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Abstract—Marine water quality monitoring and subsequent
management require to know when a specific event like harmful
algae bloom may occur and which environmental conditions and
pressures lead to this event. So, event detection and its dynamic
understanding are crucial to adapt strategy. An algorithm is
proposed to identify curves mixture and their dynamics features
- initiation, duration, peaks and ends of the event. The approach
is fully unsupervised, it requires no tuning parameters and
is based on Expectation Maximization process to estimate the
most robust mixture according to fixed criteria. A complete
framework is proposed to deal with a univariate time series
with missing data. The approach is applied on Chlorophyll-a
series collected weekly since 1989. Chlorophyll-a is a proxy of
the phytoplankton biomass. The results are promising according
to the phytoplankton composition knowledge, collected at lower
frequency, and allowing to discuss about the annual variability
of phytoplankton dynamics.

Keywords—Time series; Event detection; Expectation-
Maximisation; Phenology; Chlorophyll-a; Phaeocystis.

I. INTRODUCTION

In numerical ecology, classification methods are of
paramount importance to synthesize information, to under-
stand data structure and then, to extract the maximum amount
of information. They are used for improving knowledge and
issuing practical recommendations for environmental manage-
ment. In the context of better assessing the quality of marine
waters and the Ecological (MSFD [1]) or Eutrophication Status
(OSPAR [2]), knowledge about ecosystem dynamics at fine
timescale is often incomplete and requires an unsupervised
approach [3].

Let’s consider the dynamic phenomenon of phytoplankton
abundance and the biomass dynamics of specific harmful
algae. Species composition and relative abundance of algal
groups are fundamental determinants of aquatic ecosystem
structure and function. But their behavior change over the
years and within one year: event dates, duration, peak dates
and amplitude.

Several approaches has been tested in order to assume
a trend and/or a shift in phytoplankton biomass, and a
modification of the bloom phenology responding to varying
environmental condition under human pressures. FULCRUM
approach [4] based on the cumsum approach and breakpoints
both does not permit to identify the beginning/maximum or
end of the bloom and to detect general patterns or specific
patterns. Seasonal, trend analysis [5] and Empirical Mode

Decomposition (EMD [6]) are not adapted for non monotonic
trend series with mode under half-year frequency.

So the problem we investigate is to identify curves mixture
by Expectation-Maximisation process [7] in Chlorophyll-a
time series. For this first study, we assume that, within time
series, each event could be associated to a Gauss curve, and an
event cannot be fully included in another. Only small overlap
between events is admissible.

This paper is organized as follows. Section 2 introduces
materials and methods, including: Data presentation; data
completion process and the algorithm of event detection and
time characterization in yearly time series. Next, in Section 3
experimental results are presented and discussed. Conclusion
and future works are drawn in Section 4.

II. MATERIALS AND METHODS

A. Data presentation and general scheme

Chlorophyll-a (Chla in µg.l−1) time series have been ac-
quired weekly since 1989 and monthly since 1978 in coastal
waters in the southern bight of the North Sea (Ifremer IGA
Gravelines monitoring program [8]). This time series is one
of the longest one in France. In the Phytoplankton field, this
series are building our overall understanding of Phytoplankton
bloom dynamics in the context of the massive proliferation
of the Prymnesiophycea Phaeocystis globosa [9]. Phaeocystis

globosa is classified as a High-Biomass HAB species (Harmful
Algal blooms - HAB) and its proliferation leads to nuisance
and impacts benthic and pelagic habitats.

The objectives to define various typology/phenology of
algae blooms from Chlorophyll-a data first require an explo-
rative analysis and method of missing data completion before
the event detection and characterization. Our methodology
consists of 3 steps described as follows.

First step corresponds to data preprocessing : data vali-
dation, time shifting, missing data completion. The second
and main level concerns the identification of recurrent or rare
events that look like a bell-shaped curve in an subsequence.
Here the algorithm to estimate one mixture of Gauss curves
is proposed to model seasonal Chla series or to model each
yearly Chla series. This method automatically provides infor-
mation up to week scale. This method can be extended to any
other series and at other scale frequency. The series should be
cut in subsequences and a mixture model may be extracted
from each subsequence by the algorithm.



The last process is the correspondence analysis between
obtained Gauss curves and the associated phytoplankton com-
munity structure, abundance of taxa, up to the species level in
this area.

B. Data preprocessing

Extraction and time alignment. Figure 1 illustrates the
Chla time series from 1978 onwards. A monthly resampling
from 1978 to 1989 will lead to high information loss both in
terms of phenology and bloom dynamics. And it is difficult
to validate data values before 1989. That is the reason why
only the period 1989-2014 are retained for the study. During
this period corresponding to 1,352 weeks, 146 samples are
missing. But only small missing subsequences (1 week)
occur during the critical phytoplankton productive period and
gaps from one to seven weeks for the non productive period,
so filling this gap by an adapted moving average is appropriate.

Imputation part. The filling process consists in two steps.
First, single missing data (1-length) x(t) are completed by
the mean of the precedent value x(t − 1) and the future
value x(t+ 1). Then, missing subsequences are examined by
human expert who validates the completion process according
to the dynamics knowledge of the considered process. Here,
the holes for non productive periods are always imputed. A
hole during the productive period will be completed only if
the size is less than the process change that we want to detect.
For phytoplankton dynamics, the completion of hole is based
on the timescale graph of phytoplankton phenomena described
by Dickey et al. [10].
A hole is imputed by a moving average weighted using a mem-
bership function mixing confidence score of the data value
(acquired data or inserted data), and degree of spacing in the
considered temporal window. Table I details the mechanism of
dynamic completion, step by step, for a subsequence of three
missing values noted NA.

x(t) 5.9 5.9 11.2 NA NA NA 3.7 5.1 6.0
weights 3 4 50 0 0 0 3 2 1
x(t+ 1) 5.9 5.9 11.2 9.97 NA NA 3.7 5.1 6.0
weights 0 2 3 1 0 0 3 2 1
x(t+ 2) 5.9 5.9 11.2 9.97 6.88 NA 3.7 5.1 6.0
weights 0 0 1 1 1 0 30 2 1

x(t+ 3) 5.9 5.9 11.2 9.97 6.88 4.31 3.7 5.1 6.0
TABLE I

IMPUTATION WITH WEIGHTED AVERAGE FOR A SERIES WITH 3
CONSECUTIVE MISSING VALUES (NOTED NA).

The weighting is built such as Dirac peak: directly
consecutive data (t − 1 and t + 1) are assigned of a high
weight, and the others of a decreasing weight coefficient.
Completed data are inserted for the computation of the next
point, but with a low confidence weight (1-value). To be more
robust, a first imputation is made in clockwise direction and
another in the anticlockwise direction; the retained completed
values are the mean of the two obtained series. Figure 2 is a
zoom of the Chla series where the longest hole is filled.

Exploratory analysis. Autocorrelation (ACF) highlights
an annual periodicity with peaks repeated 52 weeks, but
the correlation coefficient is lower than 0.4. This seasonal
cycle can be extracted from an additive decomposition (R
decompose function, package stats) given in Figure 3. Figure 4
is the overlay of each year Chla subsequence: an important
variability of the dynamics exists. The level and the number of
peaks are different from one year to another, with clear trend
and/or shift which may be linked to varying environmental
conditions .

C. EM Gauss curves extraction and criteria

Our automatic event detection is based on normalmixEM al-
gorithm from the R-package mixtools [11]. In this study, event
is assumed to be a bell-shaped curve and follows this equation:
g(t) = lambda ∗ exp(−(t −mu)2/(2 ∗ sigma2)) with (mu,
sigma, lambda) its parameters to estimate. The search of the
number of Gauss curves noted Ng are incremental, and stopped
according to a rebuilding criterion. Expectation-Maximization
methods (EM) are not exact, they find a local optimization of
parameters and strongly depend on the initialization step. Our
EM process are repeated T times. Then, a model selection step
is applied to retain the most stable model (repeatable), and best
fulfills our criterion. T is in correlation with k the number of
clusters to determine the dominant model. From experiments,
(T = 20, k = 3) is relevant and enough to extract a robust
model.

The framework of the algorithm is detailed with the follow-
ing pseudocode in Algorithm 1 (the R code is available upon
mail request to the authors).

The criterion is based on a strict fusion of similarity
measures and admissible deformations. The details and rules
for each criterion between x and the rebuilt signal r from the
Gauss parameters

r(t) =

nbG∑

g

lambdag × exp(−(t−mug)/sigma2g)

are cited below:

1) Correlation Coefficient R2.cor (x, r) ≥ par.R2
2) Normalized Mean Square Error:

NMSE(x, r) = mean(x− r)/(mean(x) ∗mean(r)) <
par.NMSE

3) Similarity by area
simArea(x, r) = sum(x− r)/sum(x) >par.simArea

4) Percentage of outliers (predictions within a factor of two
of the observed values).
FA2= length(0, 5 ≤ (x/r) ≤ 2)/length(x)
FA2(x, r) ≥ par.FA2

5) Fractional Bias, rate of data under or overestimated
according the mean noted m.
|FB(x, r)| == 2 ∗ (mx −mr)/(mx +mr) <par.FB

6) Fractional Standard deviation (sd)
|FS(x, r)| = 2 ∗ (sdx − sdr)/(sdx + sdr) < par.FS



Fig. 1. Chlorophyll-a time series collected in the Southern bight of the North Sea (Lat. 51.015 N, Long. 2.092 E).

Algorithm 1 PseudoCode of curve mixture detection
Input: (t, x, acceptRate)
Output: 3 vectors (mu, sigma, lambda)

Initialisation : test ← false;
Initialisation : mu, sigma, lambda ← null;

1: y ← x/max(x);
2: maxG ← compute the max accepted number of Gauss

curves according to the number of peaks and valleys;
3: yh← transform y to obtain a density repartition
4: while test==false and g ≤maxG do

5: # research of a robust model

6: for i = 1 to 20 do

7: mixmodel(i)←normalmixEM(yh,k= g);
8: end for

9: # Research of the best representative model
10: cluster←kmeans(mixmodel, k=3)
11: index←select the dominant group according the cri-

terion of 50% mu in the same group are close. (no
singleton cluster).

12: for i in index do

13: Ci ←sumGaussCurve(mixmodel(i),t)
14: scorei ←compute rebuilding criteria between Ci and

x;
15: end for

16: b← argmaxi(scorei);
17: test← true if all criteria respected between scoreb and

acceptRate, false otherwise;
18: g ← g + 1;
19: end while

20: return lambda,mu, sigma

Fig. 2. Zoom on the Chla series for the period 1990-1993 with filled gap of
length 3 and 6 in red color the completed points.

7) Geometric Mean bias [12]
MG(x, r) = exp(mean(ln(x))−mean(ln(r))
par.MGmin ≤ MG(x, r) ≤ par.MGmax

8) Geometric Mean Variance [12]
VG= exp(mean(ln(x)− ln(r))2)
par.VGmin ≤ VG(x, r) ≤ par.VGmax

Variables beginning by "par." correspond to the element
of the vector "acceptRate", input of the precedent algo-
rithm. This vector of criterion could be adapted according to
the problem. For this application, par.R2=0.7, par.FA2=0.8,
par.FB=0.3, par.FS=0.05, par.NMSE=0.4, par.simArea=0.95,
par.MGmin=par.VGMin=0.75, par.MGmax=par.VGmax=1.25.
The signal reconstruction constraints are hard.

The algorithm is applied to the seasonal cycle, then to each
year (composed of 52 Chla values per week).

III. RESULTS AND DISCUSSION

The proposed approach detects a mixture of 7 Gauss
curves within a seasonal pattern of the General Chlorophyll-



# Curve number G1 G2 G3 G4 G5 G6 G7

Peak date 2.6 11.8 15.4 20.2 27.1 36.5 48.8
Range dates 1-7 1-23 11-20 15-25 15-39 21-52 43-52
Sigma-dates 1-4 8-16 13-17 18-22 23-31 30-42 40-51
Shannon index 0.6;2.6;3.8; 0.5;2.1;3.7 0.5;2.1;3.7 0.6;2.6;3.9 0.5;3.0;4.3 0.3;2.8;4.0 0.1;2.0;4.5
#m Taxon 22 36 30 27 38 44 26
#m 95% cell/L 12 8 1.5 4 14 17.5 14.5
Dominant species Melosira P.S Phaeocystis Phaeocystis Phaeocystis Rhizolenia imb. Leptocylindrus Melosira P.S.
# years/25 17 18 21 16 14 4 13

TABLE II
CHARACTERISTICS OF EACH EVENT, GAUSS CURVE NAMED Gi .

SHANNON INDEX ARE MIN/MEDIAN/MAX VALUES AND #m REPRESENTS THE NUMBER OF TAXA.
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Fig. 4. Overlay of each Chla time series per year, weekly sampled.

a concentration dynamics during 1989-2014 period. Figure 5
illustrates 7 events, black color represents the seasonal cycle
(by multiplicative decomposition), and pink color with dotted
line the reconstructed signal.

Fig. 5. 7 Estimated Gauss Curves, representative of a typical phytoplankton
biomass dynamics (1989-2014) in the southern bight of the North Sea. Chla

unit is in µg.l−1.

Event characteristics are then compared to abundance in-
formation of 79 labels (Taxonomic Units) derived from an
expert (manual) classification from the IFREMER Quadrige2
database.

Our system is also able to propose an automated identifi-
cation of diversity and richness indexes of each event, and
an automated identification of the most contributed taxonomic
units for each period/state. Table II presents these temporal
characteristics per event. These results permit to define a
climatology 1989-2014: the mean yearly cycle of the phy-
toplankton development corresponds to the succession of 7
phytoplankton communities. For instance, G1 event occurs
from week 1 to week 7 and presents a concentration peak in
Chl-a between the second and third week of the year. Shannon
diversity index during this period ranges from 0.6 to 3.8. This
event is characterized by a co-dominance of 22 taxa out of
which twelve represent 95 percent of the total abundance.
Three events are characterized by one to three taxa (>95 % of
abundance), with very low Shannon index and a dominance
of Phaeocystis Globosa.



A comparison between obtained model from the seasonal
decomposition and obtained models per year shows an im-
portant variability of the number of events, of their shapes
and thus of the Gauss parameters: dates of initiation, ends
of the bloom, duration and value range. Yearly Chlorophyll-
a concentration dynamics is explained by 5 to 14 Gauss
curves. Figure 6 show 2006 year explains by 8 events, clearly
separated in opposite of the mean pattern.

Fig. 6. 8 Estimated Gauss Curves from the Chla 2006-subsequence in the
southern bight of the North Sea. Chla unit is in µg.l−1.

Next, it will be important to consider this variability and to
try to understand the 5 dominant yearly models computed from
an unsupervised spectral clustering [13] that have no evident
succession.

IV. CONCLUSION

Two approaches are detailed in this paper: a fuzzy moving
average completion of univariate time series, and its unsuper-
vised segmentation. This automatic extraction of mixture of
Gauss curves in univariate time series is proposed in order
to detect event and its temporal characteristics (beginning
and end date, peak level). The framework is applied on
Chlorophyll-a series weekly collected in the south bight of
the North Sea, and permits to define automatically a typical
long-term-based seasonal pattern of phytoplankton biomass.
Moreover, for each subpattern we are able to define parameters
of phenology diversity. In particular, three events correspond to
one dominant harmful species, Phaeocystis, in the coastal area.
The method has also been applied to each yearly sequence, and
shows an important variability of the numbers of events. The
future works will consist in understanding and labelling all
these detected events in order to study their dynamics. Then,
the assumption of bell shape has to be relaxed.
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