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A KEY TO CHOOSE SUBSPACE SIZE IN IMPLICITLY RESTARTED
ARNOLDI METHOD

S. A. SHAHZADEH FAZELI∗, N. EMAD† , AND Z. LIU‡

Abstract. The implicitly restarted Arnoldi method (IRAM) computes some eigenpairs of large
sparse non Hermitian matrices. However, the size of the subspace in this method is chosen empirically.
A poor choice of this size could lead to the non-convergence of the method. In this paper we
propose a technique to improve the choice of the size of subspace. This approach, called multiple
implicitly restarted Arnoldi method with nested subspaces (MIRAMns) is based on the projection of
the problem on several nested subspaces instead of a single one. Thus, it takes advantage of several
different sized subspaces. MIRAMns updates the restarting vector of an IRAM by taking the eigen-
information of interest obtained in all subspaces into account. With almost the same complexity as
IRAM, according to our experiments, MIRAMns improves the convergence of IRAM.
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1. Introduction. In the fluid dynamics, economic modelling and some other
domains there are a number of cases where a few eigenvalues with the largest real
part or with the largest magnitude of a nonsymmetric matrix are required. Several
methods have been proposed to solve this kind of eigenproblems. Arnoldi in 1951
[1] proposed a method which is a variant of the Krylov projection methods. The
Arnoldi method is an efficient technique which permits to compute an approximation
of desired eigenpairs of an n-size matrix A by those of anm×m matrix representing A
in an m-size Krylov subspace (with m ≤ n). Meanwhile, when the wanted eigenvalues
are clustered the Krylov subspace ought to have overly large size. The Arnoldi method
is best at finding a solution to an eigenproblem with well-separated eigenvalues. A
drawback of this method is the expense of too much memory space when m is large.
This problem is solved by restarting the method as proposed in 1980 by Saad [19].

Saad’s approach, called explicitly restarted Arnoldi method (ERAM), restarts the
Arnoldi projection with a better subspace. Indeed, this approach offers to choose a
small Krylov subspace (m ≪ n). Then, if the accuracy of the desired Ritz elements
computed by Arnoldi method is not satisfactory, ERAM restarts the process using a
new Krylov subspace. This new subspace differs by the last one by its initial vector
which is formed by an explicit combination of the computed Ritz elements. Although
this algorithm is attractive for reason of simplicity, the formation of a restarting
vector for the next restart cycle using the approximated eigenvectors of the current
cycle might not be good. The restarting is difficult because one new starting vector
must be defined as an explicit linear combination of wanted Ritz vectors. If this
combination is not carefully chosen, it can lead to a very bad selection for the new
starting vector. Moreover, when the starting vectors are complex the cost will increase.
Saad proposed some special coefficients for the combination of Ritz vectors such as the
weighted linear combination [19]. As himself mentioned it, this method may not well
work in practice for many eigenproblems [20]. Moreover, the problem of the choice
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of the size of the subspace remains. An approach based on the Arnoldi projection
onto several Krylov subspaces is proposed by Emad et al [8]. The latter are formed
with different initial vectors and have different sizes. This technique is called multiple
explicitly restarted Arnoldi method (MERAM). It updates the restarting vector of
each ERAM process by taking into account the eigen-information of interest obtained
by all ERAM processes. MERAM improves often the convergence of ERAM but the
restarting issues intrinsic to ERAM remain [8].

In order to improve the Arnoldi method, Sorensen has suggested an efficient
technique which makes use of the QR algorithm to restart the Arnoldi projection
[21]. His approach permits to restart the Arnoldi process with an efficient and
numerically stable formulation. This approach which is called implicitly restarting
Arnoldi method (IRAM) was analyzed, implemented and validated, among others, in
[21, 10, 11, 23, 12, 13]. As in ERAM, implicity restarted Arnoldi method makes use of
Arnoldi projection to approximate the desired eigenpairs of a large matrix A. If the
accuracy of these Ritz elements is not satisfactory, IRAM applies a QR shifted algo-
rithm on the m×m matrix which represents A in the projection subspace. As these
are the non desired eigenvalues which are chosen for shifts, the upper-left block of
the matrix issued from QR algorithm concentrates the information corresponding to
the desired eigenvalues. IRAM completes an m−size Arnoldi projection starting with
the submatrix representing this block whose size is the number of wanted eigenvalues.
This is equivalent to restart the Arnoldi process with a new initial vector computed im-
plicitly. Morgan showed that IRAM is much better than the other restarting Arnoldi
methods such as explicitly restarted ones [14]. However, the problem of choosing the
size of subspace remains.

In restarted Arnoldi methods, in order to improve the quality of the subspace
during the restart cycles, only the initial vector is taken into account. We propose
to make this improvement by taking into account both the initial vector and the
size of the subspace. For this, we propose to apply the same idea as the one used
in MERAM. This approach called multiple implicitly restarted Arnoldi method with
nested subspaces (MIRAMns), is based upon the projection of the problem on several
Krylov subspaces instead of a single one. These subspaces differ by their size while
the subspaces in multiple restarted methods such as MERAM can differ by their size
and their initial vectors [8]. MIRAMns makes use of Arnoldi method to compute
the Ritz elements of a large matrix A in a set of ℓ nested Krylov subspaces Kmi,v

(for i = 1, . . . , ℓ) with Kmi,v ⊂ Kmi+1,v. If the accuracy of the desired Ritz elements
calculated in these subspaces is not satisfactory, MIRAMns selects the “best” of these
subspaces. This subspace is one that contains the “best” current Ritz elements. Then
a QR shifted algorithm will be applied to the mbest×mbest matrix which represents A
in this mbest-size projection subspace. As these are the non desired eigenvalues which
are chosen for shifts, the leading submatrix issued from QR algorithm concentrates the
information corresponding to the desired eigenvalues. MIRAMns completes Arnoldi
projections on ℓ nested Krylov subspaces starting with this submatrix whose size is
the number of wanted eigenvalues.

One of the well known problems of the restarted iterative methods is the sen-
sitivity of the convergence with respect to small perturbations of the subspace size.
Indeed, they could not converge with a subspace and converge with the same re-
duced/extended subspace with nearby sizes. MIRAMns overcomes to this problem
by making choice of the “best” size among these subspace sizes. Another advantage
of this technique is the better property of convergence with almost the same time
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complexity relative to IRAM. Our experiments showed a very good acceleration of
convergence with respect to the implicitly restarted Arnoldi method.

This paper has the following organization. An overview of the related work is
presented in the next section. The implicitly restating Arnoldi method is discussed
in section 3. The multiple implicitly restarted Arnoldi method with nested subspaces
and an algorithm of it are presented in section 4. Section 5 is devoted to numerical
experiments. Finally we present a conclusion in the last section.

Definition and notation. Let A be a complex non-Hermitian matrix of dimen-
sion n × n, v be an n−size initial guess, Km,v1 be the Krylov subspace spanned by
(v1, Av1, . . . , A

m−1v1) with v1 = v/‖v‖2 and (v1, · · · , vm) be an orthogonal basis of
this subspace generated by the Gram-Schmidt orthogonalization process. A relation
of the form AVm = VmHm + fme

T
m is called an m-step Arnoldi factorization, where

Hm ∈ C
m×m is an upper Hessenberg matrix with non-negative subdiagonal elements,

Vm ∈ C
n×m is a matrix with orthonormal columns v1, · · · , vm and V H

m fm = 0 where
fm is the residual vector of lenght n. This factorization can be used to reduce the
eigenproblem with the large order matrix A to a problem with a smaller order ma-

trix Hm. Let y
(m)
i be an eigenvector of Hm associated with the eigenvalue λ

(m)
i and

u
(m)
i = Vmy

(m)
i . (u

(m)
i , λ

(m)
i ) is an approximate eigenpair for A called also Ritz eigen-

pair and ρi,m = ‖(A − λ
(m)
i I)u

(m)
i ‖2 = ‖(AVm − VmHm)y

(m)
i ‖2 = |βme

T
my

(m)
i | is the

residual norm associated to this Ritz eigenpair. The number |βme
T
my

(m)
i | is called

also Ritz estimate where βm = ‖fm‖2. In the rest of this paper, we denote by k the

number of wanted eigenvalues, by {µ
(m)
i }pi=1 the set of unwanted eigenvalues of Hm

(p = m− k), by ‖A‖F the Frobenius norm of A, by Hm(1 : k, 1 : k) the leading k× k
submatrix of Hm and by nrc the number of restart cycles.

2. Related work. The paper [25] explains the relationship between the subspace
size in IRAM and its convergence rate so the relevance of the subspace size has been
discussed in the open literature. Dynamic selection of restart parameters in Arnoldi
methods have been considered previously. Duff and Scott in [7] developed a subspace
algorithm combined with Chebychev acceleration. They select dynamically the size
of the subspace and the degree of the Chebychev polynomial at each restart cycle.
Stathopoulos, Saad and Wu proposed in [24] a technique, called thick restarting, than
restarts the Arnoldi algorithm with more eigenvectors that is actually required. A
dynamic thick restarting scheme which adjusts the number of retained Ritz vectors at
each cycle in IRAM is proposed and the question of which and how many eigenvectors
to retain is addressed for symmetrical eigenproblems.

Some authors suggested more similar approaches to the one proposed in this
paper. Baker et al. proposed in [3] a simple strategy and provide some heuristic
explanation for its effectiveness. The authors define a range of subspace sizes whose
minimum and maximum values are respectivily mmin and mmax and they choose,
according to some criterion the subspace sizemi of the ith restart cycle in this discrete
interval. Their strategy checks the convergence rate ‖ ri+1 ‖2 / ‖ ri ‖2 at the end
of each restart cycle, where ri is the residual vector of ith cycle. The subspace
size is initialized by mmax. When stagnation is detected, they decrease the restart
parameter by a small number d at each cycle until reaching mmin. At that point, they
increasemi up to the maximum valuemmax. For the solution of non-symmetric linear
systems by deflated GMRES, Moriya and Nodera proposed in [15] a similar dynamic
switching approach for the Krylov subspace dimension. Their strategy consists to
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combine the deflated GMRES algorithm and the determination of a restart parameter
m dynamically. Indeed, in order to decrease the computation cost, the authors propose
to begin with a small restart parameter ms. If stagnation in encountered then the
restart parameter is switched to a larger value ml. When the restart value is ml and
the stagnation disappears then the restart parameter is switched again to ms. They
use as a criterion for stagnation the angle between the residual vector and search
vectors which could be easily computed during a run of GMRES. Dookhitram et al.
proposed in [6] a comparable approach to accelerate the convergence of IRAM which
is based on a relationship between the residual of the current restart cycle of IRAM
and the residual in the previous cycle. Despite the similarity, their technique differs
from that proposed by Moriya and Nodera for linear systems since unlike the latter,
they do not initialize any angle to avoid a problem dependent strategy and also their
switching strategy is based on a different relationship between the residual of the
current restart cycle and the residual of the previous cycle.

In the approach proposed in this paper, the dynamic determination of subspace
size parameter is monitored and used inside the current restart cycle while in the
methods cited above, this determination is done in current restart cycle for being
used in the next restart cycle. In other words, the dynamicity of our approach is
intra-cycle, while in the approaches mentioned above, the dynamicity is inter-cycle.
Some results of the comparison with the methods proposed in [24] and [6] are shown
in the section 5.

3. The Sorensen approach. This variant of the Arnoldi method based on
restarting technique is called implicitly restarted Arnoldi method (IRAM). That is
a technique that combines the implicitly shifted QR mechanism with an Arnoldi
factorization and can be viewed as a truncated form of the implicitly shifted QR-
iteration [23]. This method involves an implicit application of a polynomial in A to
the starting vector. IRAM computes a few eigenvalues (k ≤ m) such as those of the
largest real part or the largest magnitude. An m-step Arnoldi factorization

AVm = VmHm + fme
T
m,(3.1)

is compressed to a factorization of length k with the eigen-information of interest.
This is achieved using QR steps to apply p = m−k shifts implicitly. The results after
the shift process and equating the first k columns on both sides are

AV +
m = V +

mH
+
m + fme

T
mQ,(3.2)

where V +
m = VmQ,H

+
m = QTHmQ, and Q = Q1Q2 · · ·Qp with Qj the orthogonal

matrix in QR process associated with the shift µ
(m)
j and

AV +
k = V +

k H
+
k + f+k e

T
k ,(3.3)

with f+k = V +
m ek+1β̂k + fmσk where β̂k = H+

m(k+1, k) and σk = Q(m, k). Using this
as a starting point one can apply p additional steps of the Arnoldi process to obtain
an m-step Arnoldi factorization. Each shift cycle involves the implicit application of
a polynomial in A of degree p to the starting vector v: ψ(A)v with ψ(λ) = Πp

j=1(λ−

µ
(m)
j ). The roots of this polynomial are the shifts used in the QR algorithm [23]. The

resulting algorithm takes the form of the algorithm 1.
The stopping criterion in above algorithm can be computed by the expression

called Ritz estimate: (a)- |βme
T
my

(m)
i |, or by its mathematically equivalent explicit
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Algorithm 1 Implicitly restarted Arnoldi method

Input: (A, Vm, Hm, fm) with AVm = VmHm + fme
T
m an m-step Arnoldi factorization

For it = 1, . . ., until convergence
1. • Compute σ(Hm) the eigenvalue of Hm and their associated eigenvectors,

• Compute residual norm, if convergence stop,

2. Select set of p = m − k shifts (µ
(m)
1 , · · · , µ

(m)
p ), based upon σ(Hm) or other

information and set qT ← eTm,
3. For j = 1, 2, . . . , p

• Factor [Qj , Rj ] = qr(Hm − µ
(m)
j I);

• Hm ← QH
j HmQj ;Vm ← VmQj ;

• qH ← qHQj ;

4. Set fk ← vk+1β̂k + fmσk, Vk ← Vm(1 : n, 1 : k), Hk ← Hm(1 : k, 1 : k)
5. Beginning with the k-step Arnoldi factorization AVk = VkHk + fke

T
k , Apply

p additional steps of the Arnoldi process to obtain a new m-step Arnoldi
factorization AVm = VmHm + fme

T
m

formula of the residual norm: (b)- ‖(Au
(m)
i −λ

(m)
i u

(m)
i )‖2 (for i = 1, · · · , k). Criterion

(a) has a computational cost much lower than that of (b). However, criterion (b) may
better represent the residual corresponding to the Ritz elements and is more reliable
when rounding errors are present. This is because the expression of (b) contains
computed Ritz elements and thus takes into account the rounding errors in their
calculation. It should be noted that, as explained in [22, 16], when A is Hermitian,
the relation ((a)=(b)) may be used to provide computable rigorous bounds on the
accuracy of the eigenvalues of Hm as approximations to eigenvalues of A. When A
is non-Hermitian the possibility of non-normality precludes such bounds and one can

only say that the residual norm ‖(Au
(m)
i −λ

(m)
i u

(m)
i )‖2 is small if |βme

T
my

(m)
i | is small.

Note that if v =
∑n

j=1 γjuj , the implicit restarting Arnoldi method with exact
shifts provides a specific selection of expansion coefficients γj for a new starting vector
as a linear combination of the current Ritz vectors for desired eigenvectors. Implicit
restarting provides a way to extract eigen-information of interest from large Krylov
subspaces while avoiding the storage and numerical difficulties. This is done by con-
tinually compressing eigen-information of interest into an k-dimensional subspace of
fixed size. This means that IRAM continues an m-step Arnoldi factorization, having
kept all Ritz vectors of interest.

Time and space complexities of IRAM. We assume thatm≪ n. Therefore,
in the time complexity expression of IRAM we can disregard terms not containing
n. Let nrc be the number of restart cycles excluding the input step in the above
algorithm. The cost of IRAM in terms of matrix-vector products for nrc restart
cycles with (a) criterion is [m+ (it− 1)× (m− k)]. Indeed, in the first restart cycle
the number of matrix-vector products is m and for each of the other restart cycles,
the number of matrix-vector products is p = (m − k). The cost of IRAM will be
increased by it× k, if (b) criterion is used. Noted that the cost of orthogonalization
in a restart cycle is O() = m2n+O(n)?. When A is sparse and p is large, this cost of
orthogonalization may dominant the computation.

The space complexity of IRAM is O(n2 +m× n).

4. Multiple IRAM with nested subspaces (MIRAMns). The purpose of
restarting m-step Arnoldi factorization is to improve the quality of the initial Krylov
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subspace Km,v. This objective can be achieved by improvement of the vector v and/or
the subspace size m. Indeed, the information obtained through the m-step Arnoldi
factorization process is completely determined by the choice of the starting vector v
and the subspace sizem. The current Arnoldi (explicit/implicit) restarting techniques
propose an amelioration of the initial vector v. Regarding the size of the subspace,
it is known that the eigen-information of interest may not appear when m is too
small [22]. Furthermore, if m is too large, the computation cost of orthogonalization
process becomes excessive. The size of the subspace has to be chosen as a compromise
between these factors and is chosen empirically according to the number of desired
eigen-elements, the size of the original problem, etc. Here, we present a way to increase
the quality of the Krylov subspace by improving the size of the subspace. Indeed, to
remedy the essential question of the choice of the size of the subspace, this paper
suggests the proliferation of these subspace sizes and to select the best one. The size
of the subspace is chosen dynamically in every restarting step.

This approach consists to make use of IRAM with a set of Krylov subspaces
which differ only by their size which means a set of nested subspaces. Let v be an
initial vector and M = (m1, · · · ,mℓ) be a set of ℓ subspace-sizes with m1 < · · · <
mℓ. We built ℓ Arnoldi projections on the subspaces Kmi,v (for i = 1, . . . , ℓ) where
Km1,v ⊂ Km2,v ⊂ . . . ⊂ Kmℓ,v. We select then the subspace size mbest corresponding
to the Arnoldi factorization which offers the Ritz estimates for k desired eigenpairs.
The steps 2 to 4 of IRAM algorithm (i.e. algorithm 1) are applied then onto this
Arnoldi factorization: AVmbest

= Vmbest
Hmbest

+ fmbest
eTmbest

. That means only this
factorization among the ℓ ones will be compressed to a factorization of length k
with the eigen-information of interest. This is achieved using QR steps to apply
pbest = mbest − k shifts implicitly. The results after the shift process and equating
the first k columns on both sides are the same as in equation (3.3) with m = mbest.
Beginning with this resulting k-step Arnoldi factorization, we apply then pi = mi− k
additional steps of Arnoldi factorizations to obtain ℓ new projections onto the updated
subspaces (for i = 1, · · · , ℓ). This allows again the projection onto ℓ nested subspaces
with initial guess determined by the compressed k-step Arnoldi factorization issued
from the QR shifted applied to mbest−step Arnoldi factorization.

We notice that this technique updates the restarting vector v by taking the eigen-
information obtained by several subspaces into account. Moreover, for a given restart
cycle MIRAMns has almost the same time complexity as IRAM with the largest sub-
space size. Besides, in MIRAMns as in IRAM, the appearance of spurious eigenvalues
may be avoided through complete reorthogonalization of the Arnoldi vectors using
the DGKS correction [23, 5]. An algorithm of this method to compute k (k ≤ m1)
desired Ritz elements of A is presented by the algorithm 2.

In order to select the best results in the step (2) of the algorithm 2 we suppose
that (Vmi

, Hmi
, fmi

) is “better” than (Vmj
, Hmj

, fmj
) if rmi

k < r
mj

k where rmi

k =
max(ρ1,mi

, . . . , ρk,mi
) is defined by Ritz estimates when (a) stopping criterion is used.

The rmi

k value is defined by the residual norm of Rayleigh quotient corresponding to
(Vmi

, Hmi
, fmi

) when (b) stopping criterion is used.

4.1. Time and space complexities of MIRAMns. As for IRAM, we can
disregard the terms not containing n. Recall that mℓ is the maximum of m1, . . . ,mℓ

subspace sizes. The cost of MIRAMns in term of matrix-vector products with (a)

criterion is [mℓ + (nrc − 1) × (mℓ − k)] where nrc is the number of restart cycles.
This cost will be increased by (ℓ × k × nrc) if (b) criterion is used. Still the cost
of orthogonalization in Arnoldi process is about m2

l n + O(n). As a result, this cost
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Algorithm 2 Multiple IRAM with nested subspaces

Input: (A, Vmi
, Hmi

, fmi
) with AVmi

= Vmi
Hmi

+ fmi
eTmi

the mi-steps Arnoldi fac-
torization (i = 1, 2, . . . , ℓ)
For it = 1, 2, . . . until convergence

1. • Compute σ(Hmi
) and their associated eigenvectors (for i = 1, . . . , ℓ)

• Compute residual norms. If convergence in one of subspaces then stop.
2. Select the best results in these subspaces and the associated best subspace

size mbest. Set m = mbest, Hm = Hmbest
and Vm = Vmbest

, fm = fmbest
.

3. Select set of p = m−k shifts (µ
(m)
1 , . . . , µ

(m)
p ), based upon σ(Hm) or perhaps

other information and set qT ← eTm.
4. For j = 1, . . . , p

• Factor [Qj , Rj ] = qr(Hm − µ
(m)
j I);

• Hm ← QH
j HmQj ;Vm ← VmQj ,

• q ← qHQj

5. Set fk ← vk+1β̂k + fmq(k), Vk ← Vm(1 : n, 1 : k), Hk ← Hm(1 : k, 1 : k)
6. Beginning with the k-step Arnoldi factorization AVk = VkHk + fke

T
k , apply

pi = mi − k additional steps of the Arnoldi process to obtain ℓ new mi-step
Arnoldi factorization AVmi

= Vmi
Hmi

+ fmi
eTmi

(for i = 1, . . . , ℓ).

of orthogonalization may still dominant the computation when A is sparse and p is
large.

Let CI and CM be the time complexities of one restart cycle of IRAM(mℓ) and
MIRAMns(m1, · · · ,mℓ) respectively. If we ignore terms not including n and the cost
of stopping criterion, these complexities can be given by CI = α + O

(
2× n×m2

ℓ

)

and CM = α + O
(
2× n×

[
k × (m1 + . . .+mℓ) +m2

best − k ×mbest

])
where α is

the complexity of the common part of both algorithms. To compare these com-
plexities, we can notice that in the worst case for MIRAMns where mbest = mℓ,
CM −CI = O (2× n× k × (m1 + . . .+mℓ−1)) which is positive and in the best case
where mbest = m1, CM − CI = O

(
2× n×

[
k × (m2 + . . .+mℓ) +m2

1 −m
2
ℓ

])
which

could be positive or negative. That means, according to the k and mi values, one
restart cycle of MIRAMns could be less expensive than the one of IRAM. Conse-
quently, MIRAMns(m1, · · · ,mℓ) could be less expensive than IRAM(mℓ).

The space complexity of MIRAMns is O(n2 + n×mℓ).

4.2. Parallelism analysis of MIRAMns . The same parallel programming
model as that one used in the implicitly restarted Arnoldi method can be used for
the multiple implicitly restarted Arnoldi method with nested subspaces [13]. Then,
the distributed parallel programming model defined and implemented in the library
P ARPACK can be applied to MIRAMns also.

Nevertheless, it should be noted that MIRAM (with nested or non nested sub-
spaces) has a great potential for large coarse grain parallelism among its Arnoldi
factorizations. Indeed, the computation in different subspaces of MIRAM could be
done in parallel. In addition to this coarse grain parallelism among IRAM processes,
one can also overlap communication step with computations. Indeed, the commu-
nication of the eigen-information of interest of each IRAM process to other IRAM
processes can be done asynchronously. The analyse of intra and inter Arnoldi fac-
torizations parallelism in MIRAM and its implementations on large scale distributed
systems can be the subject of a future work.
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4.3. Suggestion to set subspace sizes. As already stated, a too small value
for the size of the subspace would lead to non-appearance of eigen-information of
interest in the subspace. Moreover, the choice of a too large value for this parameter
could lead to an excessive the computation cost for orthogonalization process of m-
step Arnoldi factorization. Therefore, a compromise between a too large value and a
too small value for m is required. Setting this value is very much problem dependent.
Indeed, it is selected empirically depending on the size of the problem, the number
of desired eigenvalues/eigenvectors, etc. As a rule of thumb m > 2 × k is suggested
by [22, 12] as a reasonable choice. It is good to notice that m = 2k is the default in
Matlab. It is also suggested, where possible, to avoid setting k in a way that will split
clusters of eigenvalues. As a result, this is true for the choice of m as well.

Let [m1, · · · ,mℓ] be the discrete interval of subspace sizes in MIRAMns. The
lower bound m1 should be chosen small enough to provide good orthogonality of
basis vectors of Krylov subspace. Applying the rule of thumb described above is a
acceptable choice (i.e.: m1 > 2 × k). The upper bound mℓ should be large enough
so that the Krylov subspace can contain all the required eigenvalues. We choose the
values within this range distributed fairly uniformly.

The technique presented here is a way to make better the size of the subspace in
Arnodi restarted methods. This approach allows improving the quality of the Krylov
subspace Km,v by the refinement of the parameter m at the same time as that of the
parameter v by these restarted methods. Nevertheless, the approach belongs empirical
and could be improved by analyzing the results of intensive experimentation.

5. Numerical experiments. We have implemented and tested Algorithm 1
(IRAM) and Algorithm 2 (MIRAMns) using MATLAB to compute k = 2 eigen-
values of greatest magnitude, except for certain case where convergence is too fast
for both IRAM and MIRAMns. The stopping criterion used in IRAM is rmk =

max(ρm1 , . . . , ρ
m
k ) < tol with ρmi = |βme

T
my

(m)
i |/‖A‖F where tol specifies the accu-

racy requested. The criterion used to select the best subspace size in MIRAMns is
rmbest

k = min(rm1

k , . . . , rmℓ

k ) wherem1 < · · · < mℓ are subspace sizes (withm1 ≥ 2×k).
Every other stopping criterion can replace the requirement to find k eigenvalues. The
tolerance value tol is 10−8 for the Figures 5.1 to 5.4(a), 5.7(a), 5.8; 10−10 for the
Figure 5.6(a); 10−12 for the Figures 5.10 and 10−14 for the Figures 5.4(b), 5.5, 5.7(b)
and 5.9. In all experiments presented here, initial vector is x = zn/‖zn‖2 except for
the Figure 5.8(a) that initial vector is x = sn/‖sn‖2 and the Figures 5.9(a) and 5.10
that initial vector is x = tn/‖tn‖2 where zn = (1, 1, · · · , 1)T , sn = (1, 1, 0.1, · · · , 0.1)T

and tn = (1, 1, 0, · · · , 0)T . The initial vectors of IRAM and MIRAMns are the same.
The efficiency of these algorithms can thus be measured in terms of the number of
restarts cycles (nrc) or the number of matrix-vector products MV P . Our matrices
are presented in the table 5.1.

We have used four matrices af23560.mtx, bfw782a.mtx, west0989.mtx and sher-
rman3.mtx from Matrix Market [2]. A9 1000 is a tridiagonal matrix of order 1000
defined by ai,i = 3 , ai,i+1 = ai,i−1 = 1. All other entries are zero. The tridiagonal
matrix AM 1000 is of dimension n = 1000. The diagonal entries are ai,i = i, the
codiagonal entries are ai,i+1 = −0.1 and ai,i−1 = 0.1. All other entries are zero. This
example has been taken from [14]. Matrices roadNet-PA.mtx, com-Youtube.mtx and
WikiTalk.mtx are transition matrices constructed from three social graphs by using
Markov chain. These graphs could be found in [26].
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Matrix Size of matrix nonzero elements
af23560.mtx 23560 484256
bfw782a.mtx 782 7514
A9 1000.mtx 1000 2998
west0989.mtx 989 3537
AM 1000.mtx 1000 2998
sherman3.mtx 5005 20033
roadNet-PA.mtx 1088092 3083796
com-Youtube.mtx 1134890 2988374
WikiTalk.mtx 2394385 5046614

Table 5.1: General information about the test matrices

5.1. MIRAMns versus IRAM. In all the following figures MIRAMns(m1, · · · ,
mℓ) denotes an MIRAMns with subspace sizes (m1, · · · ,mℓ), IRAM(m) denotes an
IRAM with subspace size m and MV P denotes the number of matrix-vector prod-
ucts. It is important to note that the main objective of our experiments is to
compare the performance of MIRAMns(m1, · · · , mℓ) and IRAM(mℓ). However, some
of experiments have the aim of highlighting the influence of certain parameters on the
convergence of these methods. For some typical cases, we present the best subspaces
choosen by MIRAMns throughout the restarting cycles, so as to clarify the necessity
of using the whole set of subspaces.

The table 5.2 presents the results obtained with IRAM algorithm and the table 5.3
presents the results obtained with MIRAMns and a comparison between IRAM and
MIRAMns in term of number of matrix-vector products (MV P ), execution time in
seconds (Ex.T ime) and number of restarts (nrc). Ex.T ime represents the total
execution time: from the beginning of the algorithm (after inputs) upto obtaining
the wanted eigenpairs. We can see that in almost half of the experiments presented
in table 5.2, IRAM does not converge. The results presented in the table 5.3, show
that MIRAMns overcomes these problems of non-convergence.

We show graphically in Figures 5.1 to 5.10 the norm of residual as a function of
restart cycle number to reach convergence using MIRAMns and IRAM. We see that
there is no convergence for IRAM in figures 5.1 to 5.5, 5.9(a) and 5.10 while MIRAMns
reaches convergence. Moreover, the convergence of MIRAMns in figures 5.7, 5.8, 5.9(b)
and 5.12(a) is better than IRAM. Specifically, Figure 5.1(a) shows that the curves of
convergence of IRAM and MIRAMns undergo oscillations around the residual norm
10−6. However, the peak to peak amplitude of the oscillations corresponding to
IRAM is very large while the one corresponding to MIRAMns are quite small. This
could become related to a kind of smoothing of the curve of convergence of IRAM by
MIRAMns.

Figure 5.1(b) shows the influence of the size of the subspace on the convergence
of IRAM. Indeed, we note that an augementation of this size relative to that of
Figure 5.1(a) smooths the curve of the convergence of IRAM. We can see also that
with the chosen tolerance (tol = 10−8), MIRAMns converges but IRAM does not
converge. However, with a greater tolerance value such as tol = 10−7, IRAM reaches
convergence when MIRAMns does not reach it. But it must be remembered that
in this case, the parameters of IRAM and MIRAMns no longer meet the criteria for
comparison. Indeed, the subspace size of IRAM (22) is larger than ml = 10.
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Figure 5.1(a) shows the effect of increasing the size of the subspace on the conver-
gence of IRAM and MIRAMns and highlights the speed of convergence of MIRAMns
with respect to that of IRAM. The acceleration of convergence of IRAM by MIRAMns
is also shown in Figures 5.4 to 5.10. However, we can see that in Figure 5.4(a), before
tol = 10−5, IRAM could reach convergence faster than MIRAMns. But this is just an
oscillation peak stronger than the others and the residual norms do not decrease con-
tinually while those of MIRAMns decreases steadily during the restart cycles. Figures
5.4 and 5.10(b) show further how the convergence curves of IRAM are “smoothed” by
MIRAMns. Furthermore, by comparing subfigures in Figure 5.2 and Figure 5.5, we
notice that an increase in number of subspaces could improve the speed of convergence
for MIRAMns itself as well.

Figures 5.11 and 5.12(b) show the subspaces selected by MIRAMns throughout
restart cycles. We see that mbest is choosen randomly from interval [m1,ml] and for
some experiments m1 is selected as best subspace size more often that ml (Figure
5.11(b)). This phenomenon of local optimality of small subspaces was also observed
by Embree on GMRES [9].

Figures 5.13 and 5.14 show the execution time of MIRAMns versus IRAM through-
out restart cycles for AM 1000 and west0989 matrices. We notice that the execution
times of each restarting cycle is almost the same for both methods. Nevertheless, the
total execution time of MIRAM is much smaller than IRAM.

Tables 5.2 and 5.3 and Figures 5.1 to 5.10 indicate that our algorithm improves
performances of IRAM. We notice also that this improvement is much more significant
when the matrices have clustered eigenvalues such as af23560 and bfw782 matrices
used in our experiments.

5.2. MIRAMns versus other approches. To check the influence of the strat-
egy proposed by Stathopoulos, Saad and Wu in [24], we compared the tick restarted
versions of IRAM and MIRAMns. The Figures 5.6 shows this comparison with the
number of wanted eigenpairs k = 15 and the thick parameters 2 and 5. That means
in each restart cycle, a buffer of 2 and 5 extra vectors are kept. We can notice that
IRAM could sometimes perform as good as MIRAMns.

Figure 5.15 shows the results of comparison with DIRA, the method proposed by
Dookhitram et al. in [6]. The matrix, initial vector and tolerance value are bfw782a,
x = tn/‖tn‖2 and 10−10 respectively. Figure 5.15(a) shows that MIRAMns reaches
convergence in 8 restarting cycles while DIRA converges in 12 cycles. The execution
times of MIRAMns and DIRA are 0.045 and 0.08 seconds respectively. Figure 5.15(b)
shows the convergence of MIRAMns and DIRA in 19 and 67 restarting cycles. Their
execution times are 0.19 and 0.25 seconds respectively. According to our experiments
MIRAMns gives good results with respect of this approach.
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Matrix m x tol nrc MV P Ex.Time Res.Norm Fig.

af23560.mtx 10 zn 10−8 * 500 *4002 10.27 no conv. 5.1 (a)

af23560.mtx 22 sn 10−8 * 500 *10002 31.44 no conv. 5.1 (b)
5.2

af23560.mtx 25 zn 10−8 6 140 0.60 2.60e-09 5.12 (a)

af23560.mtx 40 zn 10−10 114 2865 24.02 8.24e-11 5.6 (a)

bfw782a.mtx 10 zn 10−8 * 500 *4002 1.00 no conv. 5.4 (a)

bfw782a.mtx 20 zn 10−14 * 500 *9002 2.18 no conv. 5.4 (b)
5.5

bfw782a.mtx 30 zn 10−14 12 195 0.09 1.98e-15 5.6 (b)

A9 1000.mtx 20 zn 10−8 309 5564 1.40 9.57e-09 5.7 (a)

west0989.mtx 10 zn 10−8 53 426 0.11 2.75e-09 5.7 (b)

AM 1000.mtx 20 sn 10−8 22 398 0.12 8.93e-09 5.8 (a)

sherman3.mtx 10 zn 10−8 4 34 0.04 5.40e-13 5.8 (b)

roadNet-PA.mtx 20 tn 10−14 * 500 *9002 1680.24 no conv. 5.9 (a)

com-Youtube.mtx 20 sn 10−14 30 482 113.20 3.03e-15 5.9 (b)

WikiTalk.mtx 20 zn 10−12 * 500 *9002 4487.15 no converge 5.10

Table 5.2: IRAM performances

IRAM MIRAMns
Matrix Fig. ℓ m nrc MV P m1, · · · ,mℓ it MV P Ex.Time

5.1 (a) 3 10 * 500 * 4002 5, 7, 10 272 2178 7.84
5.1 (b) 3 22 * 500 * 10002 5, 7, 10 250 2002 7.88

af23560 5.2 (a) 3 22 * 500 * 10002 16, 19, 22 31 622 2.68
5.2 (b) 5 22 * 500 * 10002 10, 13, 16, 19, 22 8 162 0.82
5.12 (a) 3 25 6 140 5, 10, 25 6 140 0.63
5.6 (a) 3 40 114 2865 20, 30, 40 26 665 5.83
5.4 (a) 3 10 * 500 * 4002 5, 8, 10 70 562 0.13

bfw782a 5.4 (b) 3 20 * 500 * 9002 5, 10, 20 104 1874 0.32
5.5 (a) 3 20 * 500 * 9002 8, 18, 20 92 1658 0.38
5.5 (b) 5 20 * 500 * 9002 8, 11, 14, 17, 20 32 578 0.16
5.6 (b) 3 30 12 195 20, 25, 30 14 225 0.13

A9 1000 5.7 (a) 3 20 309 5564 10, 15, 20 94 1694 0.36
west0989 5.7 (b) 3 30 53 426 5, 8, 10 32 258 0.07
AM 1000 5.8 (a) 3 20 22 398 13, 17, 20 17 308 0.09
sherman3 5.8 (b) 3 10 4 34 5, 8 , 10 2 18 0.02

roadNet-PA 5.9 (a) 6 20 * 500 *9002 5, 8, 11, 14, 17, 20 157 2828 599.7
com-Youtube 5.9 (b) 6 20 30 482 5, 8, 11, 14, 17, 20 20 332 108.08

(k = 4)
WikiTalk 5.10 (a) 6 20 * 500 *9002 4, 7, 10, 13, 16, 20 312 5618 3438.7
(k = 2)
WikiTalk 5.10 (b) 6 20 * 500 *9002 5, 8, 11, 14, 17, 20 15 272 181.5
(k = 4)

Table 5.3: Comparison of IRAM(m) and MIRAMns(m1, · · · ,mℓ)
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(b) m = 22

Fig. 5.1: MIRAMns(5, 7, 10) versus IRAM(m) with af23560 matrix
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Fig. 5.2: MIRAMns(m1, . . . ,mℓ) versus IRAM(22) with af23560 matrix
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Fig. 5.3: MIRAMns(m1, . . . ,mℓ) versus IRAM(m) with bfw782a matrix
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Fig. 5.4: MIRAMns(m1, . . . ,mℓ) versus IRAM(20) with bfw782a matrix
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0 10 20 30 40 50 60
10

−9

10
−8

10
−7

10
−6

Implicitly Restarted Arnoldi Method

restart cycles

re
s
id

u
a
l 
n
o
rm

/n
o
rm

f

 

 

IRAM−MAX

MIRAMns

(b) MIRAMns(5, 8, 10), m = 10

Fig. 5.5: MIRAMns(m1, . . . ,mℓ) versus IRAM(m) with A9 1000 in (a), west0989 in (b)

0 5 10 15 20 25
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Implicitly Restarted Arnoldi Method

restart cycles

re
s
id

u
a
l 
n
o
rm

/n
o
rm

f

 

 

IRAM−MAX

MIRAMns

(a) MIRAMns(13, 17, 20), m = 20

1 1.5 2 2.5 3 3.5 4
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Implicitly Restarted Arnoldi Method

restart cycles

re
s
id

u
a
l 
n
o
rm

/n
o
rm

f

 

 

IRAM−MAX

MIRAMns

(b) MIRAMns(5, 8, 10) , m = 10

Fig. 5.6: MIRAMns(m1, . . . ,mℓ) versus IRAM(m) with AM 1000 in (a), sherman3 in (b)
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Fig. 5.7: MIRAMns(5, 8, 11, 14, 17, 20) versus IRAM(20)
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k = 2, tol = 10−12
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Fig. 5.8: MIRAMns(m1, . . . ,mℓ) versus IRAM(20) with WikiTalk matrix
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Fig. 5.11: MIRAMns(13, 17, 20) versus IRAM(20) for AM 1000 matrix, tol=10−8
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Fig. 5.12: MIRAMns(5,8,10) versus IRAM(10) for west0989 matrix
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Fig. 5.13: MIRAMns(m1, . . . ,mℓ) versus IRAM(m) with af23560 matrix, k = 10 with a

buffer of q extra vectors
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Fig. 5.14: MIRAMns(m1, . . . ,mℓ) versus DIRA(m) with k eigenvaluesXXX
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6. Conclusion. Due to the empirical choice of subspace size, the implicitly
restarted Arnoldi method may not be efficient for computing a few selected eigen-
pairs of large sparse non-Hermitian matrices. In order to improve this choice, we have
proposed to make use of this method with several Krylov subspaces. We have seen
that the multiple implicitly restarted Arnoldi method with nested subspaces acceler-
ates the convergence of IRAM with the same number of matrix-vector products in
each restart cycle. Our numerical experiments have shown that MIRAMns improves
the quality of the Krylov subspaces of IRAM and has consequently better conver-
gence properties. Moreover, the strategy presented in the paper can be applied to
many other restarted projection methods. In a general context, this is equivalent
to coupling some iterative methods in order to accelerate the convergence of one of
them as is the case of hybrid Arnoldi-Chebyshev method described in [4, 18]. We
mentioned that for MIRAMns we can use the same parallel programming model as
the one used in P ARPACK [13] which implements the parallel implicitly restarted
Arnoldi method. An implementation of MIRAMns within ARPACK is given in the
following URL: (https://forge.prism.uvsq.fr). This is because we define a Krylov sub-
space and make use of the eigen-information of some subspaces nested in it. Another
approach consists to make use of IRAM with several Krylov subspaces which differ
by both their initial vector and subspace size. This approach, multiple IRAM, has
the advantage to update (implicitly) the initial vector of an IRAM by taking into
account the eigen-information obtained by several different (non nested) subspaces.
The increase cost engendered by these different subspaces could be compensated by
the implementation of the method in a large-scale distributed environment as for the
multiple explicitly Arnoldi method in [8].
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