inference method estimates unobserved nodes 
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The smooth inference method estimates the action 


t
X  given 

the whole perception sequence, as given in Eq.(6) 
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The DBN model was implemented using Bayes Net Toolbox 

[23] for inference and training in which the intra-slice structure 

and inter-slice structure were leant by K2[24] and REVEAL[25] 

algorithm, respectively. 

4.3. Recurrent neural networks 

Recently, recurrent neural network (RNN) has been applied to 

sequential data due to its ability to “remember” information 

which has been getting through. However, standard RNNs have 

difficulty in capturing long-term dependencies because of the 

vanishing problem of fixed feedback i.e. the convergence of 

geometric series. Long-short term memory (LSTM) RNN is able 

to prevent vanishing problem by including binary gates to each 

neuron that control whether each memory cell should process the 

available input, use feedback or deliver output. 

Another RNN architecture is bidirectional recurrent neural 

network (BiRNN), which consists in combining the processing’s 

of the same data sequence in both forward and backward 

direction performed by two distinct RNN. Their two output 

layers are then connected to one additional layer that combines 

the outputs once the whole sequence has been processed. BiRNN 

has improved the performance in many sequence learning tasks 

where the result can be postponed at the end of the sequence[26] 

[27]. 

4.4. Single task and multi-task 

We have built discriminative multimodal interactive models 

using LSTM so as to improve the sensitivity of internal/latent 

variables to long-range structural dependencies. LSTM can be 

trained to directly map perception to action without considering 

an a priori knowledge of the underlying structure of the 

interaction, i.e. the interaction units (IU) introduced by Mihoub et 

al [Mihoub et al. 2015a] [6]. 

Multi-task learning [28] is meant to (1) implicitly structure the 

main mapping task by feeding the network with additional 

objectives and (2) prevent over-fitting with additional but related 

tasks. We also applied the multi-task methodology to implicitly 

structure the prediction of actions (main task) by also predicting 

interaction units (cognitive states/subtasks). Long-term and short-

term processing capabilities of the multi-tasking LSTM are 

expected to benefit both to high-frequency (i.e. mapping actions) 

and low-frequency (i.e. recognizing units) tasks. 

 
Figure 4. Schematic model of multi-tasking LSTMs. As for DBN, input 

streams include MP and SP. Identically, output streams are GT and FX. 

IU is treated as a secondary task for regularization purpose. 

Figure 4 illustrates the multimodal interactive behavioral 

model using multi-tasking RNNs. The main task remains to 

predict action events (FX and GT) from the input-perception 

events (MP and SP) shown. The secondary task thus consists in 

predicting IU. The loss function of LSTM model will thus be the 

sum of the loss function of IU, GT and FX. Since all variables 

are discrete with almost identical cardinal, no weighting was 

performed. Neither did we decrease IU contribution as a function 

of iterations, because it could have been favoring the main task 

after convergence.  



 In this research, we build each multi-tasking RNN models 

including a hidden layer. The LSTM model has a forward LSTM 

with 35 gated units in the hidden layer. Otherwise, the BiLSTM 

model includes one forward LSTM and one backward LSTM 

with the same number of gated units in the hidden layer. The 

outputs of the two LSTMs are then connected to a time 

distributed dense layer applied at each time step (i.e. the output  

layer of the BiLSTM) with soft-max activation functions. The 

cardinal of the outputs of the forward and backward LSTM as 

well as the BiLSTM equals the sum of the cardinals of the 

different classifying tasks. Both of LSTM and BiLSTM model 

were implemented by using Keras[29].  

5. Results 

The LSTM and Bi-LSTM can automatically learn contextual 

variables from the interaction scenario. In order to compare the 

efficiency of the methods, actions (FX and GT) generated offline 

by BiLSTM are first compared with HMM [5] and DBN [6]. In 

addition, online predictions of the actions by LSTM are also 

compared with short-term Viterbi decoding of HMM and online 

filter prediction of DBN. 

For all models, leave-one-out cross validation is applied to the 

30 folded games. Both frame-by-frame comparison and 

Levenshtein distance estimation [30] are performed. We also 

perform coordination histogram, as proposed in [6], to capture 

global coordination patterns between different modalities given 

synchronous streams of discrete events. A coordination 

histogram computed for one modality cumulates the delays 

between each event in this modality and the nearest events 

observed in the other modalities. 

5.1. Offline task 

Figure 5b illustrates the accuracy and Levenshtein comparison for 

all of the methods in offline prediction tasks. Because of the 

direct dependency between input and output observations, the 

rates of DBN outperform HMM (no direct relationship between 

input and output) for all cues: IU (74% vs. 59%), GT (82% vs. 

78%) and FX (61% vs. 49%). The BiLSTM model surpasses both 

other methods for IU (79%) and FX (64%) prediction (95% 

confidence level), respectively, while the accuracy of GT 

prediction caps at 83%. All prediction accuracy rates are much 

higher than the empirical chance levels of the tasks, i.e. 21% for 

IU, 34% for GT and 20% for FX. The same observations apply 

for the Levenshtein distance. These good results may be 

explained by the ability of LSTM to learn complex syntactic 

organization hidden in the data from the surface structure, 

notably causal relations that are spanning across IUs. 

Figure 6 displays chronograms of input and output sequences 

predicted by the different models. The two first rows show the 

input sequences from the instructor: speech SP with 5 values 

(cube, location, reference, none, else) and arm gesture of 

manipulator MP with 4 values (rest, grasp, manipulate, end). The 

three final rows superimpose predictions of output streams GT 

and FX and IU in the different methods to the ground truth. Most 

onsets of predicted events by BiLSTM for the output streams are 

close to onsets observed in the ground truth, while onsets 

predicted by HMM are generally the most distant ones. This is 

confirmed by evaluating coordination histograms (see next). 

Table 1. Chi squared distances between the coordination histograms 

of ground truth vs. those of the different off-line models. Note that 

degrees of freedom (df<10) depend on the distribution of delays in the 

different percentiles. Since events are sampled at 25Hz, the minimum bin 

is 40ms. 

Stream HMM DBN Bi-LSTM df 

SP 1054 78 72 8 

GT 783 375 122 6 

FX 1327 199 92 8 

5.2. Coordination histograms 

Coordination histograms give a global picture of the micro-

coordination patterns between each modality and the other ones. 

These histograms proposed by Mihoub et al [6] basically collect 

the delays between events in one modality and the closest one in 

the others. Figure 7 shows coordination histogram of the methods 

for ground truth (first row), BiLSTM (second row), DBN (third 

row) and HMM (final row) corresponding to SP (first column), 

GT (second column) and FX (last column). Pearson's chi-squared 

(χ
2
) distances between the histograms of the ground truth and the 

different models are calculated and shown in Table 1. Note that 

cue-specific bins are computed as 10-quantiles of the distribution 

of events collected by all systems. All histograms significantly 

differ from each other (p<1e
-3

) except DBN and Bi-LSTM for 

SP. The smallest χ
2
 distances are those of BiLSTM, which 

demonstrates that the BiLSTM generates the most faithful 

behavioral coordination patterns.  

 

(a) Raw F-score 

 

(b) F-score with Levenshtein alignment 
Figure 5. Offline generation: comparing performance of the joint estimation of the 3 different streams (IU, GT, FX) with the methods HMM, DBN vs. 

BiLSTM. (a) raw F-score, (b) F-score with relaxed alignment. The number of stars above the links between scores cue significant F-probability of 

Tukey post-hoc tests (‘***’ with p<1e-3, ‘**’ with p<1e-2,‘*’ with p< 0.05). Boxes’ internal lines give mean values while circles give median values of 

the evaluations. 



5.3. Online tasks 

One of the main challenges of the multimodal interactive 

behavioral model is to on-line drive the gesture controllers of one 

humanoid robot in face-to-face interaction with a human 

partner [31]. For this purpose, the model’s output should be 

computed incrementally as the input sequence unveils. 

Table 2. Chi-squared distances between the coordination histograms 

of ground truth vs. those of the different online models.  

Streams HMM DBN LSTM df 

SP 1114 1167 253 6 

GT 1225 1004 252 4 

FX 749 402 56 7 

This section presents prediction results of the different online 

methods: the LSTM, the filter prediction of DBN and the HMM 

with Bounded short-time Viterbi. 

The exact-rate and Levenshtein comparison for all of the 

methods in the online prediction tasks are performed and 

respectively shown in Figure 8a and Figure 8b. Similarly to the 

off-line task results, with Levenshtein estimation, DBN 

significantly (with 95% confident level) outperforms HMM for 

both IU (69.64% vs 67.64%) and FX (64.31% vs 60.97%) 

predictions. While the GT prediction of LSTM is almost the 

same as the others (84.72% for LSTM, 84.87% for DBN, 83.85% 

for HMM), LSTM surpasses the other methods for the prediction 

of IU and FX at respectively 82.93% and 70.72%. 

Similarly to Table 1, Table 2 illustrates chi-squared distances 

between coordination histograms of the ground-truth and 

predictions of the three methods with the different cues. All 

histograms significantly differ from each other (p<1e
-3

) except 

HMM and DBN for SP. Again, the smallest distances are those 

of LSTM method. These results show the effectiveness of LSTM 

in online prediction of faithful multimodal streams which are 

properly coordinated with each other. 

6. Comments and discussion 

The LSTM behavioral model benefits from extracting 

contextual information from data, instead of being limited to the 

boundaries of the hidden states of HMM or the immediate 

previous frames of the DBN dependency graph. We explored 

several ways to introduce latent variables in the DBN structure, 

notably by bootstrapping these latent variables by aligning HMM 

states. This does not improve DBN performance in any way. In 

contrast, LSTM behavioral model has the possibility to draw 

contextual information far away in the past history. Contextual 

information may in fact span large lags. For example, Richardson 

et al [32] have notably shown that a listener will most likely be 

looking at an object 2 seconds after his/her interlocutor has been 

paying attention to it. Mihoub et al [5] have effectively shown 

that adding one frame at around 2 seconds before the current 

input as contextual information optimally boosted HMM 

performance for gaze prediction from speech activity. 

Coordination histograms show that ground truth intermodal 

coordination does not exhibit fixed delays between events but a 

rather complex cue-dependent distribution. LSTM has the 

capacity to modulate memory span according to the current input 

(a) 

 

(b) 

 

Figure 6. Input and output sequences: (a) the two top inputs MP and SP. (b) superposition of ground truth and output streams (GT, FX) and IU 

estimated by the different methods proposed in the paper. 



and the progress of the interaction without unnecessarily 

increasing the input window. 

Note also that our task involves a sequence of elementary 

interactive skills (our IUs) with low complexity. We expect the 

ability of LSTM to implicitly stack features to ease the carry-over 

of information when the task complexity increases. 

7. Conclusions & perspectives 

In this paper, we present multimodal interactive behavioral 

models based on recurrent neural networks, namely Long-Short 

Term Memory (LSTM) RNN for online prediction and 

Bidirectional LSTM (BiLSTM) for off-line prediction. The 

proposed methods achieve a better performance than statistical 

methods with regards to both prediction performance and 

intermodal coordination. 

In our future work, we plan to confront these models to more 

complex face-to-face interactions, notably neuropsychological 

interviews. The outputs of the behavioral models would then 

drive the gestural controllers of our iCub robot [31]. Subjective 

assessments would then be conducted to evaluate the relevance of 

the on-line models for the control of interactive behaviors. 

The quest for performance should be moderated by the fact 

that models may predict alternative multimodal behaviors that are 

not actually observed during training but that may be appropriate 

acceptable variants of this particular social context. For now, 

human raters are the ultimate referees of the quality of interactive 

behaviors. We expect to extend the on-line evaluation procedure 

we proposed in [31] to autonomous human-robot interactions. 
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