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Abstract—Missing data are ubiquitous in any domains of
applied sciences. Processing datasets containing missing values
can lead to a loss of efficiency and unreliable results, especially for
large missing sub-sequence(s). Therefore, the aim of this paper is
to build a framework for filling missing values in univariate time
series and to perform a comparison of different similarity metrics
used for the imputation task. This allows to suggest the most
suitable methods for the imputation of marine univariate time
series. In the first step, the missing data are completed on various
mono-dimensional time series. To fill a missing sub-sequence
(gap) in a time series, we first find the most similar sub-sequence
to the sub-sequence before (resp. after) this gap according a
Dynamic Time Warping (DTW)-cost. Then we complete the gap
by the next (resp. previous) sub-sequence of the most similar
one. Through experiments results on 5 different datasets we
conclude that i) DTW gives the best results when considering
the accuracy of imputation values and ii) Adaptive Feature Based
DTW (AFBDTW) metric yields very similar shape of imputation
values similar to the one of true values.

Keywords—Univariate time series; Missing data; Dynamic
Time Warping (DTW); Derivative DTW (DDTW); Dynamic
Time Warping-D (DTW-D); Adaptive Feature Based DTW (AF-
BDTW); Similarity measures.

I. INTRODUCTION

Recent advances in monitoring systems, communication and
information technology, storage capacity and remote sensing
systems make it possible to consider huge spatial and/or
time series databases. However, collected data are usually
incomplete due to sensor failures, communication/transmission
problems or a lack of human measures. This is particularly the
case for marine samples [1], [2]. Ignoring missing data is a
simple solution to deal with this drawback. But this solution
may lead to serious problems, especially for time series data
(the considered values would depend on the past values). First,
there is a loss of information which could lose efficiency
and unreliable results [3]. Second, more seriously, systematic
differences between observed and unobserved data that leads
to biased and unreliable results [4].

Imputation techniques are one prospective approach to solve
problems with missing data [5]. In the litterature, many studies
have been devoted to the imputation task of multivariate time
series, such as [6]–[18] and fewer for univariate time series
with missing data [5], [19]–[22]. Correlation-based method

[23], and machine learning approach [24] are often used for
multivariate series: missing data is filled by the value of its
representative computed from others variables. Dynamic Time
Warping (DTW) [25] approach is used when no information
are available, the idea is to find a similar shape in a database
to fill the missing values. Related works to DTW are cited
below, rare works deal with large gaps in the series.

Hsu et al. [26] used k-Nearest Neighbors (k-NN) and DTW
algorithms for completing DNA data. They also performed
comparing different versions of DTW algorithm for better
prediction and computation performance. Nevertheless, the au-
thors did not mention to complete long missing subsequences.
In [18] a weighted k-NN version is combined with DTW
to compare multiple points in time simultaneously. DTW-
cost is used as distance metric instead of pointwise distance
measurements. Kostadinova et al. [27] proposed an Integrative
DTW-Based Imputation algorithm that is particularly suited
for the estimation of missing values in gene expression time
series data using multiple related information in datasets. This
algorithm identifies an appropriate set of estimation matrices
by using DTW-cost distance in order to measure similarities
between gene expression matrices. Yang et al. [28] also
developed a method to impute missing values in microarray
time-series data based on the combination of k-NN and DTW.
In these three last cited works, the authors applied DTW
method for completing missing values in multivariate data.
Imputation for consecutively missing values in univariate data
is not considered.

According to our knowledge, there is no application for
surveying imputation algorithms with large gap(s) size using
directly DTW in case of univariate time series. A gap is
considering large when the process could have significant
changes during this missing period. In addition, for handing
missing data within univariate time series, we must only rely
on the available values of this unique variable to estimate the
incomplete values. Moritz et al. [22] showed that imputing
univariate time series data is a particularly challenging task.

Therefore, the objective of this paper is to build a framework
for filling missing values in univariate time series and to
perform a comparison of different similarity DTW metrics
used for the imputation task. This allows to suggest the most



suitable methods for the imputation of marine univariate time
series ensuring that results are reliable and high quality.

This paper is organized as follows. Section 2 introduces
materials and methods, including: Data presentation, Elastic
similarity measures, Imputation based on DTW metrics, Impu-
tation performance indicator, and Experiment protocol. Next,
Section 3 demonstrates our experimental results and discussion
for series with large missing subsequence. Conclusions and
future works are drawn in Section 4.

II. MATERIALS AND METHODS

A. Data presentation

Five datasets are used for evaluating the performance of
different DTW versions, including: Cua Ong temperature, Gas
online, Chlorophyll-a, fluorescence, and water level. The last
three datasets are collected by IFREMER (France) in the
eastern English Channel [29].
• Cua Ong temperature in oC - daily mean air temperature

at the Cua Ong meteorological station in Vietnam from
1/1/1973 to 31/12/1999.

• Gas online - weekly data on US finished motor gasoline
products supplied (in thousands of barrels per day) from
8/2/1991 to 4/11/2016 [30].

• Chlorophyll-a (Chla) in µg/L - weekly Chlorophyll-a
time series from 01/1/1989 to 24/12/2014, Ifremer IGA-
Gravelines monitoring [31].

• Water level in m - sampling frequency 20 minutes of
water level from 01/1/2015 to 31/12/2009 [29].

• Fluorescence in FFU - sampling frequency 20 minutes of
fluorescence from 1/1/2005 to 9/2/2009 [29].

In order to obtain useful information from the dataset and
makes the data set easily exploitable, we analyzed these series.
Table I summarizes characteristics of the datasets.

TABLE I
DATA CHARACTERISTICS BY DATASET: NUMBER OF THE DATASET, ITS

NAME, THE NUMBER OF TIME SAMPLES, PRESENCE (Y=YES ELSE N=NO)
OF TREND, PRESENCE OF SEASONAL CYCLE AND SAMPLING FREQUENCY

N0 Dataset name N0 of
instants

Trend
(Y/N)

Seasonal
(Y/N) Frequency

1 Cua Ong temperature 9859 N Y Daily
2 Gas online 1344 Y Y Weekly
3 Chlorophyll-a 1352 N N Weekly
4 Fluorescence 106000 N Y 20 minutes
5 Water level 131472 N Y 20 minutes

B. Elastic similarity measures

Different DTW versions used for univariate time series
imputation (namely, DTW [25], Derivative DTW (DDTW)
[32], DTW-D [33], and AFBDTW (Adaptive Feature Based
DTW) [34]) are studied in this paper.

Dymanic Time Warping algorithm - In general, DTW calcu-
lates an optimal match between two given sequences (e.g. time
series) with certain restrictions. The sequences are non-linearly
"warped" in the time dimension to determine a measure of
their similarity independent of certain non-linear variations in

the time dimension. DTW was initially introduced to recognize
spoken words [25], but it has since been applied to a wide
range of information retrieval and database problems. The
description following is restricted to the most important steps
of the algorithm (see [25], [35] for detailed explanation).

Given two time series X and Y of length n and m
respectively, where: X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , ym}.

The first step is the computation of an n-by-m distance
matrix where each (ith, jth) element corresponds to the dis-
tance measured between xi and yj . Dynamic programming
formulation (1) is used first to determine the cost matrix
Dist(i, j) by a direct pass and then to find the warping path
P by a back pass P = (p1, p2, . . . , pK) with pl = (pi, pj) ∈
[1 : n] x [1 : m] for l ∈[1 : K]; max(n,m) ≤ K ≤ n+m−1.
The alignment cost DTW (x, y) is the last computed cost
DTW (x, y) = Dist(xn, ym).

Dist(i, j) = d(xi, yj) +min{Dist(i− 1, j − 1),

Dist(i− 1, j), Dist(i, j − 1)}
(1)

Derivative Dymanic Time Warping algorithm (DDTW) -
Keogh and Pazzani [32] replaced the signal X by a new vector
X
′
= {x1, . . . , x

′

i, . . . , xn} according to the equation

x
′

i =
(xi − xi−1) +

xi+1−xi−1

2

2
, 1 < i < m (2)

This method takes into account the form of the time series
and the first derivative of the sequences. So, it estimates local
derivatives of the data to find the correct wrapping.

Dymanic Time Warping-D algorithm (DTW-D) - Chen et al.
[33] proposed an other version of DTW by replacing DTW
distances by DTW-D ones devoted to applications of semi-
supervised learning, with

DTW −D(X,Y ) = DTW (X,Y )/ED(X,Y ) (3)

Adaptive Feature Based Dymanic Time Warping algorithm
(AFBDTW) - Xie and Wiltgen considered both the local and
the global features of the series instead of the value itself or its
derivative [34]. For each point in a sequence, a global feature
and a local feature are calculated as following:
• The local feature of a data point xi is defined as a vector

of two components:

flocal(xi) = (xi − xi−1, xi − xi+1) (4)

• Global feature of a data point xi is defined as a vector
of two components::

fglobal(xi) = (xi −
i−1∑
k=1

xk

i− 1
, xi −

n∑
k=i+1

xk

i− 1
) (5)

For evaluate of the distance between xi and yj , instead
of using Euclidian distance d the authors proposed to use
distances d’ following:

d’(xi, yj) = w1 d’local(xi, yj) + w2 d’global(xi, yj) (6)



with w1 and w2 are weights used to adjust the percentage
influence of local and global criterion. In this paper, equal
influence are considered (w1 = w2 = 0.5).

d’
local(xi, yj) = |(flocal(xi))1 − (flocal(yj))1|

+|(flocal(xi))2 − (flocal(yj))2|
(7)

d’
global(xi, yj) = |(fglobal(xi))1 − (fglobal(yj))1|

+|(fglobal(xi))2 − (fglobal(yj))2|
(8)

C. Imputation based on DTW metrics

In this part, we present our method for imputing missing
values of univariate time series data based on DTW metrics.

The approach consists in finding the most similar sub-
sequence (Qs) to a query (Q), with Q is the sub-sequence
before a gap of T size at position t (Q = X[t − T : t − 1]).
Then, we complete this gap by the following sub-sequence of
the Qs. The mechanism is illustrated on the figure 1.

To obtain the Qs similar sub-sequence, we used different
versions of DTWs (as above mentioned). The dynamics and
the shape of data before (resp. after) a gap are key-point of
this technique. The elastic matching is used to find similar
windows to the Q query of T size in the search database. Once
the most similar window is identified, the following window
will be copied to the location of missing values.

In order to decrease the computation time, firstly we de-
ployed the shape-features extraction algorithm ( [36]) and then
applied various DTW algorithms to find imputation values. We
only calculated DTW cost between the query and a reference
window when the correlation between the shape-features of
this window and the ones of the query is very high. The
shape-features extraction algorithm is used because it better
maintains the shape and dynamics of series through 9 global
features (see [36] for more detail) and it is really important
in our framework. In this paper, we just present the finding of
similar windows before the gap. In case of finding similar
windows after the gap, the method just needs to shift the
corresponding index.

D. Imputation performance indicator

To assess accuracy and shape indexes of theses imputation
methods, 6 indicators are computed as following:

1) Similarity - defines the similar percentage between the
imputed value (Y) and the respective true values (X). It
is calculated by:

Sim(Y,X) =
1

T

T∑
i=1

1

1 + |yi−xi|
max(X)−min(X)

(9)

Where T is the number of missing values. A higher sim-
ilarity (∈ [0, 1]) highlights a better ability to complete
missing values.

2) NMAE, the Normalized Mean Absolute Error between
the imputed value Y and the respective true value time
series X is computed as:

NMAE(Y,X) =
1

T

T∑
i=1

|yi − xi|
Vmax − Vmin

(10)

Where Vmax, Vmin are the maximum and the minimum
value of original time series. A lower NMAE means
better performance method for the imputation task.

3) RMSE: The Root Mean Square Error is defined as the
average squared difference between the imputed value
Y and the respective true value time series X. This
indicator is very useful for measuring overall precision
or accuracy. In general, the more effective method would
have a lower RMSE.

RMSE(Y,X) =

√√√√ 1

T

T∑
i=1

(yi − xi)2 (11)

4) FSD: Fraction of Standard Deviation of the imputed
value Y and the respective true value time series X is
defined as follows:

FSD(Y,X) = 2 ∗ |SD(Y )− SD(X)|
SD(Y ) + SD(X)

(12)

This fraction indicates whether a method is acceptable
or not (here SD stands for Standard Deviation). For the
imputation task, if FSD is closer to 0, the imputation
values are closer to the real values.

5) FA2 - represents the fraction of data points that satisfied
smoothing amplitude cover. It is calculated as:

FA2(Y,X) =
length(0.5 ≤ Y

X ≤ 2)

length(X)
(13)

A model is considered perfect when its FA2 is equal to
1.

6) FB - determines whether the predicted values are over-
estimated or underestimated relative to those observed
values.

FSD(Y,X) = 2 ∗ |mean(Y )−mean(X)|
mean(Y ) +mean(X)

(14)

A model is considered perfect when its FB tends to 0.

E. Experiment protocol

For assessing the results of imputation algorithms, we use
a technique based on three steps. In the first step, we create
artificial missing data by deleting data values from completed
time series. The second step consists in applying the impu-
tation algorithms to complete missing data. Finally, the third
step compares the performance of different DTW metrics on
various indicators as previously defined. In the present study,
5 missing data levels are considered on 5 datasets. Gaps are
built at rates 0.6%, 0.75%, 1%, 1.25%, and 1.5% of the data
set size (here missing sequences of the water level time series
correspond to around 10 days (789 NAs) to 1 month (1972



Fig. 1. Illustration of the DTW-completion process: query building (Q) and similar sequence finding (Qs), gap filling.

NAs)). For each gap, the algorithms are conducted 10 times
by randomly selecting the missing positions on the data. We
then run 50 iterations for each data set.

III. EXPERIMENT AND DISCUSSION

Table II, III, V, IV, and VI show average results on 6
indicators (including similarity, NAME, RMSE, FSD, FA2,
and FB) using different DTW versions for completing missing
data applied on 5 time series.

From the results of these tables, we find that DTW metric
provides the best results on the accuracy indexes: the highest
similarity and the lowest NMAE and RMSE at every missing
level for all datasets. However, when considering on other
indexes such as FSD, FA2 and FB (we call shape indexes),
DTW no longer performs well as on the accuracy indicators.

With Cua Ong temperature (table II) and Gas online (table
III) series, DTW still proves its ability on the FB index at all
missing rate. For the remaining datasets (Fluorescence, water
level, Chla datasets), DTW only highlights its performance at
small missing rates.

According to Keogh et Pazzani [32], DDTW method
presents better performance than the original DTW by min-
imizing the number of duplicate points. However, DDTW is
not suitable for handing the imputation task, it does not prove
its ability here.

AFBDTW is proposed in 2010 by Xie and Wiltgen [34].
This method takes into account both the local and global
features of the series for correspondences points instead of the
value itself or its derivative. That is the reason why AFBDTW

TABLE II
AVERAGE IMPUTATION PERFORMANCE INDEXES OF VARIOUS SIMILARITY

METRICS ON CUA ONG TEMPERATURE SERIES

Gap
size Metric Accuracy indexes Shape indexes

1-Sim NMAE RMSE FSD 1-FA2 FB

0.6%

DTW 0.209 0.118 37.001 0.269 0.005 0.083
DDTW 0.232 0.138 43.003 0.333 0.008 0.118
DTW-D 0.273 0.160 48.372 0.307 0.005 0.152
AFBDTW 0.228 0.126 39.099 0.252 0.000 0.103

0.75%

DTW 0.212 0.122 38.033 0.168 0.014 0.090
DDTW 0.237 0.145 44.627 0.200 0.008 0.141
DTW-D 0.270 0.184 53.756 0.267 0.064 0.175
AFBDTW 0.224 0.142 44.297 0.188 0.030 0.131

1%

DTW 0.164 0.099 31.952 0.159 0 0.013
DDTW 0.171 0.106 33.561 0.176 0.008 0.060
DTW-D 0.188 0.123 39.209 0.228 0.010 0.078
AFBDTW 0.173 0.104 33.537 0.125 0.005 0.043

1.25%

DTW 0.150 0.108 34.315 0.151 0.003 0.036
DDTW 0.166 0.124 39.871 0.298 0.002 0.076
DTW-D 0.160 0.119 37.711 0.228 0.008 0.074
AFBDTW 0.155 0.113 36.699 0.181 0.003 0.072

1.5%

DTW 0.141 0.110 35.649 0.124 0.011 0.035
DDTW 0.191 0.164 51.600 0.159 0.020 0.136
DTW-D 0.147 0.115 36.399 0.088 0.005 0.060
AFBDTW 0.142 0.111 36.656 0.102 0.009 0.048

proves the strength for the imputation task at large missing
rates, specially in large datasets.

DTW-D method is proposed for semi-supervisor classifi-
cation. Therefore, when we applied this method to complete



TABLE III
AVERAGE IMPUTATION PERFORMANCE INDEXES OF VARIOUS SIMILARITY

METRICS ON GAS ONLINE SERIES

Gap
size Metric Accuracy indexes Shape indexes

1-Sim NMAE RMSE FSD 1-FA2 FB

0.6%

DTW 0.293 0.094 392.806 0.385 0 0.031
DDTW 0.303 0.100 413.314 0.355 0 0.033
DTW-D 0.336 0.113 457.966 0.438 0 0.031
AFBDTW 0.453 0.237 894.008 0.460 0 0.094

0.75%

DTW 0.287 0.106 452.470 0.328 0 0.031
DDTW 0.330 0.137 560.240 0.484 0 0.051
DTW-D 0.330 0.131 533.966 0.440 0 0.047
AFBDTW 0.455 0.237 891.465 0.351 0 0.095

1%

DTW 0.276 0.115 476.098 0.203 0 0.039
DDTW 0.328 0.146 575.640 0.311 0 0.053
DTW-D 0.315 0.131 545.698 0.174 0 0.046
AFBDTW 0.384 0.227 859.176 0.304 0 0.084

1.25%

DTW 0.288 0.102 433.679 0.266 0 0.028
DDTW 0.299 0.116 473.552 0.325 0 0.036
DTW-D 0.313 0.118 482.555 0.241 0 0.036
AFBDTW 0.300 0.113 457.787 0.341 0 0.037

1.5%

DTW 0.234 0.131 549.911 0.201 0 0.047
DDTW 0.277 0.168 655.410 0.238 0 0.066
DTW-D 0.266 0.149 598.538 0.121 0 0.048
AFBDTW 0.346 0.216 820.442 0.280 0 0.084

TABLE IV
AVERAGE IMPUTATION PERFORMANCE INDEXES OF VARIOUS SIMILARITY

METRICS ON FLUORESCENCE SERIES

Gap
size Metric Accuracy indexes Shape indexes

1-Sim NMAE RMSE FSD 1-FA2 FB

0.6%

DTW 0.160 0.028 1.569 0.531 0.462 0.423
DDTW 0.189 0.032 1.767 1.120 0.662 0.871
DTW-D 0.327 0.067 3.732 0.950 0.740 1.060
AFBDTW 0.198 0.035 1.991 0.853 0.545 0.685

0.75%

DTW 0.187 0.032 1.800 0.616 0.512 0.505
DDTW 0.190 0.034 1.883 1.364 0.731 0.974
DTW-D 0.378 0.101 5.272 1.175 0.802 1.219
AFBDTW 0.212 0.036 2.068 0.654 0.576 0.724

1%

DTW 0.150 0.027 1.579 0.838 0.550 0.711
DDTW 0.172 0.035 1.963 1.411 0.854 1.236
DTW-D 0.295 0.070 3.749 1.122 0.778 1.141
AFBDTW 0.157 0.027 1.606 0.782 0.606 0.800

1.25%

DTW 0.157 0.027 1.655 0.913 0.630 0.794
DDTW 0.175 0.034 1.925 1.415 0.825 1.132
DTW-D 0.362 0.104 5.740 1.218 0.834 1.302
AFBDTW 0.160 0.030 1.756 0.778 0.629 0.744

1.50%

DTW 0.119 0.028 1.689 1.033 0.659 0.790
DDTW 0.123 0.031 1.820 1.270 0.813 0.957
DTW-D 0.259 0.083 4.690 1.042 0.811 1.145
AFBDTW 0.142 0.038 2.319 0.791 0.622 0.656

missing values, DTW-D does not work well in all datasets
at every missing level. Nevertheless, when looking at FSD
indicator in the table III, DTW-D gives the best results at
large gaps (≥ 1%). The reason may be that Gas online series
has both trend and seasonality component.

Besides, the shape of imputation values generated from
methods using various DTW metrics (DTW, DDTW, DTW-

TABLE V
AVERAGE IMPUTATION PERFORMANCE INDEXES OF VARIOUS SIMILARITY

METRICS ON CHLA SERIES

Metric Accuracy indexes Shape indexes

1-Sim NMAE RMSE FSD 1-FA2 FB

DTW 0.308 0.069 4.609 0.597 0.413 0.381
DDTW 0.339 0.091 5.707 0.692 0.463 0.476
DTW-D 0.356 0.090 5.915 0.831 0.450 0.543
AFBDTW 0.386 0.089 5.962 0.759 0.463 0.641

DTW 0.243 0.076 5.136 0.525 0.360 0.311
DDTW 0.254 0.076 5.171 0.582 0.400 0.355
DTW-D 0.303 0.094 6.481 0.897 0.480 0.492
AFBDTW 0.281 0.086 5.876 0.646 0.460 0.535

DTW 0.185 0.071 4.990 0.444 0.393 0.394
DDTW 0.205 0.088 6.207 0.501 0.443 0.468
DTW-D 0.236 0.093 6.557 0.642 0.486 0.637
AFBDTW 0.198 0.086 6.046 0.545 0.450 0.486

DTW 0.187 0.089 6.488 0.812 0.429 0.526
DDTW 0.203 0.103 7.076 0.687 0.500 0.475
DTW-D 0.216 0.105 7.352 0.775 0.518 0.409
AFBDTW 0.222 0.104 7.136 0.686 0.512 0.404

DTW 0.205 0.090 6.226 0.435 0.545 0.408
DDTW 0.216 0.097 6.772 0.407 0.515 0.460
DTW-D 0.218 0.097 6.865 0.655 0.550 0.463
AFBDTW 0.217 0.098 6.721 0.510 0.525 0.376

TABLE VI
AVERAGE IMPUTATION PERFORMANCE INDEXES OF VARIOUS SIMILARITY

METRICS ON WATER LEVEL SERIES

Gap
size Metric Accuracy indexes Shape indexes

1-Sim NMAE RMSE FSD 1-FA2 FB

0.6%

DTW 0.042 0.037 0.401 0.045 0 0.019
DDTW 0.042 0.037 0.402 0.045 0 0.022
DTW-D 0.139 0.141 1.434 0.103 0.059 0.005
AFBDTW 0.079 0.074 0.765 0.051 0.002 0.019

0.75%

DTW 0.037 0.033 0.355 0.017 0 0.009
DDTW 0.042 0.038 0.401 0.019 0 0.010
DTW-D 0.154 0.162 1.624 0.075 0.082 0.010
AFBDTW 0.076 0.073 0.750 0.039 0.008 0.022

1%

DTW 0.033 0.030 0.333 0.026 0 0.012
DDTW 0.034 0.030 0.333 0.027 0 0.014
DTW-D 0.107 0.108 1.141 0.047 0.034 0.013
AFBDTW 0.082 0.080 0.828 0.025 0.009 0.017

1.25%

DTW 0.039 0.035 0.373 0.025 0 0.009
DDTW 0.039 0.035 0.373 0.025 0 0.009
DTW-D 0.086 0.086 0.965 0.034 0.019 0.019
AFBDTW 0.047 0.044 0.471 0.018 0.001 0.009

1.5%

DTW 0.045 0.042 0.442 0.030 0 0.022
DDTW 0.045 0.043 0.450 0.032 0 0.025
DTW-D 0.073 0.073 0.841 0.021 0.012 0.008
AFBDTW 0.061 0.060 0.635 0.020 0.009 0.015

D, AFBDTW) are also analyzed. Fig. 2 presents the form of
imputed values yielded by methods using different similarity
metrics with the true values at position 444, the gap size of 14
(approximate 3 months of missing values) on the Chlorophyll-
a. DTW metric proves again its capability to deal with missing
subsequence. The shape of the imputation values generated
from the method using DTW and the one of true values are



very close.
After the comparison of quantitative and visual perfor-

mance of different DTW versions, we carry out examining
computational time of each metric. Table VII shows that for
large datasets or large gaps, AFBDTW requires the longest
computational time and DTW has at least computing time.

In this paper, we also calculated Cross-Correlation (CC)
coefficients between the query and each reference window and
the maximum coefficient is extracted. CC demonstrates that a
pattern (here that is the query) exists or not in the database.
High CC value means that there exists one or more recurrence
of the pattern in the database, that means: it is easy to find
similar patterns. In Table VIII, we see that only for water level
series, CC values are very high (approximate 1), this explains
why the similarity values are very high and the error index is
very low.

IV. CONCLUSION

This paper proposes a visual and quantitative comparison of
performance between different DTW versions for univariate
time series imputation. The obtained results shows that when
considering the accuracy of imputation values, DTW is the
best robust and when regarding the shape of completed values
for the large gaps and datasets, AFBDTW is more suitable.
The paper highlights two mains contributions. Firstly, we
perform completing large missing subsequences in time series
data. Secondly, we provide a quantitative and visual compar-
ison of different DTW algorithms applied to various datasets.
The present work will allow to measure the imputation values
of multivariate time series in the future.
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Fig. 2. Visual comparison of imputed values using different DTW metrics
with true values on Chla series at position 444 at missing rate 1% (correspond
to 14 weeks missing).
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TABLE VII
COMPUTATIONAL TIME OF METHODS USING DIFFERENT DTW METRICS

AT MISSING RATE 0.6% ON VARIOUS SERIES

Method Cua Ong
temperature

Gas
online Chla Fluores-

cence
Water
level

DTW 12.459 1.670 1.08 774.718 2081.388
DDTW 13.112 1.700 1.07 786.543 2126.847
DTW-D 12.543 1.671 1.10 761.831 2088.375
AFBDTW 62.602 1.539 1.07 14219.51 49095.888

TABLE VIII
THE MAXIMUM OF CROSS-CORRELATION BETWEEN THE QUERY AND

REFERENCE WINDOWS.

Gap
size

Cua Ong
temperature

Gas
online Chla Fluo Water

level

0.6% 0.751 0.921 0.93 0.657 0.997
0.75% 0.762 0.889 0.92 0.694 0.996
1% 0.780 0.819 0.86 0.710 0.996
1.25% 0.789 0.788 0.86 0.753 0.996
1.50% 0.825 0.778 0.87 0.731 0.996

the French government and the region Hauts-de-France in the
framework of the project CPER 2014-2020 MARCO.
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