
HAL Id: hal-01609498
https://hal.science/hal-01609498v1

Submitted on 3 Oct 2017 (v1), last revised 8 Oct 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of Certain Query Answering on
Hyperstreams

Momar Sakho, Iovka Boneva, Joachim Niehren

To cite this version:
Momar Sakho, Iovka Boneva, Joachim Niehren. Complexity of Certain Query Answering on Hyper-
streams. BDA 2017 - 33ème conférence sur la “ Gestion de Données - Principes, Technologies et
Applications ”, Nov 2017, Nancy, France. �hal-01609498v1�

https://hal.science/hal-01609498v1
https://hal.archives-ouvertes.fr

Complexity of CertainQuery Answering on Hyperstreams
Complexité du calcul des réponses certaines sur les hyperflux

Momar Sakho
Inria, Lille
Links team

momar.sakho@inria.fr

Iovka Boneva
Université de Lille

Links team
iovka.boneva@univ-lille1.fr

Joachim Niehren
Inria, Lille
Links team

joachim.niehren@inria.fr

ABSTRACT

A hyperstream is a sequence of streams with references to others.
We study the complexity of computing certain answers for queries
evaluated on hyperstreams of words. We show that the problem is
PSpace-complete for deterministic query automata, but that it can
be solved in PTime for linear hyperstreams even with factorization.

RÉSUMÉ

Un hyperflux est une séquence de flux ayant des références vers
d’autres flux. Nous nous intéressons à la complexité du problème
du calcul des réponses certaines pour les requêtes évaluées sur des
hyperflux de mots. Nous montrons que ledit problème est PSpace-
complet pour les automates déterministes représentant des requêtes,
mais qu’il peut être résolu dans PTime pour les hyperflux linéaires,
même avec une factorisation de ces derniers.

1 INTRODUCTION

Complex event processing [7, 12, 18, 20, 22] is the problem to pro-
cess streams of semi-structured data, with the objective to provide
low latency, low memory consumption, and very high time effi-
ciency. This way, ever-running streams of complex events can be
processed in real time, such as streams produced by social networks
or trading systems. Furthermore, it becomes possible to process
very large collections of semi-structured data that cannot be stored
in main memory, or which size is unbounded as the stream is run-
ning forever, e.g. a Twitter stream, or a stream of events produced
by a sensor.

A stream is usually seen as an object that has a known prefix,
and a yet-to-come suffix. For instance, abcy is a stream which prefix
is abc , and which yet unknown suffix is represented by the variable
y. When pipelining stream transformations, as for define by Xslt
transformations [15] or tree transducers [17], one of the transfor-
mations may produce several output streams that furthermore have
references to one another. Multiple streams of nested words with
forward references where called hyperstreams in [14].

In this paper we study hyperstreams restricted to words (rather
than nested words) and queries defined by automata. We note that
such hyperstreams are known as Dag compressed string patterns
in formal language theory. Consider for example the hyperstream
D0 at Figure 1, which has the references r1, . . . , r4, the letter a,b, c ,
and the string variable y. The word ab is the already known prefix
of stream referred to by r4, and the variable y represents its yet
unknown continuation. As illustrated in the figure, hyperstreams
can be drawn as Dags whose inner nodes are the references, and
whose leafs contain streams. Then, the contents of stream r1 can
be equivalently represented by the string pattern baabyccaby. Such

r1

r3 r2

r4 bacc

aby

r1 = r2r3,
r2 = bar4,
r3 = ccr4,
r4 = aby

Figure 1: The hyperstream D0 and its Dag.

string patterns are compositions of streams, so they may have
variables in the middle and not only at the end. Conversely, the
system of equations here above can be seen as a Dag compression
of that string pattern. This hyperstream is nonlinear in that its
string pattern contains more than one occurrence of y, due to
decompression.

Example 1.1. Consider a book sales company whose workflow
is illustrated in Figure 2. The company that has 3 repositories,
a French repository F providing a book stream rF = f f ′y1, a
German repositoryG with books stream rG = дд

′y2, and an English
repository E with book stream rE = ey3. The company has a shop
B in Berlin and a shop P in Paris. Shop B provides the books from
E and G, coming on the concatenation of the streams rB = rGrE ,
while shop P provides the books from E and F , coming on the
concatenation of the streams rP = rF rE . Furthermore, both shops B
and P stream all their books to the online store O , which provides
the concatenation of the streams rO = rGrG to his customer C .
This customer may then query the resulting hyperstream, whose
Dag is illustrated in Figure 3. This hyperstream factorizes the book
stream rE that is used by both shops B and P . Nevertheless, when
querying this hyperstreams, matching books coming on rE need
to be returned twice, since they are available in both shops B and
P . This is modeled by the fact that the appear twice on any word
described by rO , even though described in a factorized manner.

We consider queries that select positions in hyperstreams. A
position of a hyperstream is called a certain answer of a query if the
query selects that position in all the instances of the hyperstream,
i.e., how so ever the variables in the hyperstreamwill be instantiated
to strings. For instance in the hyperstream r1 here above, the first
position of r2 that holds the letter b is a certain answer of the
query selecting all b-positions that are immediately followed by an
a-position.

BDA 2017, 14-17 Novembre 2017, Nancy Momar Sakho, Iovka Boneva, and Joachim Niehren

F

P

O

B

E

G

C
rO = rP rBrE = ey2

rF = f f ′y1

rG = дд
′y3

rP = rF rE

rB = rGrE

Figure 2: Workflow of the book sales company

rO

rP rB

rF rE rG

ey2f f ′y1 дд′y3

Figure 3: The hyperstream output of the workflow.

We prove that the problem to decide whether a position is a
certain query answer on a hyperstream is PSpace-complete for
queries defined by deterministic finite automata, while it can be
solved in combined linear time (in the size of the query and the
hyperstream) for linear hyperstreams without compression. For lin-
ear hyperstreams but with compression, we prove that the problem
remains in PTime. This efficiency result is relevant in practice for
XPath queries answering on streams, since XPath queries are usu-
ally compiled to automata [7, 16, 18]. They show that whenever an
XPath query can be compiled to a small deterministic automaton,
it can be evaluated efficiently on linear hyperstreams.

For obtaining our results, we introduce the problem of matching
compressed string patterns against regular languages, to the best of
our knowledge for the first time. An independent contribution of
this paper is that this problem is PSpace-complete evenwithoutDag
compression. Previous results showed that matching compressed
string patterns against rigid strings is np-complete [8].
Applications. Efficient streaming evaluation of XPath queries can
be performed by compiling them to nested word automata to be
evaluated on the linearization of Xml trees [7]. Then query evalua-
tion requires to run the automaton on the input (nested) word while
caching partial results. The efficiency of the evaluation depends on
two factors: the per-event processing (i.e. the processing performed

when some of the variables of the hyperstream is instantiated), and
the quantity of memory consumed for caching. The problem of cer-
tain query answers is directly related to the latter. A partial result
is a certain query answer if it would be an answer of the query how
so ever the stream is extended in the future. When an answer is
known to be certain (also called safe for selection in [10]), it can be
immediately output, which has two advantages: first, possibly free
some memory, and second, provide input for subsequent processes
(if any) as illustrated in Example 1.1. On the other hand, a partial
result can also be a certain nonanswer if it wonâĂŹt be part of
the query answer however the stream is extended in the future. In
this case discarding the partial result frees space in the cache. The
hardness results of this paper directly transfer to XPath streaming
evaluation on hyperstreams.
Related Work. The notion of certain answers is well known in
database theory, and was initially used when querying (relational)
database instances that are not known exactly, for example in-
stances obtained by data exchange or defined in a data integration
setting. The definition of certain answers was extended to Xml
queries, where the challenge is that queries do not select tuples but
produce tree structures as results [6], such as for XQuery. In the
context of streaming (and not hyperstreaming), certain query an-
swering was called earliest query answering [9], and certain nonan-
swers were called or fast-fail in [3]. It was shown in [9] that for any
query language with mild restrictions, the problem of whether a
tuple is a certain query answer on a stream is harder than deciding
query satisfiability (the existence of an answer) and also than decid-
ing query validity (whether all positions are answers). Therefore,
the problem is np-hard for most logical query languages as well
as for most subsets of XPath. The situation is better for queries
defined by deterministic query automata, for which the problem
can be solved in combined linear time. For nondeterministic query
automata, in contrast, the problem becomes PSpace-complete.

Our contributions to streams with references are orthogonal to
those of [17]. They study tree transformations defined by top-down
tree transducers, so without any queries, while we study automata
queries without transformations. Furthermore, it should be noticed
that the "XML streams" used there do contain a sequence of trees
(rather than the linearization of a single tree) and references to
trees, rather than to other streams.

Certain query answering for automata queries requires the incre-
mental evaluation of automata, as proposed earlier for Nfas by [4].
On the other hand side, the results of the present paper show that
the case of Nfas queries is more difficult to process incrementally
than Dfa queries.

The idea of producing trees with references arose in the context
of Active Xml [1], but even much earlier in functional program-
ming languages with futures [11, 19].
Outline. After some preliminaries in Section 2 on query automata
and automata theory, we discuss in Section 4.2 the case of string
patterns that we also call partial streams, and in Section 5.3 the
case of compressed string patterns that are equivalently called
hyperstreams. In both cases, we study the problems of pattern
matching against regular languages, and the problem of certain
query answering. As we will see, both problems are closely related.

Complexity of CertainQuery Answering on Hyperstreams BDA 2017, 14-17 Novembre 2017, Nancy

2 PRELIMINARIES

We recall basic notions of mathematics and of automata theory on
words, and recall related complexity results.

2.1 Basics

Functions. Let C and D be sets. A partial function f from C to
D is a relation f ⊆ C × D that is functional, i.e., for any c ∈ C
there exists at most one d ∈ D such that (c,d) ∈ f . In this case
we write f (c) = d . The domain of a partial function f is the set
dom(f) = {c ∈ C | ∃d ∈ D. f (c) = d }. A (total) function f : C → D
is partial function from C to D with dom(f) = C .
Words. The set of natural numbers with 0 is denoted by N. Let
Σ be a set. A word on alphabet Σ is a tuple (a1, . . . ,an) ∈ Σn

where n ∈ N. We denote such a word by a1 . . . an if n , 0 and
by ϵ otherwise. We denote the i-th letter of a word u = a1...an
by u[i] =df ai . The set of all words over Σ is denoted by Σ∗. The
concatenation of two words u1,u2 ∈ Σ∗ is denoted by u1 · u2 ∈ Σ∗.
For instance, if Σ = {a,b} then aba ·a = abaa. The set of positions of
a word u = a1 . . . an is pos(u) = {1, . . . ,n}. For any subset Σ′ ⊆ Σ
the set posΣ′ (u) is the subset of positions i of u such that ai ∈ Σ′.
Given a wordw = a1 . . . an and a second word u = b1 . . .bn of the
same length possibly with a different alphabet, we define the zipped
word over the product alphabet byw∗u = (a1,b1) . . . (an ,bn).
Monoids. A monoid with neutral element is a triple (M, ·M , 1M)
where ·M : M × M → M is an associative binary operation and
1M ∈ M such that 1M ·M m = m ·M 1M = m for all m ∈ M .
Given a word u = m1 . . .mn ∈ M∗ we define its evaluation by
uM =m1 ·M . . . ·M mn where ϵM = 1M .

Most typically, we will consider the monoid of words (Σ∗, ·, ϵ) on
some alphabet Σ, with the concatenation operation · : Σ∗×Σ∗ → Σ∗,
and the ϵ as neutral element. Alternatively, given another setQ , we
will consider the transition monoid (TQ , ◦, id), where TQ = 2Q×Q
is the set of binary relations over Q , which we will call transitions
as usual in the context of automata theory [21], ◦ : TQ ×TQ → TQ
is the composition operation of binary relations on Q , and id =

{(q,q) | q ∈ Q } is the identity transition.

2.2 Automata Theory

A nondeterministic finite-state automaton (Nfa) is a tuple A =
(Q, Σ,δ , I , F) where Q is the set of states, Σ an alphabet, δ ⊆ Q ×
Σ×Q a relation and I , F ⊆ Q respectively the set of initial and final
states. Elements (q,a,q′) ∈ δ are denoted by q

a
−→ q′ and called

transition rules. AnNfaA is deterministic, or aDfa, if it has exactly
one initial state and for every pair (q,a) ∈ Q × Σ, there is at most
one transition rule q

a
−→ q′ ∈ δ .

AnNfaA defines a transition inTQ for any letter of the alphabet:
the transition of a ∈ Σ is aA = {(q,q′) | (q,a,q′) ∈ δ }. We can
also assign transitions to words w = a1 . . . an ∈ Σ∗ by wA =

(aA1 . . . a
A
n)

TQ , i.e., by composing the transitions of all letters ofw
based on the operations of the transition monoidTQ , while starting
with the neutral element (the identity transition). Note that if A is
a Dfa then all transitionswA are partial functions.

A transition τ is called successful if τ ∩ (I × F) , ∅. The language
of A is the set L (A) = {w ∈ Σ∗ | wA is successful}. The size |A| of
A is the sum of the number of its states and transitions. Since we

fixed Σ, the size of a Dfa with alphabet Σ is linear in the number
of its states.

Given an NfaAwith alphabet Σ and state setQ , and a transition
τ ∈ TQ , we call τ A-inhabited, if there exists a word w ∈ Σ∗ such
thatwA = τ .

Definition 2.1 (The InhΣ problem). The Dfa transition inhabita-
tion problem InhΣ is:

Input: ADfaAwith alphabet Σ, and a transition τ ∈ TQ where
Q is the set of states of A.

Output: The truth value of whether τ is A-inhabited.

Note that the Dfa transition inhabitation problem is also known
as the membership problem of the transformation monoid [5].

Theorem 2.2 (Kozen [13]). For any set Σ with at least 2 elements,

the Dfa transition inhabitation problem InhΣ is PSpace-complete.

The proof can be done by reduction to the well known problem
of nonemptiness of the intersection of finite automata. The latter
problem was proven to be PSpace-complete in the same paper
[13].

3 QUERIES AND THEIR LANGUAGES

We recall a usual notion of queries on words. Our notion is semantic,
so that it remains independent of how the query is defined, by logi-
cal formulas or automata. This permits us to identify queries with
languages of annotated strings that are often calledV-structures
[23]. Then we define query automata that recognize languages of
V-structures, thus allow to define queries.

Let V be a finite set of query variables. An assignment σ of
variables to positions of a wordw ∈ Σ∗ is a partial function σ from
V to pos(w).

Definition 3.1 (Query). A (tuple selection) query Q on words over
Σ is a function that maps any word w ∈ Σ∗ to a set Q(w) of total
variable assignments to pos(w).

A Boolean query is a query whereV = ∅. While all our hardness
results will apply to Boolean queries already, all our algorithms will
also work in the non boolean case.

Example 3.2. Let V = {x ,x ′}. The query Q0 selects all pairs
of letters (x ,x ′) such that position x is labeled by a, position x ′

immediately follows x and is labeled by b. This query then satisfies

Q0 (aa) = ∅, Q0 (ab) = {[x/1,x
′/2]}

Q0 (abab) = {[x/1,x
′/2], [x/3,x ′/4]}

, etc.

We will identify assignments of variables to the positions of a
word as words themselves, whose letters are sets of variables. For
any partial function σ fromV to pos(w) wherew ∈ Σn , we define
a corresponding word in (2V)n by word (σ) = σ−1{1} . . . σ−1{n}.
Remark that σ is a total assignment if and only if every variable
of V belongs to the set word (σ)[i] for exactly one position i in
pos(w). Furthermore, for any wordw ∈ Σ∗ and variable assignment
σ into positions of w , we define a word over ΣV = Σ × 2V by
w∗σ = w∗word (σ). In examples we will write aV instead of letters
(a,V) ∈ ΣV . For instance, ab∗[x/1,x ′/2] = a {x }b {x

′ } .

BDA 2017, 14-17 Novembre 2017, Nancy Momar Sakho, Iovka Boneva, and Joachim Niehren

Definition 3.3 (V-structure). Let ΣV = Σ × 2V be the set of
letters annotated by variables. The set ofV-structures then is the
following set of words over ΣV :

StructV = {w∗σ ∈ Σ
∗
V
| w ∈ Σ∗, σ : V → pos(w) total}.

V-structures have the advantage that they represent assign-
ments of variables to positions independently of how the positions
were named. For instance let V = {x ,x ′} and Σ = {a,b}. Then
words a∅b {x

′,x } and a {x
′ }b {x } are V-structures while the words

a∅b {x
′ } and a {x

′ }b {x
′,x } are not.

Definition 3.4 (V-structures language of a query). We define the
language ofV-structures of a query Q by:

L (Q) = {w∗σ | w ∈ Σ∗, σ ∈ Q(w)}.

Moreover, any language of V-structures uniquely defines a
query. We can thus identify a query by its language ofV-structures.

Definition 3.5 (Query automata). A query automaton with vari-
ables inV is anNfaA such thatL (A) is a language ofV-structures.
The unique query Q such that L (Q) = L (A) is called the query
defined by automaton A and denoted by Q (A).

We show in Fig. 4 an example of a Dfa that defines the query
a[. . .b . . .] + b[b . . .] with variables V = {x } on words over Σ =
{a,b}. This query selects for x all a positions that are followed by a
b position sometimes later on, and selects also all b positions that
are directly followed by another b.

4 CERTAIN QUERY ANSWERING ON STRING

PATTERNS

We generalize the problem of certain query answering from streams
[3, 10] to string patterns, where not only the end may be open, but
also some factors may be unknown. This problem can also be seen
as the particular case of certain query answering on hyperstreams
without compression.

We first introduce string patterns and the corresponding notion
of certain query answering in Sect. 4.1. Then in Sect. 4.2 we study
the problem of matching a string pattern against a regular language,
which allows us to establish in Sect. 4.3 complexity bounds of certain
query answering on string patterns.

4.1 String Patterns and Certain Answers

We fix an infinite set Y of string variables for the rest of the paper.
A string alphabet is a set Σ that is disjoint from Y . A string over Σ
is a word in Σ∗. An open stream over Σ is a string pattern in Σ∗Y ,
starting with a closed prefix and kept open by a single variable
occurrence at its open end. A stream over Σ is either an open stream
or a string over Σ.

Definition 4.1 (String pattern). A string pattern over Σ is a word
in (Σ ∪ Y)∗. The set of all string patterns over Σ is denoted by
Pat (Σ).

String patterns can be instantiated step by step by using substi-
tutions of string variables to strings patterns. For the problem of
certain query answering, we are interested only on complete instan-
tiations, called instances. An instance is obtained by a substitution
S : Y → Σ∗ of string variables to strings. Any such substitution

can be lifted to a substitution on string patterns Ŝ : Pat (Σ) → Σ∗

such that for all p,p′ ∈ Pat (Σ), a ∈ Σ, and y ∈ Y :

Ŝ (pp′) = Ŝ (p)·Ŝ (p′), Ŝ (ϵ) = ϵ, Ŝ (a) = a, Ŝ (y) = S (y).

We define the set of instances of a string pattern p by:

Inst (p) = {Ŝ (p) | S : Y → Σ∗}

A string pattern is called linear, if all string variables occur at
most once in the pattern. A factor of a string pattern is called closed
if it does not contain variables, and open otherwise.

Clearly, all streams (open or closed) are linear string patterns,
while in the general case string patterns may be nonlinear. However,
even linear string patterns aremore difficult to process than streams,
since they may contain string variables in the middle and not only
at the end. Consider for instance the linear string pattern p =
aabaybbay′ which is the concatenation of the two open streams
p1 = aabay and p2 = bbay′. Recall that in streaming evaluation,
all parts of the stream are to be processed as soon as they are
known. Thus, an algorithm processing string patterns must be able
to process the known factors aaba and bba while allowing for all
possible instantiations of y and y′ later on. In particular, querying
the string pattern p = p1p2 is more complicated than querying
the two open streams p1 and p2 independently, since whether a
query on p may certainly select a position of the sub-pattern p2 may
depend on whether the sub-pattern p1 got sufficiently instantiated.
The situation becomes even more complicated for nonlinear string
patterns, where some variables have multiple occurrences, so that
their instantiation must by synchronized.

Intuitively, a certain query answer on a string pattern is a tuple
that answers the query on all its instances, so independently how
the string pattern is completed.

Example 4.2. Consider the stream s0 = aabay over an alphabet
Σ = {a,b} and the query Q0 that selects all a-positions that are
followed directly by a b-position. Then position 2 of s0 is a certain
answer of query Q0, since it will be selected independently of how
the string variable y will be instantiated.

Definition 4.3 (Valuation). LetV be a finite set. A valuation of
V on a string pattern p is a partial function σ fromV to posΣ (p).

For any valuation σ on a pattern p, the word w∗p is a string
pattern with signature ΣV and string variables inY . Therefore, the
set Inst (p∗σ) is a well-defined set of words over ΣV . Note, however
that some of these words may not beV-structures. For instance,
if x ∈ V , a ∈ Σ, and y ∈ V , then a {x }a {x } ∈ Inst (y∗[]) where [] is
the empty valuation.

Definition 4.4 (Certain answer). Let Q be a query on strings with
alphabet Σ and query variables inV . We call a valuation σ ofV
on a string pattern p over Σ:
• a certain answer for query Q if σ is total and Inst (p∗σ) ∩
StructV ⊆ L (Q), and
• a certain nonanswer for query Q if Inst (p∗σ) ∩ L (Q) = ∅.

Each (partial) valuation σ describes a set of total valuations on
given a instancew ∈ Inst (p), where all remaining variables outside
dom(σ) must be mapped to positions "created" by the instantiation.
More formally:
Completep,w (σ) = {σ ′ | σ ′ total valuation onw, w∗σ ′ ∈ Inst (p∗σ)}.

Complexity of CertainQuery Answering on Hyperstreams BDA 2017, 14-17 Novembre 2017, Nancy

q0start q1

q2 q4

q3

a∅,b∅

a {x }

b {x }

a∅

b∅

a∅

b∅

ΣV

a∅,b∅

Figure 4: Example of a Dfa for query a[. . .b . . .] + b[b . . .] where Σ = {a,b} andV = {x }.

There are two tedious issues here. First, even if σ is total, the set
Completep,w (σ) might not be a singleton. The reason is that there
may be several substitutions S such that Ŝ (p) = w . Second, it is
possible that σ < Completep,w (σ). This is due to offsets raised by
the instantiation of variables in the middle of p.

Example 4.5. Consider the string pattern p = ay1ay2, the string
w = aaa in Inst (p), V = {x }, and σ = [x/3]. Then σ is a total
valuation on p and Completep,w (σ) = {[x/2], [x/3]}. In order to see
this, note that there are two substitutions that makep matchw , S1 =
[y1/ϵ,y2/a] and S2 = [y1/a,y2/ϵ] since S1 (p) = w = S2 (p). These
matchings satisfy Ŝ1 (p∗σ) = w∗[x/2] and Ŝ2 (p∗σ) = w∗[x/3]. This
shows that [x/2] and [x/3] belong to Completep,w (σ). There is no
further matching of p inw , so no further completion.

The next proposition shows that our notion of certain query
answers and nonanswers makes good sense, in that they indeed
correspond to query answers and nonanswers resp. up to comple-
tion.

Proposition 4.6. Let σ be a valuation for string pattern p,w ∈
Inst (p) be an instance of p, and Q be a query:

• If σ is a certain answer for query Q then Completep,w (σ) ⊆

Q(w).
• If σ is certain nonanswer for query Q then Completep,w (σ) ∩

Q(w) = ∅.

Proof. For all σ ′ ∈ Completep,w (σ), the definition of comple-
tion yields that w∗σ ′ ∈ Inst (p∗σ). Furthermore, w∗σ ′ ∈ StructV

holds trivially, since it holds for any partial function σ ′.
• If σ is a certain answer for query Q on p then Inst (p∗σ) ∩
StructV ⊆ L (Q), so σ ′ ∈ L (Q) which is equivalent to
σ ′ ∈ Q(w).
• If σ is a certain nonanswer for query Q then Inst (p∗σ) ∩
L (Q) = ∅, so w∗σ ′ < L (Q), which is equivalent to σ ′ <
Q(w).

□

4.2 Regular String Pattern Matching

As we will see, our complexity results on certain query answer-
ing are closely related to a generalization of the folklore problem
of matching string patterns against strings [2] to the problem of
matching string pattern against regular languages of strings. This

generalized problem has not been studied before, so it is of its own
interest.

Definition 4.7 (The problem RegSPMΣ). The problem of regular
string pattern matching RegSPMΣ is:

Input: A string pattern p and a Dfa A, both over Σ.
Output: The truth value of L (A) ∩ Inst (p) = ∅.

String pattern matching is the restriction of this problem where
A is replaced by a Dfa recognizing a single word. The restricted
problem is well known to be NP-complete for all alphabets Σ with
at least 2 letters. Furthermore, the restriction of the problem to
linear pattern is known to be in P, since from a linear pattern one
can construct an Nfa that recognizes all its instances in linear time.

Our algorithms for solving the generalized problem RegSPMΣ

will rely on substitutions that map string variables to transitions of
some automaton. More generally, consider a monoid (M, ·M , 1M),
and a function h : Σ → M . Then, any substitution on variables
S : Y → M can be lifted to a substitution on string patterns
Sh : Pat (Σ) → M (depending on h) such that for all p,p′ ∈ Pat (Σ)
and a ∈ Σ:

Sh (pp′) = Sh (p) ·M Sh (p′), Sh (ϵ) = 1M , Sh (a) = h(a),

Sh (y) = S (y)

Given an Nfa A over Σ with state set Q , we will chose the function
h : Σ → TQ with h(a) = aA. Then we can lift any substitution
S : Y → TQ to a substitution Sh : Pat (Σ) → TQ . We define
SA = Sh , so that SA is the substitution that assigns to any pattern
p ∈ Pat (Σ) a transition SA (p) ∈ TQ .

Lemma 4.8. Let A be an Nfa with state setQ . A pattern p matches

L (A) if and only if there exists a substitution of S : Y → TQ mapping

to inhabited transitions such that SA (p) is successful.

Proof. Omitted since elementary. □

Lemma 4.9. Given and Nfa A with state set Q , a substitution

S : Y → TQ , and a string pattern p, the transition SA (p) ∈ TQ can

be computed in time O (|A| + |Q |3 |p |)

Proof. The product τ ·TQ τ ′ of two transitions τ1,τ2 ∈ TQ can be
computed in time O (|Q |3), by representing transitions as Boolean
|Q | × |Q | matrices, and multiplying these matrices. We have to
compute |p | such products. In addition, we need to inspect at most

BDA 2017, 14-17 Novembre 2017, Nancy Momar Sakho, Iovka Boneva, and Joachim Niehren

once all transitions of A for computing the transitions aA for all
letters a ∈ Σ occurring in p. □

Proposition 4.10. RegSPMΣ is PSpace-complete for all alphabets

Σ with at least 2 letters.

Proof. The PSpace hardness follows by reduction to the empti-
ness problem of the intersection of a sequence of Dfas (or Nfas).
Consider a sequence of DfasA1, . . . ,An with signature Σ for some
n ≥ 0 and # a fresh symbol not in Σ. Let A = (Q, Σ,δ , I , F) be a Dfa
that recognizes the language {u1# . . . #un | ui ∈ L (Ai) for all 1 ≤
i ≤ n}. Note that such a DfaA can be constructed in linear time for
the sequence A1 . . .An . Let p be the pattern p = y# . . . #y with n
occurrences of pattern variable y. We then have Inst (p) ∩L (A) = ∅
if and only if L (A1) ∩ . . . ∩ L (An) = ∅.

A decision algorithm in PSpace can be obtained as follows. Let p
be a string pattern. By Lemma 4.8, we have that Inst (p) ∩ L (A) =
∅ if and only if there exists no substitution S of variables of p
to inhabited transitions for Q such that the evaluation of SA (p)
is successful. It is thus sufficient to generate all substitutions S
of pattern variables to inhabited transitions of A, to compute the
transition SA (p) and to test whether it is successful. This can be
done in PSpace, since whether a transition is A-inhabited can be
tested in PSpace by Theorem 2.2, and since computing SA (p) can
be done in PTime by Lemma 4.9. □

When restricted to linear string patterns p, the language Inst (p)
will always be regular and can be recognized by a Dfa of size O (p).
Therefore, regular string pattern matching restricted to linear string
patterns is in combined linear time.

4.3 Complexity of CQA on String Patterns

Before we can study the problem of certain query answering on
string patterns, we need to specify how queries will be defined.
Since we are mainly motivated in navigation XPath queries, and
these can be compiled to automata [7, 16, 18], we will consider
queries defined by query automata.

We consider two decision problems for certain query answers
and nonanswers respectively. Both problems are parameterized by
a string alphabet Σ and a finite set of query variablesV .

Definition 4.11 (The problems Cert
sp

sel
(Σ,V) and Cert

sp

rej
(Σ,V)).

Certainty for selection Certsp
sel
(Σ,V) and respectively rejection

Certsp
rej
(Σ,V) are the following problems for string patterns:

Input: A string pattern p over Σ, a valuation σ forV on p, and
a Dfa A which is a query automaton for strings over Σ and
with variables inV .

Output: The truth value of whetherσ is a certain query answer
(resp. nonanswer) for query Q (A) on p.

We next show that we can reduce both problems to regular string
pattern matching.

Proposition 4.12. For any alphabet Σ and variable set V , the

problems Cert
sp

sel
(Σ,V) and Cert

sp

rej
(Σ,V) can be reduced in PTime

to RegSPMΣV . Conversely, RegSPMΣ can be reduced in PTime to

Cert
sp

sel
(Σ, ∅) and to Cert

sp

rej
(Σ, ∅).

Proof. Let A be a Dfa query automaton for strings over Σ with
variables inV . A valuation σ mapping variables fromV to posi-
tions of posΣ (p) is a certain query answer for query Q (A) if and
only if Inst (p∗σ) ∩ StructV ⊆ L (A) which is equivalent to that
Inst (p∗σ) ∩ StructV ∩ L (A) = ∅. It is a certain query nonanswer
for Q (A) if and only if Inst (p∗σ) ∩ L (A) = ∅. Since Dfas can be
complemented in polynomial time, and since the setV is a param-
eter of the problem so that a Dfa for StructV can be constructed
in constant time, both problems Certsp

sel
(Σ,V) and Certsp

rej
(Σ,V)

can be reduced in PTime to the problem of regular string pattern
matching RegSPMΣV .

If V = ∅, then the converse reductions from RegSPMΣ to
certainty for selection Certsp

sel
(Σ, ∅) and certainty for rejection

Certsp
rej
(Σ, ∅) are obvious too. □

Theorem 4.13. If Σ contains at least two elements, then indepen-

dently of the choice ofV , the certainty problems for string patterns

Cert
sp

sel
(Σ,V) and Cert

sp

rej
(Σ,V) are both PSpace complete.

Proof. PSpace algorithms solving the problems Certsp
sel
(Σ,V)

and Certsp
rej
(Σ,V) can be obtained by reduction to RegSPMΣV by

Proposition 4.12. The latter problem can be solved in PSpace by
Proposition 4.10.

The converse reduction fromProposition 4.12 shows thatCertsp
sel
(Σ,

∅) and Certsp
rej
(Σ, ∅) are harder than RegSPMΣ and thus PSpace-

hard by Proposition 4.10. Furthermore, clearly Certsp
sel
(Σ,V) is

harder than Certsp
sel
(Σ, ∅), and respectively for rejection. Hence

both problems Certsp
sel
(Σ,V) and Certsp

rej
(Σ,V) are PSpace com-

plete independently of the choice ofV . □

It should be noticed that the complexity of deciding certainty
of selection or rejection for Dfa defined queries on string patterns
is much higher than for ordinary streams, where the problem can
be solved in combined linear time [10] in the size of the stream
and the query. As we will show next, it is still possible to decide
certainty efficiently for linear string patterns.

Theorem 4.14. Restricted to linear string patterns p, the certainty
problems Cert

sp

sel
(Σ,V) and Cert

sp

rej
(Σ,V) can both be solved in

combined linear time O (|p | |A|) where A is the automaton defining

the query.

Proof. The problems can be reduced in linear time to the re-
striction of RegSPMΣV to linear patterns L (A) ∩ Inst (p) as shown
in the proof of Proposition 4.12. By computing a Dfa recognizing
Inst (p) in timeO (|p |) this problem can be solved in combined linear
time O (|p | |A|). □

5 CERTAIN QUERY ANSWERING ON

HYPERSTREAMS

We next lift the concept of certain query answering to hyperstreams
as considered in [14]. These are multiple streams with forward
references to other streams, similarly to the streams with references
of [17]. References allow to introduce factorization as in factorized
databases [20], a concept that is also called compression in formal
language theory [8].

Complexity of CertainQuery Answering on Hyperstreams BDA 2017, 14-17 Novembre 2017, Nancy

5.1 Hyperstreams and Certain Answers

We introduce hyperstreams and lift the concepts of certain query
answers and non-answers from string patterns to hyperstreams.

Definition 5.1 (Hyperstreams [14, 17]). Let R and Σ be disjoint
sets, which do not contain string variables. A hyperstream with
references in R and alphabet Σ, is a sequence of equations r1 =
s1, . . . , rn = sn where n ≥ 1, r1, . . . , rn ∈ R are pairwise distinct,
and all si are streams with alphabet Σ ∪ {ri+1, . . . , rn } where 1 ≤
i ≤ n.

For any i, j, the references r j that occur in streams si refer for-
wards to the stream sj , coming later in the sequence since i < j
is imposed. Such forward are most natural in a streaming setting,
since they refer to future information coming later.

Example 5.2. For instance, the hyperstream D0 from page 1 of
the introduction has the set of references R = {r1, r2, r3, r4} and
signature Σ = {a,b, c}. Its equations are as given in the introduction.
The stream r2r3 in the equation for r1 contains the references r2
and r3. The streams of r2 and r3 both contain the reference r4. The
stream r4 contains no references and has an open end y ∈ Y .

For any hyperstream D, we define the string pattern pat (D) by
recursion on the number of equations, such that for all r , s,D:

pat (r = s) = s, pat (D, r = s) = pat (D[r/s])

where D[r/s] is the hyperstream obtained from D by replacing by s
all occurrences of reference r in the streams of the right hand sides
of D. The pattern is well defined, since by definition of a hyper-
stream, the last stream s does not contain any reference, so that
D[r/s] is again a hyperstream. For instance, for the hyperstream
D0 from Example 5.2, we have pat (D0) = baabyccaby.

We next lift the notions of certain query answers and nonanswers
to hyperstreams.

Definition 5.3 (Certain answer). Let Q be a query on strings, and
D a hyperstream, both over Σ. We call a valuation on pat (D):
• a certain answer of Q on D if it is a certain answer of Q on
pat (D).
• a certain non-answer of Q on D if it is a certain non-answer
of Q on pat (D).

The size |D | of the hyperstream D is n +
∑n
i=1 |si | if D is equal

to r1 = s1, . . . , rn = sn and |si | is the length of the word si .
Linear Hyperstreams with Compression. As we will see, effi-
cient algorithm can be obtained mainly for linear hyperstreams,
i.e. hyperstreams that support the compression of linear string
patterns.

Definition 5.4. A hyperstream D is called linear if its pattern
pat (D) is linear.

Example 5.5. We illustrate that linear hyperstreams may indeed
represent linear string patterns in a compressed manner. Consider:

r1 = r5r4r2r3r4, r2 = abcy1, r3 = bay2 r4 = r5bbr5

r5 = c

This hyperstream has the string pattern ccbbcabcy1bay2cbbc so it
is linear. It represents this string pattern in a compressed manner
by using the reference r4 and r5 twice.

Due to compression the pattern of a hyperstream pat (D) may
be exponentially larger than the the hyperstream D itself, even
if D is linear, see Example 5.6. Therefore, decompression, i.e., the
computation of pat (D) from D, must be avoided whenever possible
in order to avoid exponential blow-ups.

Example 5.6. For any n ≥ 1, consider the linear hyperstream Dn
with:

r1 = r2r2y, r2 = r3r3, . . . rn = rn+1rn+1, rn+1 = a

The pattern of Dn is pat (Dn) = a2
n
y and is exponentially larger

than Dn .

5.2 Regular Compressed String Pattern

Matching

We study the complexity of the problem of whether a hyperstream
matches some string of a regular language.

We first argue that this problem is equivalent to matching com-
pressed string patterns against regular languages. A compressed
string pattern [8] is like a hyperstream, except that the streams si
are generalized to string patterns, so that the string variables may
appear in the middle and not only at the end of si . It is not diffi-
cult to see that any compressed string pattern C can be converted
in linear time into a hyperstream D with the same string pattern.
Therefore, the difference between a compressed string pattern and
a hyperstream doesn’t matter for our purpose.

Definition 5.7. Regular compressed string pattern matching Reg-
CompSPMΣ is the following problem:

Input: A hyperstream D over Σ, and a Dfa A over Σ.
Output The truth value of Inst (pat (D)) ∩ L (A) = ∅.

It also should be noticed that the more restricted problem of
matching compressed string patterns against compressed strings is
np-complete (see Theorem 4.4 of [8]).

For solving instances of regular compressed string patternmatch-
ing, we must be able to lift substitutions to transitions from string
variables to hyperstreams.

Lemma 5.8. Given an Nfa A with state set Q , a substitution S :
Y → TQ , and a hyperstream D, then the transition SA (pat (D)) ∈ TQ
can be computed in time O (|A| + |Q |3 |D |)

Proof. We can precompute the transitions aA for all letters
a ∈ Σ in time O (|A|). The hyperstream D can be represented as a
Dag whose nodes are the references of D. We can then compute a
transition for each node of the Dag. The transition of the root of
the Dag will be equal to pat (D)A. The work that we have to do at
node ri is to replace in si each letter a by aA, each string variable
y by S (y), and each reference r by the transition of node r in the
Dag. We then have to multiply the sequence of transitions obtained
in this way. When representing transitions as boolean |Q | × |Q |
matrices, this can be done inO (|s | |Q |3), so the overall time without
the precomputation is in O (|D | |Q |3). □

Proposition 5.9. Given a query automatonAwith state setQ and

query variablesV , a substitution S : Y → TQ , a hyperstream D, and

a valuation σ ofV on pat (D), then the transition SA (pat (D)∗σ) ∈
TQ can be computed in PTime.

BDA 2017, 14-17 Novembre 2017, Nancy Momar Sakho, Iovka Boneva, and Joachim Niehren

r1

r2

r3

a

Figure 5: Hyperstream D

Proof. The proof is by reduction to the special case where the
positions of dom(σ) are represented by D without sharing. This
can be done by partially decompressing D in PTime.

First, we need a method to identify positions of letters in a hy-
perstream. Therefore, we define the set:

PosD = {(r , j) | r = s in D, j ∈ pos(s)}

Second, we need a way to address positions of D by navigating
in the Dag of D. For this, let an address be a word in N∗, as for
the usual Dewey notation for addresses in trees. For instance, if
D is r1 = r2r2, r2 = yr3, r3 = a then the address π = 221 refers
to posD (π) = (r3, 1) ∈ PosD . The evaluation of π always starts at
the root of the Dag of D which here is r1. Address π = 221 then
requires to move to letter 2 of the stream of r1 which is r2, then to go
to letter 2 of the stream of r2 which is r3, and finally to select letter
1 of the stream of r3, which is position posD (π) = (r3, 1). We omit
the general definition of posD (π) which should be straightforward
from the intuition. The set of all addresses of D is:

AddrD = {π ∈ N
∗ | posD (π) is defined}

Third, for any position (r , j) ∈ PosD we define letterD (r , j) as the
j-th letter of the stream s for which r = s belongs to D. For instance
the letterD (r3, 1) = a. Note that letterD (r , j) ∈ Σ ∪ R ∪Y . We then
call an address π ∈ AddrD sharing-free in D, if there exists no
different address π ′ ∈ AddrD , such that posD (π) = posD (π ′).

Claim 1. For any hyperstream D and set of addresses Π ⊆ AddrD
we can compute in PTime a hyperstream D ′ with pat (D) = pat (D ′)
such that all elements of Π are sharing-free addresses of D ′.

Proof. We define the set of positions of D on the paths leading
to π by:

Pos
paths

D (Π) = {posD (π ′) | π ′ proper prefix of π ∈ Π}

Note that letter (ν) ∈ R for all ν ∈ Pos
paths

D (Π). Let R′ be a set
disjoint from R but of the same cardinality and new : R → R′ a
bijection. Let D ′′ be like D but such that for all ν ∈ PospathsD (Π) the
reference at position ν is replaced bynew (letterD (ν)). The sequence
D ′ = D ′′,D is then a hyperstream with references in R ∪ R′ as
required by the claim. Figure 6 shows how this can be achieved,
starting from the hyperstream in Figure 5.

□

r1

r2

r3

r ′1

r ′2

r ′3

a a

Figure 6: Newly created hyperstream D ′.
Here r ′i = new (ri) for all i ∈ {1, 2, 3}

We next establish a correspondence between addresses of D and
positions of pat (D). In our example, the address π = 221 corre-
sponds to position 4 of pat (D) = yaya. More generally, we define
the address addrD (m) for any positionm ∈ pos(pat (D)) as follows.
If D has the form r = s where 1 ≤ m ≤ |s |, then addrD (m) = m.
If D has the form r = s1ls2,D ′ for some patterns s1 and s2 with
references, letter l ∈ Σ ∪ Y ∪ R, and hyperstream D ′, so that
|pat (r = s1,D ′) | < m ≤ |pat (r = s1l ,D ′) | then:

addrD (m) =m′π wherem′ = |s1 | + 1

and
π ′ = addrD′ (m − |pat (r = s1,D

′) |).

We note that AddrD = {addrD (m) | m ∈ pos(pat (D))}.

Claim 2. For anym and D, we can compute addrD (m) in PTime.

Proof. We construct theDag ofD, and compute for all its nodes
(the reference of D) the size of the pattern of the subdag rooted
there. This can be done in PTime in an ascending manner. Given
these number of can find addrD (m) in a descending manner. □

Claim 3. For any hyperstream D over Σ and σ a valuation ofV

to pat (D) such that all addresses in the set {addrD (m) | m ∈ ran(σ)}
are sharing-free in D, then we can compute in PTime a hyperstream

D ′ over ΣV such that pat (D ′) = pat (D)∗σ .

Proof. We obtainD ′ fromD by applying for all ν ∈ pos(D) with
letter (ν) ∈ Σ: If ν = posD (addrD (m)) for somem ∈ posΣ (pat (D))
then replace the letter of ν in D by (letterD (ν),σ−1 (m)), other-
wise replace the letter of ν by (letter (ν), ∅). Note that the choice
ofm is unambiguous by sharing-freeness. Furthermore, pat (D ′) =
pat (D)∗σ since all Σ-letters that got annotated by nonempty sets
of variables are at sharing-free positions. □

We can now prove Proposition 5.9. Consider a hyperstream D
over Σ and a valuation σ fromV to νΣ (pat (D)). We first compute
the set of addresses Π = {addrD (m) | m ∈ ran(σ) in PTime by
Claim 2.We then compute a hyperstreamD ′with pat (D) = pat (D ′)
such that all addresses in Π are sharing-free in D ′. This can be done
in PTime by Claim 2. We can then compute hyperstream D ′′ over
ΣV such that pat (D ′′) = pat (D) ×σ . This can be done in PTime by
Claim 3.

Complexity of CertainQuery Answering on Hyperstreams BDA 2017, 14-17 Novembre 2017, Nancy

Finally, we have that SA (pat (D)∗σ) = SA (pat (D ′′)) which can
be computed in PTime by Lemma 5.8, applied with the signature
ΣV instead of Σ. □

Proposition 5.10. For any finite alphabet Σ with at least 2 letters,

regular compressed string pattern matching RegCompSPMΣ is PSpace-

complete.

Proof. PSpace-hardness holds already without compression,
that is for the simpler problem RegSPMΣ (Proposition 4.10). A
decision algorithm in PSpace can be obtained as follows. Let D be a
compressed string pattern. We have that Inst (pat (D))∩L (A) = ∅ if
and only if there exists no substitution S mapping string variables
in D to inhabited transitions ofA such that S (pat (D)) evaluates to a
successful transition. It is thus sufficient to generate all substitutions
S of string variables in D to A-inhabited transitions (which we
can do in PSpace by Corollary 2.2), and to test whether S (pat (D))
evaluates to a successful transition. This can be done in PSpace by
Lemma 5.9, so without ever storing the whole pattern pat (D) in
memory. □

We next consider a generalization of regular compressed string
matching where valuations σ are part of the input.

Definition 5.11. The problem of generalized regular compressed
string pattern matching GenRegCompSPMΣ,V is the following:

Input: A hyperstream D over Σ, a Dfa A over ΣV and a valu-
ation σ ofV on pat (D).

Output: The truth value of Inst (pat (D)∗σ) ∩ L (A) = ∅.

Lemma 5.12. The problems GenRegCompSPMΣ,V are in PSpace

for all set Σ andV (and thus PSpace-complete if Σ contains at least 2

elements).

Proof. Let D be a hyperstream . We have that Inst (pat (D)∗σ) ∩
L (A) = ∅ if and only if there exists no substitution S of string vari-
ables of pat (D) to inhabited transition of A such that S (pat (D)∗σ)
evaluated to a successful transition. It is thus sufficient to gener-
ate all substitutions S of string variables to A-inhabited transitions
(which we can do in PSpace by Corollary 2.2, and to test whether
S (pat (D)∗σ) evaluates to a successful transition. This can be done
in PTime by Lemma 5.8, without generating pat (D). □

5.3 Complexity of CQA on Hyperstreams

We next study the problems of certainty for selection and rejection
for hyperstreams.

Definition 5.13. Let Σ andV be finite sets. Certainty for selection
Cert

sel
(Σ,V) and resp. rejection Certrej (Σ,V) are the following

problems:
Input: A hyperstream D over Σ, a valuation σ on pat (D) with

variables inV , and a Dfa A which is a query automaton for
strings over Σ and with variables inV .

Output: The truth value of whether σ is a certain answer (resp.
nonanswer) of query Q (A) on D.

These problems generalizeCertsp
sel
(Σ,V) and resp.Certsp

rej
(Σ,V)

from string patterns to hyperstreams.

Theorem 5.14. For any signature Σ with at least 2 letters and for

any finite setV of variables, the problems of certainty for selection

Cert
sel
(Σ,V) and resp. rejection Certrej (Σ,V) are both PSpace-

complete.

Proof. From Theorem 4.13 we know that both problems re-
stricted to string patterns are already PSpace-hard. It remains to
show that both problems are in PSpace.

We first show that Certrej (Σ,V) is in PSpace. We have to de-
cide Inst (pat (D)∗σ) ∩ L (A) = ∅, given a Dfa A = (Q, Σ,δ , I , F),
a hyperstream D, and σ . This is equivalent to that there exists a
substitution S from string variables in Y to transitions for Q , so
that the transition (I × F) ∩ SA (pat (D)∗σ) is A-inhabited. It is thus
sufficient to generate and test all such substitution S in PSpace. We
can compute the transition SA (pat (D)∗σ) in PSpace by Lemma 5.9,
and then to test whether (I × F) ∩ SA (pat (D)∗σ) is inhabited in
PSpace by Corollary 2.2.

We next consider Cert
sel
(Σ,V). A valuation σ on pat (D) is a

certain answer for query Q (A) on D if and only if Inst (pat (D)∗σ)∩
StructV ⊆ L (A) which is equivalent to that Inst (pat (D)∗σ) ∩
StructV ∩ L (A) = ∅. Since we fixed the set V as a parameter
of the problem, we can compute a Dfa recognizing StructV in con-
stant time (it may be of size 2V though). So we can compute a
Dfa A′ with L (A′) = StructV ∩ L (A) in linear time in the size
of A. The valuation σ is a certain answer of Q (A) if and only if
Inst (pat (D)∗σ) ∩ L (A′) = ∅, which is equivalent to that σ is a cer-
tain nonanswer of Q (A′) on D. We thus have reduced the problem
in PTime to Certrej (Σ,V). □

Theorem 5.15. The problems of certainty of selection and resp.

rejection on linear hyperstreams for queries defined by Dfas are both

in PTime.

Proof. Given that certainty for selection can be reduced to cer-
tainty for rejection in PTime, it is sufficient to show that certainty for
rejection on linear hyperstreams is in PTime. So consider as inputs,
aDfa query automatonA = (Q, Σ,δ , I , F), and a linear hyperstream
D. We have to decide whether Inst (pat (D)∗σ) ∩ L (A) = ∅. Given
that D is linear, all its string variables can be instantiated indepen-
dently. Therefore, we can consider the transition τacc , that contains
all pairs (q,q′) of A such that q′ is accessible from q by some path
in A, and the substitution Sacc that maps all string variables of D
to τacc . It then holds that (I × F) ∩ SaccA (pat (D)) is a A-inhabited
if and only if Inst (pat (D)∗σ) ∩ L (A) , ∅. Now, by Proposition 5.9
we can compute SaccA (pat (D)) in PTime, so certainty for rejection
can be tested in PTime too. □

6 CONCLUSION

We have shown that deciding whether a valuation is a certain
query answer can be decided in PTime for linear hyperstreams.
This result is nontrivial due to the factorization that comes with
compressed string patterns. Without the linearity restriction, the
general problem becomes PSpace-complete. Both the hardness and
the decidability result are new.

From a practical perspective, what is missing most urgently is
an algorithm that computes all certain query answers of a linear
hyperstream in an earliest manner, that is an algorithm that outputs

BDA 2017, 14-17 Novembre 2017, Nancy Momar Sakho, Iovka Boneva, and Joachim Niehren

valuations as soon as they become certain answers. The example
in the introduction shows that it is also of interest to lift such
algorthms to general hyperstreams. Our hardness result, however,
prove that this is not possible efficiently. What could still be done is
to relax the condition on earliest query answering. We believe that
efficient early algorithm can be done by approximating the set of
certain query answers. It may also be of interest to consider certain
query answering for other kinds of uncomplete structures, such as
partially known graphs or trees.

Another point is to lift our streaming algorithm to hyperstreams
with data values from an infinite signature. We believe that this
can be done by decomposing queries into parts that are compar-
ing data values, and others that do not. But still the feasability of
hyperstreaming in general needs to be proven in practice.
Acknowledgments. We are thankful to Charles Paperman, who
saw the PSpace-hardness of regular string pattern matching in a
discussion on the topic. We also thank him for having pointing
us to existing work on the transition monoid. We thank Sylvain
Salvati and Sophie Tison for discussions on regular string pattern
matching. It is a pleasure to thank the reviewers of the BDA national
conference for their extraordinary helpful feedback.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, and T. Milo. The active XML project: an overview.
VLDB J., 17(5):1019–1040, 2008.

[2] D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci.,
21(1):46–62, 1980.

[3] M. Benedikt, A. Jeffrey, and R. Ley-Wild. Stream Firewalling of XML Constraints.
In ACM SIGMOD International Conference on Management of Data, pages 487–498.
ACM-Press, 2008.

[4] H. Björklund, W. Gelade, and W. Martens. Incremental xpath evaluation. ACM
Trans. Database Syst., 35(4):29, 2010.

[5] M. Blondin, A. Krebs, and P. McKenzie. The complexity of intersecting finite
automata having few final states. computational complexity, 25(4):775–814, Dec
2016.

[6] C. David, L. Libkin, and F. Murlak. Certain answers for XML queries. In Proceed-

ings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages
191–202. ACM, 2010.

[7] D. Debarbieux, O. Gauwin, J. Niehren, T. Sebastian, and M. Zergaoui. Early nested
word automata for xpath query answering on XML streams. Theor. Comput. Sci.,
578:100–125, 2015.

[8] A. Gascón, G. Godoy, and M. Schmidt-Schauß. Context matching for compressed
terms. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in

Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 93–102.
IEEE Computer Society, 2008.

[9] O. Gauwin and J. Niehren. Streamable fragments of forward XPath. In B. B.
Markhoff, P. Caron, J. M. Champarnaud, and D. Maurel, editors, International
Conference on Implementation andApplication of Automata, volume 6807 of Lecture
Notes in Computer Science, pages 3–15. Springer, 2011.

[10] O. Gauwin, J. Niehren, and S. Tison. Earliest query answering for deterministic
nested word automata. In 17th International Symposium on Fundamentals of

Computer Theory, volume 5699 of Lecture Notes in Computer Science, pages 121–
132. Springer Verlag, 2009.

[11] R. H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, Oct. 1985.

[12] M. Kay. A streaming XSLT processor. In Balisage: The Markup Conference 2010.

Balisage Series on Markup Technologies, volume 5, 2010.
[13] D. Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1

November 1977, pages 254–266. IEEE Computer Society, 1977.
[14] P. Labath and J. Niehren. A functional language for hyperstreaming XSLT.

Technical report, INRIA Lille, 2013.
[15] P. Labath and J. Niehren. A uniform programming language for implementing

XML standards. In SOFSEM 2015: Theory and Practice of Computer Science - 41st

International Conference on Current Trends in Theory and Practice of Computer

Science, Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings, pages
543–554, 2015.

[16] P. Madhusudan and M. Viswanathan. Query automata for nested words. In
34th International Symposium on Mathematical Foundations of Computer Science,
volume 5734 of Lecture Notes in Computer Science, pages 561–573. Springer Verlag,
2009.

[17] S. Maneth, A. O. Pereira, and H. Seidl. Transforming XML streams with references.
In C. S. Iliopoulos, S. J. Puglisi, and E. Yilmaz, editors, String Processing and

Information Retrieval - 22nd International Symposium, SPIRE 2015, London, UK,

September 1-4, 2015, Proceedings, volume 9309 of Lecture Notes in Computer Science,
pages 33–45. Springer, 2015.

[18] B. Mozafari, K. Zeng, and C. Zaniolo. High-performance complex event process-
ing over XML streams. In K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano,
A. Fuxman, K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fuxman,
editors, SIGMOD Conference, pages 253–264. ACM, 2012.

[19] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus
with futures. Theoretical Computer Science, 364(3):338–356, Nov. 2006.

[20] D. Olteanu. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans. on

Know. Data Eng., 19(7):934–949, 2007.
[21] J.-E. Pin. Mathematical Foundations of Automata Theory. 2016.
[22] M. Schmidt, S. Scherzinger, and C. Koch. Combined static and dynamic analysis

for effective buffer minimization in streaming XQuery evaluation. In 23rd IEEE

International Conference on Data Engineering, pages 236–245, 2007.
[23] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Progress in

Computer Science and Applied Series. Birkhäuser, 1994.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics
	2.2 Automata Theory

	3 Queries and their Languages
	4 Certain Query Answering on String Patterns
	4.1 String Patterns and Certain Answers
	4.2 Regular String Pattern Matching
	4.3 Complexity of CQA on String Patterns

	5 Certain Query Answering on Hyperstreams
	5.1 Hyperstreams and Certain Answers
	5.2 Regular Compressed String Pattern Matching
	5.3 Complexity of CQA on Hyperstreams

	6 Conclusion
	References

