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Abstract

To a large extent, the stiffness of the bidomain and monodomain models depends
on the choice of the ionic model, which varies in terms of complexity and realism.
In this paper, we compare and analyze a variety of time-stepping methods: explicit
or semi-implicit, operator splitting, exponential, and deferred correction methods.
We compare these methods for solving the bidomain model coupled with three ionic
models of varying complexity and stiffness: the phenomenological Mitchell-Schaeffer
model, the more realistic Beeler-Reuter model, and the stiff and very complex ten
Tuscher-Noble-Noble-Panfilov (TNNP) model. For each method, we derive abso-
lute stability criteria of the spatially discretized monodomain model and verify that
the theoretical critical time-steps obtained closely match the ones in numerical ex-
periments. We also verify that the numerical methods achieve an optimal order
of convergence on the model variables and derived quantities (such as speed of the
wave, depolarization time), and this in spite of the local non-differentiability of some
of the ionic models. The efficiency of the different methods is also considered by
comparing computational times for similar accuracy. Conclusions are drawn on the
methods to be used to solve the monodomain model based on the model stiffness
and complexity, measured respectively by the eigenvalues of the model’s Jacobian
and the number of variables, and based on strict stability and accuracy criteria.
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Introduction

The modelling of the electrical activity of the heart offers an interesting perspective on the
understanding of cardiac pathologies and its treatments. This subject has great potential
in biomedical sciences, as experiments on living hearts require considerable resources
and provide only a partial picture of the electrical activity of the heart. For instance,
realistically simulating the behaviour of the heart reduces the necessity for these kinds
of experiments. Considering that heart diseases are a leading cause of death in Western
countries [4], modelling in cardiac electrophysiology has the potential to significantly
impact society. Also, this area has achieved great strides in the past few years, because
of improved models, calculation methods and computer power [5, 3, 30].

The mono- and bi- domain models allow for an adequate modelling of the electrical
activity in the heart tissue [12, 26]. These models form a complex system of partial differ-
ential equations (PDE) that are coupled with a system of ordinary differential equations
(ODE) describing the ionic activity in cardiac cells. Solving these models numerically
requires large computational time and computations are limited to few heartbeats on
ventricles and atria.

The ODE systems describing ionic activity vary in terms of complexity depending on
the physiological processes accounted for at the cell level. These ionic models, coupled
with the mono- or bi- domain model, require discretization in space and time. This
article focuses on various types of time-stepping methods: explicit, semi-implicit, operator
splitting, exponential, and deferred correction methods. The monodomain model is a
reaction-diffusion equation and solving the diffusion part of the model explicitly results
in severe stability constraints on the time-step. Therefore, the use of semi-implicit or
implicit methods is viewed as crucial by most authors [6, 28, 13]. To achieve this, operator
splitting methods have been considered by some authors [26, 21, 29, 10]. Alternatively,
an exponential method called the Rush-Larsen (RL) method was developed specifically to
solve the ODEs resulting from the ionic activity of excitable cells, providing very stable
numerical solutions [20]. This method is very popular and several other variations have
been considered, including high-order RL methods [17, 15, 25].

The different time-stepping methods have been thoroughly studied for non-spatial ionic
models [22, 23], i.e. only at the cell level, and relatively little at the level of the heart tissue
for the mono- or bi-domain models. To date, no research in cardiac electrophysiology has
compared a large number of time-stepping methods thoroughly for spatial models. In
addition, first-order numerical methods such as Euler’s method are still widely used in
this field of research due to their easy implementation [18]. We seek to show that these
first-order methods are very inefficient compared to high-order methods. Furthermore,
we will consider a general ionic model for our theoretical stability analysis, allowing other
researchers to use these results to determine critical time-steps for stability for the model
of their choice. Earlier studies are specific to a given ionic model, which is limiting in a
research area where models are constantly evolving. Thus, this research will provide a
summary of the various methods that had not yet been compared, both for stability and
accuracy.

The goal of this article is to find optimal time-stepping methods for ionic models of
increasing stiffness, where optimality is judged based on the cost to reach a given accuracy.
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In Section 1, we will start by choosing a number of ionic models that cover the range of
complexity, stiffness and realism for these types of models. In Section 2, we will list a
number of viable numerical methods for the monodomain model. The different methods
will be studied with theoretical analysis and numerical tests in the later section. In
Section 3, different stability analysis will be conducted for each numerical method. We will
establish a technique to study the stability of the numerical methods for the monodomain
model in an ODE setting. To ease the comparison from one model to another, a general
ionic model will be used. The theoretical time-steps will then be compared with the
numerically observed critical time-step of the different methods. Then, in Section 4, a
convergence test will be performed to check whether the methods of high order exhibit
the correct rate of convergence when used to solve the more complex ionic models. The
accuracy of the methods studied will then be compared with respect to their accuracy,
relatively to the size of the time-step and the computational time.

1 Models in cardiac electrophysiology

1.1 Modelling the ionic activity in cells

There exist many different models used to describe the ionic activity in cardiac cells,
varying in terms of complexity and stiffness. Here, we choose to study three models that
cover the whole spectrum.

The Mitchell-Schaeffer (MS) model is a phenomenological two-variable model proposed
in [16], which can be easily understood analytically and is very efficient for numerical
simulations. In spite of its very low complexity, this model still accurately represents the
main characteristics of the cardiac action potential.

One of the physiological ionic models used in this paper is the Beeler-Reuter (BR)
model [2]. This model has six gating variables and one concentration, besides the trans-
membrane potential. The source term in the potential equation includes four different
ionic currents.

A more complex ionic model used in this article is the ten Tuscher-Noble-Noble-
Panfilov (TNNP) model from [27]. There exist different versions of this model for different
types of cells, and here we consider the epicardial cells. This version is the stiffest of the
original TNNP models. This model has seventeen variables, including twelve gating vari-
ables and four concentrations. It also has 15 different ionic currents.

Physiological models can be written in the following form, where u is the transmem-
brane potential, v is the vector of gating variables, X is the vector of ionic concentrations,
and t is the time:

du

dt
= I(u,v,X, t), (1)

dv

dt
= f(u,v), (2)

dX

dt
= g(u,v,X). (3)
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The total current I acts as a source/sink term and is defined as

I(u,v,X, t) =
1

Cm
(Iapp(t)− Iion(u,v,X)), (4)

where Cm is the membrane capacity, Iapp is the applied stimulation current, and Iion is
the sum of all ionic currents across the cell membrane. In general, the r.h.s. fi’s in (2)
mimic Hodgkin-Huxley type equations [11]:

fi(u, vi) =
vi,∞(u)− vi

τvi(u)
, (5)

where vi,∞ is a steady state value for vi and τvi is a time constant, both specific to the
ionic model and the gating variable. The function g in (3) is specific to the ionic model.

1.2 Modelling the Heart Tissue

After modelling the electrical activity at the cell level, we now extend our models to
the tissue level. For our test cases, we consider the monodomain model with constant
extra- and intra-cellular conductivities, coupled with a general ionic cell model. For
the monodomain model, we assume equal anisotropy ratio of the conductivities. The
monodomain model reads as:

∂u

∂t
= I(u,v,X, t, x) + div(σ∇u), (6)

∂v

∂t
= f(u,v), (7)

∂X

∂t
= g(u,v,X), (8)

where σ = λ
1+λ

σi/χCm, λ is the equal anisotropy ratio, σi is the intra-cellular conductivity
tensor and χ is the cellular membrane area per unit volume of cardiac tissue. The applied
stimulation current Iapp in (4) can now vary through space, denoted by x ∈ Ω, the spatial
domain. We denote by f and g the vectors of fi’s and gi’s, respectively. In some cases, it
is simpler to group in v the vector of vi’s and Xi’s, and in f the vector of fi’s and gi’s.

We impose homogeneous Neumann boundary conditions, i.e. ∇u · n = 0 on ∂Ω. This
amounts to having no current leaking from the heart to the surrounding tissues. The
initial condition is taken as the resting state of the chosen ionic model.

2 Numerical methods

We consider a variety of explicit and semi-implicit methods of first to third-order, us-
ing a constant time-step ∆t, for the time discretization. When solving reaction-diffusion
equations as the monodomain model, some authors suggest using semi-implicit methods
with implicit diffusion and explicit reaction terms [6, 17, 26]. Implicit methods are usu-
ally too expensive for many ionic models and explicit methods have additional stability
restrictions.





Analysis of time-stepping methods for the monodomain model

Let us introduce the notation for the fully discretized version of the problem (6)-(8).
Given a spatial mesh with nodes xi, i = 0, 1, . . . , N and a temporal mesh with equally
spaced temporal nodes tn = n∆t, n ≥ 0, we denote by

Un = [Un
0 , . . . , U

n
N ]> ' [u(x0, tn), . . . , u(xN , tn)]>, (9)

V n = [V n
1,0, . . . , V

n
p,0, . . . , V

n
p,N ]> ' [v1(x0, tn), . . . , vp(x0, tn), . . . , vp(xN , tn)]>, (10)

Xn = [Xn
1,0, . . . , X

n
q,0, . . . , X

n
q,N ]> ' [X1(x0, tn), . . . , Xq(x0, tn), . . . , Xq(xN , tn)]>, (11)

the approximate values for u, v and X, respectively.

We write the equations for the finite difference and finite element methods. The term
AUn is the discrete version of div(σ∇u). For the finite difference method, A is a discretized
Laplacian, and for the finite element method, A = M−1S, where M is the mass matrix
and S is the stiffness matrix.

For most methods, the gating variables and concentrations are treated the same way.
Therefore, if the following schemes do not have X and G, it is implied they are included
in V and F , respectively.

2.1 First-order methods

(i) Forward Euler (FE):

Un+1 − Un

∆t
= I(Un, V n, tn, x) + AUn,

V n+1 − V n

∆t
= F (Un, V n).

(12)

(ii) Forward-Backward Euler (FBE):

Un+1 − Un

∆t
= I(Un, V n, tn, x) + AUn+1,

V n+1 − V n

∆t
= F (Un, V n).

(13)

(iii) Rush-Larsen with Forward-Backward Euler (RL-FBE) [20, 17]:

Un+1 − Un

∆t
= I(Un, V n, Xn, tn, x) + AUn+1,

V n+1
i − V n

i

∆t
= Φ(ani ∆t)(ani V

n
i + bni ), i = 1, . . . , p,

Xn+1 −Xn

∆t
= G(Un, V n, Xn),

(14)

where Φ, ani and bni are given below. This method corresponds to the case c−1 = 0,
c0 = 1, c1 = 0 in the general RL methods described at the end of this section.
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2.2 Second-order methods

(i) Second-order semi-implicit backward differentiation (SBDF2) [1, 6]:

3
2
Un+1 − 2Un + 1

2
Un−1

∆t
= 2I(Un, V n, tn, x)− I(Un−1, V n−1, tn−1, x) + AUn+1,

3
2
V n+1 − 2V n + 1

2
V n−1

∆t
= 2F (Un, V n)− F (Un−1, V n−1).

(15)

(ii) Strang Splitting with Crank-Nicolson and Runge-Kutta 2 (CN-RK2) [24, 26]:
For this method, we do half a time-step of RK2 solely on the reaction part of the
monodomain equations, followed by a step of CN on the diffusion part and another

half-step of RK2 on the reaction part. Here we denote Y n =

[
Un

V n

]
, Y ∗ =

[
U∗

V ∗

]
and

Y ∗∗ =

[
U∗∗

V ∗∗

]
.

Step 1:

Y ∗ − Y n

∆t/2
=

I
(
Y n + ∆t

4

[
I(Y n, tn, x)
F (Y n)

]
, tn + ∆t

4
, x

)
F

(
Y n + ∆t

4

[
I(Y n, tn, x)
F (Y n)

])
 . (16)

Step 2:
U∗∗ − U∗

∆t
=

1

2
A(U∗∗ + U∗). (17)

Step 3:

Y n+1 − Y ∗∗

∆t/2
=

I
(
Y ∗∗ + ∆t

4

[
I(Y ∗∗, tn + ∆t/2, x)

F (Y ∗∗)

]
, tn + 3

4
∆t, x

)
F

(
Y ∗∗ + ∆t

4

[
I(Y ∗∗, tn + ∆t/2, x)

F (Y ∗∗)

])
 . (18)

(iii) Strang Splitting with Crank-Nicolson and Runge-Kutta 4 (CN-RK4):
This scheme is written as the CN-RK2 scheme, but using instead the fourth-order
Runge-Kutta method (see [19] for more details).

(iv) Second-order Rush-Larsen with Crank-Nicolson Adam-Bashforth (RL-CNAB) [20,
17]:

Un+1 − Un

∆t
=

3

2
I(Un, V n, Xn, tn, x)− 1

2
I(Un−1, V n−1, Xn−1, tn−1, x) +

1

2
A(Un+1 + Un),

V n+1
i − V n

i

∆t
= Φ(a

n+ 1
2

i ∆t)(a
n+ 1

2
i V n

i + b
n+ 1

2
i ), i = 1, . . . , p,

Xn+1 −Xn

∆t
=

3

2
G(Un, V n, Xn)− 1

2
G(Un−1, V n−1, Xn−1),

(19)
where Φ, ani and bni are given below. This method corresponds to the case c−1 = 0,
c0 = 3

2
, c1 = −1

2
in the general RL methods described at the end of this section.
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2.3 Third-order methods

(i) Third-Order Deferred Correction (DC3) [14, 7]:

Here we denote Y n =

[
Un

V n

]
and Y n

i =

[
Un
i

V n
i

]
. The initial values for the substeps

are Y 0
0 = Y0, Y 0

1 = 0, and Y 0
2 = 0. This method proceeds with three substeps:

for n ≥ 0


mln+1

0 = I(Y n
0 , tn, x), nln+1

0 = F (Y n
0 ),

Un+1
0 − Un

0

∆t
= mln+1

0 + AUn+1
0 ,

V n+1
0 − V n

0

∆t
= nln+1

0 ,

dY n+1
0 = (Y n+1

0 − Y n
0 )/∆t

(20)

for n ≥ 1



d2Un+1
0 = (dUn+1

0 − dUn
0 )/∆t, mln1 = I(Y n

0 + ∆tY n−1
1 , tn, x),

Un
1 − Un−1

1

∆t
= AUn

1 −
1

2
d2Un+1

0 +
mln1 −mln0

∆t
,

d2V n+1
0 = (dV n+1

0 − dV n
0 )/∆t, nln1 = F (Y n

0 + ∆tY n−1
1 ),

V n
1 − V n−1

1

∆t
= −1

2
d2V n+1

0 +
nln1 − nln0

∆t
,

dY n
1 = (Y n

1 − Y n−1
0 )/∆t,

(21)

for n ≥ 2



d2Un
1 = (dUn

1 − dUn−1
1 )/∆t d3Un+1

0 = (d2Un+1
0 − d2Un

0 )/∆t,

mln−1
2 = I(Y n−1

0 + ∆tY n−1
1 + ∆t2Y n−2

2 , tn, x),

Un−1
2 − Un−2

1

∆t
= AUn−1

2 − 1

2
d2Un

1 +
1

6
d3Un

0 +
mln−1

2 −mln−1
1

∆t2
,

d2V n
1 = (dV n

1 − dV n−1
1 )/∆t d3V n+1

0 = (d2V n+1
0 − d2V n

0 )/∆t,

nln−1
2 = F (Y n−1

0 + ∆tY n−1
1 + ∆t2Y n−2

2 ),

V n−1
2 − V n−2

1

∆t
= −1

2
d2V n

1 +
1

6
d3V n

0 +
nln−1

2 − nln−1
1

∆t2
,

Y n−1 = Y n−1
0 + ∆tY n−1

1 + ∆t2Y n−1
2 .

(22)
It is possible to obtain a second order method by solving the first two substeps
and defining Y n−1 = Y n−1

0 + ∆tY n−1
1 . We only provide numerical results for the

third-order DC method.

2.4 The Rush-Larsen method

A very popular method for solving physiological models is the first-order scheme proposed
by Rush and Larsen [20]. Outside of cardiac electrophysiology, this method is known as
the explicit exponential Euler method. The Rush-Larsen (RL) method solves problems
of the form dy

dt
= a(t)y + b(t).
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Perego and Veneziani [17] introduced a way to increase the order of the scheme, by
taking a and b at time tn+ 1

2
,{

yn+1 = yn + ∆tΦ(an+ 1
2 ∆t)(an+ 1

2yn + bn+ 1
2 ), n = 0, . . . , Nt,

y(0) = y0,
(23)

where

Φ(x) =


ex − 1

x
, x 6= 0,

1, x = 0,

an+ 1
2 and bn+ 1

2 are approximations of a(tn+ 1
2
) and b(tn+ 1

2
) taken as

an+ 1
2 = c−1a

n+1 + c0a
n + c1a

n−1, bn+ 1
2 = c−1b

n+1 + c0b
n + c1b

n−1, n = 1, . . . , Nt,

a
1
2 = c−1a

1 + (c0 + c1)a0, b
1
2 = c−1b

1 + (c0 + c1)b0,
(24)

where c−1, c0 and c1 are coefficients to be determined.

For the transmembrane potential u and concentrations X, we take a = 0, which simply
results in the Euler and Adams-Bashforth methods for the first and second order cases,
respectively. In each case we also solve the diffusion implicitly, hence resulting in the FBE
and CNAB methods for the transmembrane potential and concentrations.

For the gating variables, we write the function f in (5) as fi(u,v,X) = ai(u)vi + bi(u).
For the BR and TNNP models, we have:

ai(u) =
−1

τvi(u)
, and bi(u) =

vi,∞(u)

τvi(u)
. (25)

3 Stability analysis

We now find stability conditions for the time-stepping methods introduced in the previous
section.

3.1 Absolute Stability

The stability analysis will be done using the concept of absolute stability for ODE solvers.
We linearize our PDE and then consider the linear ODE system resulting from the lin-
earized problem semi-discretized in space. Since we will carry von Neumann stability
analysis, we will consider 1D reaction-diffusion equations on the whole real line discretized
in space by centred finite difference schemes. We find the stability region of each method
for the linearized problem. This analysis will confirm that the stability conditions of semi-
implicit methods applied to the monodomain model coincide with their explicit equivalent
applied solely to the ionic models. The largest possible time-step ∆t for which λ∆t is in
the stability region for all λ is called the critical time-step, where λ are the eigenvalues of
the linearized problem.
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Considering (6)-(8), but denoting by v the vector of vi’s and Xi’s, and f the vector of
fi’s and gi’s, we linearize around some state (ũ, ṽ). This state is constant in space and
time, and will be determined later. We obtain

∂u

∂t
=
∂I

∂u
(ũ, ṽ)u+

∂I

∂v
(ũ, ṽ)v + div(σ∇u), (26)

∂v

∂t
=
∂f

∂u
(ũ, ṽ)u+

∂f

∂v
(ũ, ṽ)v. (27)

For the sake of the stability analysis, we consider uniformly spaced grid points xj = jh
for each j ∈ Z, h > 0, the space step. We denote

U = [. . . , U−1, U0, U1, . . .]
> ' [. . . , u(x−1, t), u(x0, t), u(x1, t), . . .]

>, (28)

V = [. . . , V−1, V0, V1, . . .]
> ' [. . . ,v(x−1, t),v(x0, t),v(x1, t), . . .]

>. (29)

Discretizing (26) and (27) we obtain

d

dt

[
Uj
Vj

]
=

∂I∂u(ũ, ṽ)
∂I

∂v
(ũ, ṽ)

∂f

∂u
(ũ, ṽ)

∂f

∂v
(ũ, ṽ)

[Uj
Vj

]
+ σ

Uj+1 − 2Uj + Uj−1

h2

0

 , (30)

for each j ∈ Z. As is usually done for von Neumann stability analysis, we set Uj(t) =

Uω(t)eiωjh and Vj(t) = Vω(t)eiωjh, for all ω ∈ [0,
2π

h
]. Then

d

dt

[
Uω
Vω

]
= (J + Aω)

[
Uω
Vω

]
, (31)

where J is the Jacobian matrix evaluated at (ũ, ṽ) as in (30) and Aω is a diffusion matrix
given by

Aω =
2σ

h2

[
cos(ωh)− 1 0

0 0

]
. (32)

Equation (31) is discretized with the time-stepping methods of Section 2. A stability
function R = R(∆t, h, ω)) is then defined for each method. The condition for stability
is that the spectral radius ρ(R) ≤ 1, assuming that all the eigenmodes of J + Aω satisfy
Re(λ) < 0.

3.1.1 Forward Euler

We now discretize in time and apply the FE scheme to (31). We obtain[
Un+1
ω

V n+1
ω

]
= (Id + ∆t(J + Aω))

[
Un
ω

V n
ω

]
, (33)

where Id is the identity matrix.
The stability condition is |1 + ∆tλ| ≤ 1 for all λ eigenvalues of (J +Aω). Computing

numerically the spectrum of (J+Aω), we noticed that this condition is the most stringent
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for the most negative eigenvalue λmin of J + Aω. The condition for stability is then
∆t ≤ −2/λmin. Because this eigenvalue depends on ω, we will consider the wave number
ω that makes this inequality most restrictive (in the sense that it makes −2/λmin the
smallest), i.e. ω = π/h, a fact that can be verified numerically. Therefore our critical
time-step for the stability of the FE method is ∆t∗theo = −2/λmin, where λmin is the
minimum eigenvalue of ∂I∂u(ũ, ṽ)− 4σ

h2

∂I

∂v
(ũ, ṽ)

∂f

∂u
(ũ, ṽ)

∂f

∂v
(ũ, ṽ)

 . (34)

To determine λmin, we calculate numerically the solution of the problem on a fine grid.
We then evaluate the matrix J + Aω at each node of our domain, and for each of these
matrices, we calculate their eigenvalues. We choose the most negative eigenvalue as our
λmin. The constant state (ũ, ṽ) is then chosen as the numerical solution evaluated at
this node. The most negative eigenvalue typically appears during the resting state of the
solution, but for some models, the stimulation current can sometimes make this eigenvalue
more negative. The theoretical critical time-steps are shown in Table 2 for the BR model,
Table 5 for the MS model and in Table 8 for the TNNP model. For small values of h, the
critical time-step is proportional to h2.

3.1.2 Forward-backward Euler

We define the stability function R(∆t, h, ω) = (I − ∆tAω)−1(Id + ∆tJ). One can easily

see that the matrix (Id − ∆tAω)−1 is diagonal with value

(
1−∆tσ

2 cosωh− 2

h2

)−1

in

the first position and 1 on the rest of the diagonal, implying that the spectral radius
ρ((Id−∆tAω)−1) = 1. This yields ρ(R(∆t, h, ω)) ≤ ρ(Id+∆tJ), which inequality is sharp
when ω = 0. This removes the dependence on h in the stability condition.

The condition for stability then becomes |1 + ∆tλ| ≤ 1 for all λ eigenvalues of J .
Therefore, similarly to the FE method, our critical time-step for FBE is ∆t∗theo = −2/λmin,
where λmin is the most negative eigenvalue of J . As explained for the previous method,
we calculate J at each node of a fine grid and we choose its most negative eigenvalue as
our λmin. The constant state (ũ, ṽ) is then chosen as the numerical solution evaluated at
that node. The critical time-steps for the BR, MS and TNNP models are shown in Tables
2, 5 and 7, respectively.

On coarse meshes, FE and FBE are expected to be stable for the same time-step ∆t,
but as the grid is refined, FE’s stability deteriorates while FBE’s remains unchanged. In
fact, the diffusion term taken implicitly in the FBE method makes the critical time-step
independent of the grid size h.

3.1.3 Strang splitting

We use the technique presented above to look at the stability of the Strang splitting
scheme. Let us start with the CN-RK2 method.
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Step 1: [
U∗ω
V∗ω

]
=

(
Id +

∆t

2
J +

(∆t/2)2

2
J2

)[
Un
ω

Vn
ω

]
. (35)

Step 2: [
U∗∗ω
V∗∗ω

]
=

(
Id −

1

2
∆tAω

)−1(
1

2
∆tAω + Id

)[
U∗ω
V∗ω

]
. (36)

Step 3: [
Un+1
ω

Vn+1
ω

]
=

(
Id +

∆t

2
J +

(∆t/2)2

2
J2

)[
U∗∗ω
V∗∗ω

]
. (37)

Combining (35), (36) and (37) we obtain[
Un+1
ω

Vn+1
ω

]
=

(
Id +

∆t

2
J +

(∆t/2)2

2
J2

)(
Id −

1

2
∆tAω

)−1(
1

2
∆tAω + Id

)
(
Id +

∆t

2
J +

(∆t/2)2

2
J2

)[
Un
ω

Vn
ω

]
. (38)

For stability we need ρ(R(∆t, h, ω)) ≤ 1. Noticing that

ρ

((
Id −

1

2
∆tAω

)−1(
1

2
∆tAω + Id

))
≤ 1, (39)

the condition for stability becomes

ρ

(
Id +

∆t

2
J +

(∆t/2)2

2
J2

)2

≤ 1, (40)

independently of h.
If J is diagonalizable, (40) is equivalent to∣∣∣∣1 + ∆tλi/2 +

(∆tλi/2)2

2

∣∣∣∣ ≤ 1, (41)

for all eigenvalue λi of J . As seen with the previous methods, and with the contour of
the stability region shown in Figure 1a, the most restrictive eigenvalue will be the most
negative. Using this most negative eigenvalue we obtain the critical time-steps shown in
Tables 2, 5 and 7.

With a similar derivation, a condition for stability of the CN-RK4 method is obtained:∣∣∣∣1 + ∆tλi/2 +
(∆tλi/2)2

2
+

(∆tλi/2)3

6
+

(∆tλi/2)4

24

∣∣∣∣ ≤ 1, (42)

for all eigenvalue λi of J . Again, we solve for the stability contour and get the critical
time-steps ∆t∗theo in Tables 2, 5 and 7. The stability region of CN-RK4 is shown in Figure
1a and contains the stability region of CN-RK2.
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(a) CN-RK4 (dotted), CN-RK2 (solid)
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Figure 1: Stability Regions

3.1.4 Second-order semi-implicit backward differentiation

Following the approach used previously, we write the SBDF2 scheme as:

1

∆t

(
3

2

[
Un+1
ω

V n+1
ω

]
− 2

[
Un
ω

V n
ω

]
+

1

2

[
Un−1
ω

V n−1
ω

])
= J

(
2

[
Un
ω

V n
ω

]
−
[
Un−1
ω

V n−1
ω

])
+ Aω

[
Un+1
ω

V n+1
ω

]
. (43)

For simplicity, we denote Y j =

[
U j
ω

V j
ω

]
, for all j ∈ Z. Equation (43) becomes

(
3

2
Id − Aω)Y n+1 − (2Id + 2∆tJ)Y n + (

1

2
Id + ∆tJ)Y n−1 = 0. (44)

As done for the previous semi-implicit methods, we take ω = 0, which leads to a stability
condition independent of h. See the remark below for a proof that this value is the most
restrictive for the stability of this method. Equation (44) becomes

3

2
Y n+1 − (2Id + 2∆tJ)Y n + (

1

2
Id + ∆tJ)Y n−1 = 0. (45)

Equation (45) is solved using the Lagrange’s method found in [8]. We set Y j = ζjW ,
where W is an eigenvector of J with eigenvalue λ. We divide by ζn−1 and obtain the
following equation

3

2
ζ2W − (2Id + 2∆tJ)ζW + (

1

2
Id + ∆tJ)W = 0, (46)

which implies
3

2
ζ2 − (2 + 2∆tλ)ζ + (

1

2
+ ∆tλ) = 0. (47)

Equation (45) has stable solutions iff for any eigenvalue λ, all simple roots ζ(λ∆t) of (47)
satisfy |ζ(λ∆t)| ≤ 1, and additional multiple roots must satisfy |ζ(λ∆t)| < 1 [9]. The
stability region of the method is defined as

S =

{
µ ∈ C ;

all simple roots ζ(µ) of (47) satisfy |ζ(µ)| ≤ 1,

multiple roots satisfy |ζ(µ)| < 1

}
. (48)
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Solving for µ = ∆tλ in (47), we get that our method is stable for

µ =
−3
2
ζ2 + 2ζ − 1

2

1− 2ζ
, with |ζ| ≤ 1. (49)

We take ζ = eiθ for 0 ≤ θ ≤ 2π to find the contour of the stability region:

µ =
−3
2
e2iθ + 2eiθ − 1

2

1− 2eiθ
, θ ∈ [0, 2π]. (50)

The contour of the stability region is shown in Figure 1b. As with the previous methods,
the most restrictive eigenvalue will be the most negative. This occurs for a real eigenvalue,

hence −4/3 ≤ λ∆t ≤ 0 for stability. The critical time-step is then ∆t∗theo =
−4

3λmin

and its

value is shown in Table 2 for the BR model, in Table 5 for the MS model and in Table 7
for the TNNP model.

Remark 1 (Justification for the choice of ω). We rewrite equation (44) as a one-step
recursive equation:[

Y n+1

Y n

]
=

[
(3

2
Id − Aω)−1(2Id + 2∆tJ) (3

2
Id − Aω)−1(−1

2
Id −∆tJ)

Id 0

] [
Y n

Y n−1

]
. (51)

Let

R(∆t, h, ω) =

[
(3

2
Id − Aω)−1(2Id + 2∆tJ) (3

2
Id − Aω)−1(−1

2
Id −∆tJ)

Id 0

]
, (52)

be the stability function for the SBDF2 method. We can factor out from R the matrix[
(Id − 2

3
Aω)−1 0

0 Id

]
, (53)

which has a spectral radius of 1. This leads to the stability condition ρ(R̃) ≤ 1, where

R̃(∆t, h, ω) =

[
2
3
(2Id + 2∆tJ) 2

3
(−1

2
Id −∆tJ)

Id 0

]
. (54)

The matrix R̃ appears in the one-step formulation of the difference equation (45).

3.1.5 Rush-Larsen

We now look at the stability of the RL-FBE and the RL-CNAB schemes. These schemes
differ from the methods previously studied in that the differential equations for the gating
variables are solved using a different method than for the transmembrane potential and
the concentrations. The major advantage of using Rush-Larsen methods is to be able to
use large time-steps compared to more classical methods. In fact, it can be observed that
in the case of most problems in electrophysiology, the region of stability of RL methods
of the form (23) covers the entire negative half plane [17], i.e. A-stability. The stability of
the scheme then depends on the methods used to solve the differential equations for the
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transmembrane potential and the concentrations. The following discussion on the stability
of the Rush-Larsen methods uses heuristic arguments that provide critical time-steps
relatively close to those in numerical tests, but this derivation cannot yet be formalized.

We use a different scheme for the differential equations of the gating variables and the
concentrations. Therefore, we look at the problem in the form (6)-(8). As done previously,
we linearize around some constant state (ũ, ṽ, X̃) = Ỹ and take the Fourier transform.
We apply the scheme (14) to the linearized problem. The scheme is identical to the
Forward-Backward Euler method for the transmembrane potential and concentrations.
We get

(
1− σ2 cosωh− 2

h2

)
Un+1
ω = Un

ω + ∆t

[
−∂I
∂u

(Ỹ ) −∂I
∂v

(Ỹ ) − ∂I

∂X
(Ỹ )

]Un
ω

V n
ω

Xn
ω

 , (55)

Xn+1
ω = Xn

ω + ∆t

[
∂g

∂u
(Ỹ )

∂g

∂v
(Ỹ )

∂g

∂X
(Ỹ )

]Un
ω

V n
ω

Xn
ω

 . (56)

We solve the ODEs for the gating variables with the RL method, which in this case is
an exponential integrator method. As opposed to previously studied methods, it is not a
linear multistep method. Because the Rush-Larsen method is considered A-stable when
applied to the gating equations [17], we assume for the sake of analysis that we have an
A-stable one-step linear method for V , which can be written as

V n+1
ω = R(∆t, ω)V n

ω , (57)

where ρ(R(∆t, ω)) ≤ 1, for any ∆t > 0. We then consider the most restrictive case where
ρ(R(∆t, ω)) = 1. This occurs when R(∆t, ω)) = I, which is equivalent to setting

V n+1
ω = V n

ω . (58)

As for the previous semi-implicit methods, we take ω = 0 because it is the choice that is
most restrictive for stability. Combining (55)-(58), we have

Y n+1 = (I + ∆tJRL)Y n, (59)

where

JRL =


−∂I
∂u

(Ỹ ) −∂I
∂v

(Ỹ ) − ∂I

∂X
(Ỹ )

0 0 0
∂g

∂u
(Ỹ )

∂g

∂v
(Ỹ )

∂g

∂X
(Ỹ )

 . (60)

As we did before for the Euler methods, the stability condition for this scheme is ∆t ≤
−2/λmin, where λmin is the most negative eigenvalue of JRL. The critical time-step,
∆t∗theo = −2/λmin is shown in Table 2 for the BR model and in Table 7 for the TNNP
model.

Similarly, for the RL-CNAB method, we get from the stability analysis of the Adams
Bashforth method, ∆t∗theo = −1/λmin.
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3.1.6 Deferred correction

Due to the more complex nature of the third-order deferred correction scheme, we cannot
easily find a stability condition using absolute stability analysis. However, the numerically
observed critical time-step is very close to the one from the Forward-Backward Euler
method.

3.2 Numerical results

In this section, we compare the critical time-steps obtained through our absolute stability
analysis from the previous section to those observed numerically in the case of the BR,
MS and TNNP models. All parameters used and the details on the ionic models are given
in [19].

For the 1D case, we use a spatial domain of length 100 cm, discretized by equally
spaced nodes xi = ih, h = 100/N or its equivalent for the nondimensionalized MS model.
We used a final time T of 400 ms for the BR model, 350 ms for the MS model and 300 ms
for the TNNP model. The applied stimulation current is the C∞ function given by

Iapp(x, t) =

50 exp

(
1− 1

1− (t− 1.5)2

)
exp

(
1− 1

1− 4(x− 0.5)2

)
,

if 0 <x < 1,

0.5 <t < 2.5,

0, otherwise.

(61)
All computations for the 1D case were made with MATLAB.

We also tested the stability of the BR model in the 2D case using an implementation
of the methods written in Fortran90. For the 2D simulations, we used a 1cm × 1cm
square domain discretized with 3432 grid points and a final time T of 16 ms. The applied
stimulation current in the 2D case is a C1 function of x and t given by

Iapp(x, t) =

50
1 + cos(πr)

2

1 + cos(πτ)

2
, if 0 ≤ r ≤ 1, 0 ≤ τ ≤ 1,

0, otherwise,
(62)

where r = |x − x0|/r0 with x0 the point at the center of a circular simulation zone and
r0, the radius of this zone. Similarly, τ = (t − t0)/τ0 sets a stimulation interval in time
starting at t = t0 with duration τ0. We set t0 = 5ms, τ0 = 1.5ms and r0 = 0.125cm.

For each method, the theoretical critical time-step ∆t∗theo is determined by the stability
conditions from the previous section and the most negative eigenvalue of the Jacobian of
the ionic model used, λmin, which is calculated on the domain as explained in the previous
section. The numerically observed critical time-step ∆t∗ is the largest possible time-step
for which the numerical solution remains bounded. When using a relatively large time-
step with the more stable Rush-Larsen methods, the solution remains bounded but its
shape degenerates and does not represent the real shape of the wave. Therefore, for the
RL methods the value of ∆t∗ is taken as the largest possible time-step for which the
potential wave does not degenerate.

Remark 2 (Computing the Jacobian for discontinuous models). The functions I, F and G
of the BR model are all continuously differentiable with respect to each variable. We thus
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found the Jacobian analytically. Other ionic models have discontinuities which prevent
us from defining a Jacobian for discontinuity points. To avoid deriving expressions on
both sides of the discontinuities, we decided to approximate the Jacobian numerically, for
e.g. by using MATLAB’s numjac function. Several functions in the ODEs for the gating
variables in the TNNP model have discontinuities at u = −40mV and the function in the
ODE of the gating variable of the MS model has a discontinuity at u = ugate. These are
null sets of the phase space and in general we will not observe these discontinuities when
approximating the Jacobian or solving the differential equations numerically. However, if
we approximate the Jacobian at the discontinuity point or close enough to be below the
tolerance for numjac, we obtain extremely large eigenvalues. These discontinuities might
become a problem for extremely small time-steps because there could be values of u very
close to the singularities. This has not been a problem for our simulations.

3.2.1 Beeler-Reuter

The most negative eigenvalue of the Jacobian for the Beeler-Reuter model is λmin =
−81.782. Note that one can find the most negative eigenvalues of the Jacobian of 37
different ionic models in [22, 15], where the authors obtained a value of -82.0 for the BR
model. This small difference is most likely due to a distinct applied stimulation current or
initial conditions. The theoretical critical time-steps for methods studied above are shown
in Table 2 and the numerically observed critical time-steps in Table 1 for the 1D case and
in Table 3 for the 2D case. As expected, the critical time-steps for the semi-implicit
methods are independent of h.

We see that for all methods except the RL methods, the critical time-steps obtained
numerically are very close to those obtained through the absolute stability analysis. In
the case of the RL methods, the critical time-steps are similar for RL-FBE, but ∆t∗ is
approximately half of ∆t∗theo for RL-CNAB. This is likely a consequence of the difficulty
to identify the critical time step in numerical tests.

For the Strang splitting methods, we observe smaller ∆t∗ in 2D compared to their
1D equivalent. Otherwise, the analysis done in the last section for the 1D monodomain
model seems to apply for the semi-implicit methods in the 2D case. Due to the more
complex nature of the Finite Element method for higher dimensions, the analysis of
explicit methods such as FE depends on the nature of the mesh used (uniform vs non-
uniform).

We observe that the critical time-steps of the FE and FBE methods are initially the
same for h = 0.0625, but as h gets smaller FE becomes less stable with a critical time-step
of order h2. This indicates that the use of explicit methods to solve the BR model is only
justifiable for very coarse meshes.

The RL methods are the most stable of all the methods studied. The RL-CNAB has a
∆t∗ more than three times larger than the one of the next most stable method, CN-RK4.
This method has a ∆t∗ slightly larger than the one for CN-RK2, which reflects the fact
that the stability region of CN-RK2 is included in the stability region of CN-RK4. The
∆t∗ for the SBDF2 method is three to four times smaller than the ones for the Strang
splitting methods and 50% smaller than the one for FBE. These relations between the
∆t∗ of the linear multistep methods, i.e. excluding the RL methods, are the same for all
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Table 1: Size of ∆t∗ for the numerical methods used with BR model

Methods h= 0.062 500 h= 0.031 250 h= 0.015 625

2nd Order SBDF 0.016 848 0.016 848 0.016 848
Strang Splitting (CN-RK4) 0.071 480 0.071 480 0.071 480
Strang Splitting (CN-RK2) 0.050 289 0.050 289 0.050 289
Forward Euler 0.025 373 0.020 094 0.005 063 9
Forward-Backward Euler 0.025 373 0.025 373 0.025 373
RL-CNAB 0.235 29 0.235 29 0.235 29
RL-FBE > 0.800 00 > 0.800 00 > 0.800 00
DC3 0.024 465 0.024 465 0.024 465

Table 2: Size of ∆t∗theo for the numerical methods used with BR model

Methods h= 0.062 500 h= 0.031 250 h= 0.015 625

2nd Order SBDF 0.016 304 0.016 304 0.016 304
Strang Splitting (CN-RK4) 0.068 115 0.068 115 0.068 115
Strang Splitting (CN-RK2) 0.048 911 0.048 911 0.048 911
Forward Euler 0.024 455 0.020 238 0.005 066 2
Forward-Backward Euler 0.024 455 0.024 455 0.024 455
RL-CNAB 0.423 42 0.423 42 0.423 42
RL-FBE 0.846 83 0.846 83 0.846 83

Table 3: Size of ∆t∗ for the numerical methods used with BR model in 2D

Methods ∆t∗

2nd Order SBDF 0.016 131
Strang Splitting (CN-RK4) 0.059 566
Strang Splitting (CN-RK2) 0.044 933
Forward-Backward Euler 0.024 242

RL-CNAB 0.200 00

the ionic models used.
As mentioned in the last section, the critical time-step for the DC3 method is very

close to the value for FBE: it is slightly smaller.

3.2.2 Mitchell-Schaeffer

For the MS model, the most negative eigenvalue obtained is λmin = −2.6651. The theoret-
ical critical time-steps for the methods studied are shown in Table 5 and the numerically
observed critical time-steps in Table 4. We see that for all methods, ∆t∗ is very close
to ∆t∗theo. As expected, the critical time-steps for the semi-implicit implicit methods are
independent of the space step h. Because the MS model is not very stiff, the stability of
the FE method depends on the size of h even for relatively large time-steps. This indicates
the necessity for taking the diffusion implicitly when solving less stiff models such as the
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Table 4: Size of ∆t∗ for the numerical methods used with MS model

Methods h= 1 h= 0.500 00 h= 0.250 00

2nd Order SBDF 0.526 32 0.526 32 0.526 32
Strang Splitting (CN-RK4) 1.8519 1.8519 1.8519
Strang Splitting (CN-RK2) 1.5217 1.5217 1.5217
Forward Euler 0.122 70 0.035 874 0.008 940 5
Forward-Backward Euler 0.769 23 0.769 23 0.769 23
DC3 0.769 23 0.769 23 0.769 23

Table 5: Size of ∆t∗theo for the numerical methods used with MS model

Methods h= 1 h= 0.500 00 h= 0.250 00

2nd Order SBDF 0.500 29 0.500 29 0.500 29
Strang Splitting (CN-RK4) 2.0902 2.0902 2.0902
Strang Splitting (CN-RK2) 1.5009 1.5009 1.5009
Forward Euler 0.111 79 0.033 672 0.008 872 8
Forward-Backward Euler 0.750 43 0.750 43 0.750 43

MS model.
We also observe that the CN-RK4 method requires a slightly smaller time-step than

∆t∗theo. This is most likely resulting from the oscillations caused by the use of the Crank-
Nicolson method [28]. These oscillations can be observed for large time-steps for both
Strang splitting methods.

For the MS model, the Strang splitting methods are the most stable of all the methods
studied. They have a ∆t∗ three to four times larger than for the SBDF2 method.

The DC3 and FBE methods have the same numerically observed critical time-step.

3.2.3 ten Tuscher-Noble-Noble-Panfilov

For the TNNP model, the most negative eigenvalue obtained is λmin = −1191.7. The
value given in [22, 15] is -1170. Again, this difference is most likely due to a distinct
applied stimulation current or initial conditions. The theoretical critical time-steps for
the methods studied are shown in Table 7 and the numerically observed critical time-steps
in Table 6.

As for the BR model, we see that for all methods except the RL methods, the crit-
ical time-steps obtained numerically are very close to those obtained through absolute
stability analysis. As expected, the critical time-steps for the semi-implicit methods are
independent of the space step h.

In the case of the RL methods, ∆t∗ is approximately half of ∆t∗theo for RL-CNAB and
two thirds for RL-FBE.

For the Forward Euler scheme, ∆t∗ is the same for h = 0.0625, 0.03125, 0.015625. For
smaller values of h, we begin to see a dependence of ∆t∗ on h2, as shown in Table 8.
These results indicate that for very stiff models such as the TNNP model, the use of fully
explicit methods could still be acceptable, except on finer spatial meshes.
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Table 6: Size of ∆t∗ for the numerical methods used with TNNP model

Methods h= 0.062 500 h= 0.031 250 h= 0.015 625

2nd Order SBDF 0.001 134 8 0.001 134 8 0.001 134 8
Strang Splitting (CN-RK4) 0.004 836 2 0.004 836 2 0.004 836 2
Strang Splitting (CN-RK2) 0.003 456 2 0.003 456 2 0.003 456 2
Forward Euler 0.001 704 4 0.001 704 4 0.001 704 4
Forward-Backward Euler 0.001 704 4 0.001 704 4 0.001 704 4
RL-CNAB 0.091 380 0.091 380 0.091 380
RL-FBE > 0.600 00 > 0.600 00 > 0.600 00
DC3 0.001 686 9 0.001 686 9 0.001 686 9

Table 7: Size of ∆t∗theo for the numerical methods used with TNNP model

Methods h= 0.062 500 h= 0.031 250 h= 0.015 625

2nd Order SBDF 0.001 118 9 0.001 118 9 0.001 118 9
Strang Splitting (CN-RK4) 0.004 674 6 0.004 674 6 0.004 674 6
Strang Splitting (CN-RK2) 0.003 356 6 0.003 356 6 0.003 356 6
Forward Euler 0.001 678 3 0.001 678 3 0.001 678 3
Forward-Backward Euler 0.001 678 3 0.001 678 3 0.001 678 3
RL-CNAB 0.206 12 0.206 12 0.206 12
RL-FBE 0.412 23 0.412 23 0.412 23

Table 8: Size of ∆t∗ for the Forward Euler’s method with TNNP model

h ∆t∗ ∆t∗theo

0.015625 0.001 704 4 0.001 678 3
0.0078125 0.001 267 7 0.001 266 9
0.00390625 0.000 316 82 0.000 316 76

The RL methods are the most stable of all the methods studied. The RL-CNAB has
a ∆t∗ almost twenty times larger than the next most stable method, CN-RK4.

As for the BR model, the DC3 method has a ∆t∗ slightly smaller than the one for
FBE.

As expected from the analysis of the last sections, for all ionic models, only the fully
explicit Forward Euler’s method has a critical time-step depending on the size of h.
Indeed, as h gets smaller we see that ∆t∗ is eventually proportional to h2. Looking at the
Jacobian for large h, we see that the minimum eigenvalue comes from the gating variables,
in the case of the models studied. For the FE method, small values of h are required for
the eigenvalue coming from the diffusion term in the monodomain equation to become the
most negative. This leads to the conclusion that for very stiff models such as the TNNP
model, taking the diffusion implicitly is only necessary for very fine meshes.

For all models, the semi-implicit method which requires the smallest time-step is the
SBDF2 method.
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4 Accuracy of the numerical methods

In this section, we investigate the accuracy of the different time-stepping methods when
solving the monodomain model coupled with the three different ionic models studied. We
start by conducting a convergence test for each method to verify if they have the correct
rate of convergence. The accuracy of the methods will also be compared relatively to
the size of the time-step used. Afterwards, we will compare the accuracy of the methods
relatively to the computational time needed to run the simulations.

4.1 Convergence tests

We now study the convergence of the different time-stepping methods for a given spatial
mesh. We split the error in space and time given that their order may not be the same
and study the error in time only. We have

‖u− uh,∆t‖ ≤ ‖u− uh‖+ ‖uh − uh,∆t‖ = O(hp + ∆tq), (63)

where u is the exact solution for the transmembrane potential, uh is the solution of
the semi-discretized problem in space and uh,∆t is the solution of the fully discretized
problem. Since we want to study the convergence of the time-stepping methods, we will
only consider the error between the solutions of the semi-discretized and fully discretized
problems. We test convergence with respect to the following errors:

eL2 = ‖uh,∆t(T )− uh(T )‖L2 , eH1 = |uh,∆t(T )− uh(T )|H1 ,

ec = |ch,∆t − ch|, eT1 = |T1,h,∆t − T1,h|,
(64)

where uh is a reference semi-discretized solution for the transmembrane potential, which
is calculated using a very small time-step. The norms used are discrete approximations
of the L2(Ω) norm and H1(Ω) seminorm using Simpson’s rule. The solutions uh,∆t are
calculated with the same spatial mesh and at the same final time T as the reference
solution, but using larger values for ∆t. We denote by ch,∆t the wave velocity, and by
T1,h,∆t the depolarization time, i.e. the time at which a given point of the domain reaches
a given super-threshold value of the transmembrane potential. The wave velocity and
depolarization time of the reference solution uh are denoted by ch and T1,h, respectively.
The wave velocity is defined by c = (x2 − x1)/(T2 − T1), where Ti is the time when the
depolarization front of the potential wave passes through chosen nodes xi, i = 1, 2. The
wave front passes through a point xi during the time-step from tn to tn+1 = tn + ∆t if
u(xi, tn) < û, but u(xi, tn+1) ≥ û for some chosen value û on the wave front. For better
approximations of Ti, we use linear interpolation and define

Ti = tn + ∆t
û− u(xi, tn)

u(xi, tn+1)− u(xi, tn)
. (65)

Assuming that the error is proportional to ∆tα, the estimated convergence rate is calcu-
lated with

α =
log(|e1/e2|)

log(∆t1/∆t2)
, (66)
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where ∆t1 and ∆t2 are consecutive time-steps in a sequence of decreasing time-steps,
and e1 and e2 are the corresponding errors. All solutions are calculated using the same
stimulation current and parameters from Section 3.2. The largest ∆t used for each method
is taken close to the critical time-step found in the previous section, except for the RL
methods where we use a starting time-step similar to the other methods, that is when the
RL methods start to show their asymptotic behaviour.

The order of convergence in the L2 norm and H1 seminorm are expected to be the
same because the numerical solutions uh,∆t are in the same finite-dimensional space and
thus the equivalence of norms applies.

4.1.1 Beeler-Reuter with 1D monodomain

The reference solution uh for the BR model is obtained using SBDF2 on a domain of
length 100 cm discretized in space with 1600 nodes and computed at time T = 400 ms
with ∆t = 1/125 000 ms. The graph of the reference solution is shown in Figure 2a.
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(a) BR model: u at time
T = 400 ms, plotted for x ∈
[0, 100].
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(b) MS model: u at time
T = 350 ms, plotted for x ∈
[0, 800].
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(c) TNNP model: u at time
T = 12 ms, plotted for x ∈
[0, 5].

Figure 2: Reference solutions for the transmembrane potential

To determine c and T1, we take û = −30 mV, x1 = 20 cm and x2 = 50 cm. When
testing for the DC3 method, SBDF2 did not give a reference solution accurate enough
for assessing the third order of convergence, therefore we used DC3 instead of SBDF2
to calculate a reference solution with ∆t = 1/75 000 ms. The results of the convergence
tests for the 1D BR model are shown in Figure 3. We illustrate how the errors defined in
(64) vary as the size of the time-step is decreased. We observe that T1 and c reach their
asymptotic rate of convergence faster than the L2 norm and H1 seminorm of the error.

For the 1D BR model, all of the methods studied showed their expected asymptotic
order of convergence. For the first-order methods, we observe that for the same ∆t,
FE is almost twice as accurate as its semi-implicit version, FBE, and both methods are
significantly more accurate than RL-FBE. It takes very small values of ∆t for RL-FBE
to reach its asymptotic order of convergence.

For the second-order methods, we observe that for the same ∆t, CN-RK4 is about
ten times more accurate than CN-RK2, which in turn is about two times more accurate
than SBDF2. This last method is two times more accurate than RL-CNAB. For the DC3
method, it takes very small values of ∆t before it exhibits its correct order of convergence.
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(d) Error of the depolarization time T1

Figure 3: Errors for the BR model at fixed h = 1/16. The order of convergence can be
observed by comparing with lines of negative slope one (dotted), two (solid), and three
(dashed).

Even for ∆t = 1/5120, the error is still larger than what we would obtain by using a
second-order method.

4.1.2 Mitchell-Schaeffer with 1D monodomain

The reference solution for the MS model is computed using SBDF2 on a domain of length
800 discretized in space with 800 nodes and computed at time 350 with ∆t = 7/60000.
The plot of the reference solution is shown in Figure 2b.

To determine c and T1, we take û = 0.5, x1 = 50 and x2 = 80. For the convergence
of the DC3 method, we used the same method instead of SBDF2 to calculate a reference
solution with ∆t = 7/60000. The results of the convergence tests for the 1D MS model
are shown in Figure 4.
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Figure 4: Errors for the MS model at fixed h = 1. The order of convergence can be
observed by comparing with lines of negative slope one (dotted), two (solid), and three
(dashed).

For the MS model, all methods studied showed their expected asymptotic order of
convergence, but the Strang splitting methods lose their order when ∆t gets smaller. This
could be caused by the discontinuities in the ionic model. For the first-order methods, we
observe that for the same ∆t, FBE is slightly more accurate than its fully explicit version,
FE.

For second-order methods, we observe that for the same ∆t, CN-RK4 is almost ten
times more accurate than CN-RK2, which in turn is about twenty times more accurate
than SBDF2. For the DC3 method, it takes very small values of ∆t before the method
exhibits its correct order of convergence. Even for ∆t = 7/6144, its error is still larger
than what we would obtain by using a good second-order method.
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4.1.3 ten Tuscher-Noble-Noble-Panfilov with 1D monodomain

Due to the complexity and stability requirements of the TNNP model, we study the
convergence of the methods on a smaller spatial domain. The domain will be too small for
the whole wave to develop, but still includes the depolarization wavefront. The reference
solution is computed using SBDF2 on a domain of length 5 cm discretized in space with
160 nodes and computed at time 12 ms with ∆t = 6e−7. The reference solution is shown
in Figure 2c.

To determine c and T1, we take û = −30 mV, x1 = 1 cm and x2 = 2.5 cm. For the
convergence of the DC3 method, we used the same method instead of SBDF2 to calculate
a reference solution with ∆t = 7.5e − 7. The results of the convergence tests for the 1D
TNNP model are shown in Figure 5.
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Figure 5: Errors for the TNNP model at fixed h = 1/32. The order of convergence can be
observed by comparing with lines of negative slope one (dotted), two (solid), and three
(dashed).
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For the TNNP model, all methods studied showed their expected asymptotic order
of convergence, but the convergence of the RL-CNAB and DC3 methods is erratic when
∆t gets very small. The solution obtained with the RL-CNAB method first converges to
the reference solution obtained with SBDF2 then the convergence stagnates when ∆t gets
very small. The L2 error between the solutions seems to stabilize around eL2 = 0.00115,
which is less than 0.0012% of the reference solution’s L2 norm. The DC3 method shows
similar trends with third-order convergence that deteriorates when ∆t gets very small.
This is likely due to the difficulty of computing a reference solution at such a small level
of errors. Another reason for this strange behaviour with very small time-steps might be
caused by the discontinuities in the right-hand-side of the ODEs for the TNNP model. For
a small time-step, it is more likely that the numerical solution falls close to a discontinuity
at some of the grid points. Before its order of convergence deteriorates, the DC3 method
is actually more accurate than the second-order methods.

It is important to note that the TNNP model is very stiff and that is why we use very
small time-steps for the convergence tests. In practice, it is not relevant to have errors as
small as those obtained for the smallest time-steps used since the modelling error is then
much larger then the numerical error.

For the first-order methods, we observe that for the same ∆t, FE is slightly more
accurate than its semi-implicit version, FBE, and both methods are more than twice as
accurate as RL-FBE.

For second-order methods, the ∆t used are not the same, but one can easily see that
for the same ∆t, CN-RK4 is almost two times more accurate than CN-RK2, which in
turn is about two times more accurate than SBDF2. This last method is about two times
more accurate than RL-CNAB.

4.1.4 Beeler-Reuter with 2D monodomain

In the 2D case, the reference solution is computed using SBDF2 on a 1cm× 1cm square
domain discretized with an unstructured mesh of 3432 points (roughly of size 59 × 59)
and computed at time T = 16 ms with ∆t = 5.98e − 6. The reference solution is shown
in Figure 6.

Figure 6: Reference solution for the transmembrane potential at time T = 16 ms for the
BR model in 2D plotted as a function of x ∈ [0, 1]× [0, 1].

The results of the convergence tests for the 2D BR model are shown in Figure 7. We
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present errors and convergence rates in L2 norm and H1 seminorm only; wave velocity
and depolarization time were not considered. We also only considered a subset of the
methods studied in the 1D case.
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Figure 7: Errors for the BR model in 2D. The order of convergence can be observed by
comparing with lines of negative slope one (dotted), and two (solid).

As for the 1D BR model, all of the methods studied showed their expected asymptotic
order of convergence for the 2D case. For the same ∆t, CN-RK4 is about five times more
accurate than CN-RK2, which in turn is almost four times more accurate than SBDF2.
This last method and RL-CNAB have approximately the same accuracy. The first-order
FBE method is significantly less accurate than the higher-order methods.

4.2 CPU performance of the numerical ,ethods

In the last sections, we compared the accuracy of the methods for given time-steps.
However, this does not take into account the difference of computational cost for an
iteration depending on the method used.

We now compare the accuracy of the different numerical methods studied with respect
to the computational time of the simulation. We use the same spatial domain and spatial
discretization as for the convergence tests. 2D simulations were run on an HP Z420
Worksation with 4 Intel Xeon 2.80 GHz processors and 7.7 GB of RAM and 1D simulations
were run on an ALIENWARE X51-R2 with a Intel Core i7-4770 3.40 GHz processor and
7.89 GB of RAM. The L2 norm and H1 seminorm for the different reference solutions
are, respectively, 519.6 and 155.1 for the 1D BR model, 19.00 and 0.3154 for the 1D MS
model, 96.26 and 201.8 for the 1D TNNP model, 61.77 and 655.1 for the 2D BR model.

For each model, we choose a target value of the L2 error on the numerical solution,
eL2 , and for each method, we find the time-step needed to achieve this level of accuracy
and evaluate the computational time of the simulation. Results are shown for the different
methods in Tables 9 to 13. Each table contains the L2 error, eL2 , close enough to the





Analysis of time-stepping methods for the monodomain model

chosen target error, with its corresponding H1 error, eH1 , the time-step ∆t required, the
total CPU time of the simulation and the average CPU time per iteration. We indicate
in the title of each table the relative size of the error eL2 with respect to the L2 norm of
the reference solution.

For the 1D BR model, we see that the most efficient method is the SBDF2 method. It
is almost twice as fast as the next most efficient method, CN-RK4, which is itself faster
than the CN-RK2 method. For each time-step of the SBDF2 method, we only have to
compute the functions of the ionic model once, as opposed to the Strang-splitting methods
where we compute them four or eight times for CN-RK2 and CN-RK4, respectively. As
for the DC3 method, the functions are computed only three times per time-step, but it
takes small values of ∆t for the method to reach a higher rate of convergence. We observe
that the third-order method, DC3, is not efficient compared to the second-order methods.
Indeed, it takes more than twenty times more CPU time to compute the solution than
the SBDF2 method for the chosen level of error. By choosing very small errors, we expect
the DC3 method to eventually surpass the second-order methods. At the chosen level of
error eL2 , the DC3 method has not yet entered its asymptotic zone.

We only tested the computational time of the FBE method at 5% relative L2 error
because it would take extremely small time-steps to reach the level of error that we chose
for the other methods. It is clear that for 0.5% relative error, the FBE method is not
efficient compared to high-order methods.

The computational time per time-step of the SBDF2 method is only slightly larger
than for the FBE method and thus there is no advantage in terms of efficiency to use a
first-order method. One time-step of CN-RK4 is two times more costly than for CN-RK2,
which is almost four times more costly than the SBDF2 method. This is directly related
to the number of computations of the ionic functions. One time-step of DC3 is more
than three times the cost of an SBDF2 time-step, which also relates to the computation
of the ionic functions, but there is additional cost due to the more complex nature of
the DC3 method. These relations extend to the different models studied. Even though
RL-CNAB also only has one computation of the ionic functions per time-step, the use of
the exponential function makes an iteration for this method slightly more expensive than
for the SBDF2 method. This impact is lessened in the case of the TNNP model because
the computation of the ionic functions takes up most of the computational cost, due to
the complexity of the TNNP model.

Table 9: CPU time of the numerical methods for the BR model in 1D for 0.5% relative
L2 error

Method eL2 eH1 ∆t CPU time (s) CPU/time-step (ms)

SBDF2 2.590 18.67 0.010 00 69.58 1.739
RL-CNAB 2.604 18.74 0.005 333 173.9 2.318
CN-RK4 2.594 18.53 0.045 45 114.3 12.99
CN-RK2 2.591 18.63 0.016 00 159.9 6.396
FBE 25.97 153.0 0.002 694 248.2 1.672
DC3 2.606 18.76 0.001 493 1637 6.106
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For the 1D MS model, we choose a slightly smaller relative error because the com-
putational times are smaller and if they are too small then we have issues with their
repeatability. We still choose an error small enough for most methods to be in their
asymptotic zones. We see that the most efficient method is the CN-RK4 method, fol-
lowed closely by the CN-RK2 method. The CN-RK4 method is almost twice as efficient
as the SBDF2 method. We observe that our third-order method, DC3, is not efficient
compared to the second-order methods. Indeed, it takes almost eight times more CPU
time to compute the solution than the SBDF2 method for the chosen error.

We only tested the computational time of the FBE method at 1% relative L2 error
because it would take extremely small time-steps to reach the 0.1% relative error level.
It is easy to figure that for 0.1% relative error, the FBE method is not efficient compared
to high-order methods.

Table 10: CPU time of the numerical methods for the MS model in 1D for 0.1% relative
L2 error

Method eL2 eH1 ∆t CPU time (s) CPU/time-step (ms)

SBDF2 0.018 98 0.005 431 0.017 28 5.772 0.2850
CN-RK4 0.018 84 0.005 091 0.1971 3.276 1.845
CN-RK2 0.018 94 0.005 329 0.092 72 3.572 0.9463
FBE 0.1897 0.054 32 0.003 763 25.37 0.2728
DC3 0.019 03 0.005 461 0.006 972 44.66 0.8897

For the 1D TNNP model, most methods require very small time-steps to have stable
solutions. Therefore the relative error is very small compared to those of the previ-
ous models. We see that the most efficient method is, as for BR, the SBDF2 method.
For 0.005% relative L2 error, it is nearly two times faster than the next most efficient
second-order method, RL-CNAB, more than twice as fast as the CN-RK2 method, and
three times faster than the CN-RK4 method. Because the convergence of the RL-CNAB
method stagnates (see Figure 5) and the DC3 method is slow to reach its correct rate of
convergence, there is no value of eL2 for which both methods are in their asymptotic zone.
This is why we need two tables with different values of L2 relative error, one to compare
with RL-CNAB and one with DC3. We observe that the DC3 method is actually the
second most efficient method for the lower 0.001% relative L2 error.

We only tested the computational time of the FBE method at 0.05% relative L2 error
because it would take extremely small time-steps to reach the error we chose for the other
methods. Because of the stability constraints on the other methods, only the RL-CNAB
can have an error as high as 0.05%. It would be easy to show that when RL-CNAB is in
its asymptotic zone, it is more efficient than FBE. It is also easy to figure that for 0.005%
relative error, the FBE method is not efficient compared to high-order methods.

For the 2D case with the BR model, we chose a smaller relative error because the
simulations were faster due to the smaller domain and the fact that the computational
code is written in Fortran instead of MATLAB as in 1D. If the CPU times were too small,
we had issues with their repeatability. As opposed to 1D case, the most efficient method
for the 2D BR model is not the SBDF2 method, but rather the CN-RK4 method, as
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Table 11: CPU time of the numerical methods for the TNNP model in 1D for 0.005%
relative L2 error

Method eL2 eH1 ∆t CPU time (s) CPU/time-step (ms)

SBDF2 0.004 800 0.053 86 0.001 116 6.178 0.5747
RL-CNAB 0.004 802 0.054 67 0.000 834 5 10.78 0.7496
CN-RK4 0.004 785 0.049 52 0.002 487 20.79 4.310
CN-RK2 0.004 797 0.050 84 0.002 078 12.54 2.172
FBE 0.047 96 0.5968 6.417× 10−5 106.8 0.5710

Table 12: CPU time of the numerical methods for the TNNP model in 1D for relative
0.001% relative L2 error

Method eL2 eH1 ∆t CPU time (s) CPU/time-step (ms)

SBDF2 0.000 958 7 0.010 75 0.000 502 4 14.40 0.6028
CN-RK4 0.000 958 7 0.009 969 0.001 091 47.58 4.325
CN-RK2 0.000 960 5 0.010 18 0.000 928 1 29.75 2.301
DC3 0.000 961 6 0.010 99 0.001 026 25.51 2.180

shown in Table 13. It is a bit more efficient than the CN-RK2, which in turn is more
efficient than the SBDF2 method. The RL-CNAB is more than four times slower than
the CN-RK4 method. As usual, the FBE method is not efficient.

The difference in the performance of the methods between the 1D and 2D cases is
due to the relative cost of solving the linear systems in 1D versus 2D, compared to
the cost of evaluating the ionic functions. Besides the different linear solvers used, the
implementation is done with MATLAB in 1D versus the compiled language Fortran90 for
the 2D code. In 1D, we use a direct solver with a tridiagonal matrix that makes the cost
of solving the linear system about 1/16 of doing one evaluation of the BR reaction terms.
In 2D, we use an iterative solver that makes the cost of solving the linear system about 3
times more expensive than doing one evaluation of the BR reaction terms. The relative
cost per time step of CN-RK4 compared to SBDF2 is lower in 2D (with ratio of 2.8) than
in 1D (with ratio of 7.5). This fact combined with the larger accuracy at a given time-step
of the Strang splitting gives a competitive advantage to CN-RK4 and over SBDF2 in 2D.
A similar argument holds for CN-RK2.

Table 13: CPU time of the numerical methods for the BR model in 2D for 0.008% L2

error

Method eL2 eH1 ∆t CPU time (s) CPU/time-step (ms)

SBDF2 0.005 012 0.2762 0.003 850 15.86 3.816
RL-CNAB 0.005 001 0.2771 0.001 985 47.79 5.929
CN-RK4 0.005 002 0.3975 0.015 79 10.88 10.74
CN-RK2 0.005 008 0.2550 0.007 678 12.90 6.189
FBE 0.050 30 2.971 0.000 375 0 150.4 3.526
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5 Conclusion

In this article, we investigated the impact of ionic model complexity and stiffness on
finding an efficient numerical solution through a variety of time-stepping methods. The
simplest model that we tested is the MS model. Its stiffness is low and hence there
is no need for very stable methods to be used. The most accurate method to solve
this problem is Strang splitting using Runge-Kutta methods (RK2 or RK4) to solve the
ionic model and the reaction part of the monodomain model, and Crank-Nicholson for
the diffusion part of the monodomain model. Due to the nature of operator splitting
methods, they become less competitive when solving more complex models. Indeed, for
each time-step, we do two RK substeps which, for the second-order RK method, implies
computing the ionic currents four times, and for the original fourth order RK, eight
times. As the models get more complex and realistic, computing the ionic currents takes
up most of the computational cost of the algorithms. Therefore, multistep methods such
as SBDF2 become more efficient with respect to computational time when solving more
complex models because the ionic currents are only computed once per time-step. For
the Beeler-Reuter model, both the SBDF2 and the Strang splitting methods are the most
efficient. The easier implementation of the SBDF2 scheme makes it faster with interpreted
languages such as MATLAB. For the TNNP model, the SBDF2 method outclasses the
Strang splitting methods in terms of efficiency. The third-order DC3 method was the
most efficient only in the case of extremely accurate solutions. In practice, simulations
do not require this much accuracy as the balance between modelling and numerical error
allows for a lower level of numerical accuracy.

If the goal is not to have extremely high accuracy but rather smaller computational
times, the stability of the methods is the important factor. The stiffness of the more
complex models calls for more stable methods, such as Rush-Larsen methods. As we have
seen in Section 3, these are almost unconditionally stable. However, in Section 4, we saw
that they are less accurate than other semi-implicit methods such as SBDF2 or Strang
splitting methods. For the stiffer models such as TNNP, a lower level of accuracy is not
available with the less stable SBDF2 and Strang splitting methods, because even at the
largest possible time-step necessary for stability, the errors are extremely low.
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