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ABSTRACT

Missing data are inevitable in almost domains of applied sciences.
Data analysis with missing values can lead to a loss of efficiency
and unreliable results, especially for large missing sub-sequence(s).
Some well-known methods for multivariate time series imputation
require high correlations between series or their features. In this pa-
per, we propose an approach based on the shape-behaviour relation
in low/un-correlated multivariate time series under an assumption of
recurrent data. This method involves two main steps. Firstly, we find
the most similar sub-sequence to the sub-sequence before (resp. af-
ter) a gap based on the shape-features extraction and Dynamic Time
Warping algorithms. Secondly, we fill in the gap by the next (resp.
previous) sub-sequence of the most similar one on the signal con-
taining missing values. Experimental results show that our approach
performs better than several related methods in case of multivariate
time series having low/non-correlations and effective information on
each signal.

Index Terms— Imputation; Uncorrelated multivariate time se-
ries; Missing data; Dynamic Time Warping; Similarity measures.

1. INTRODUCTION

Recent advances in monitoring systems, the availability of effec-
tive low-cost sensors, and the deployment of remote sensing sys-
tems make it possible to consider huge time series and/or spatial
databases. Most proposed methods for analysis of multivariate time
series require complete data but collected data are usually incom-
plete due to sensor failures, communication/transmission problems
or bad weather conditions for manual measures or maintenance. This
is particularly the case for marine samples [1, 2].

For instance, let consider the Marel Carnot station - a marine wa-
ter monitoring platform in the eastern English Channel, France [3],
19 large time series are collected every 20 minutes as fluorescence,
turbidity, oxygen saturation, water level, water temperature signals,
. . . This data contains missing values. The size of consecutive miss-
ing data are various from one hour to few months (too large) and
the phytoplankton bloom dynamics change too fast to use linear or
spline imputation.

A simple rule to deal with missing values is to ignore missing
values. But serious problems often occur using this solution, espe-
cially in the case of time series data (the considered values would
depend on the past ones). An analysis of systematic differences be-
tween observed and unobserved data may lead to biased and unreli-
able results [4]. Imputation techniques are one prospective approach
to solving missing data problems [5].

In the litterature, many successful studies have been devoted to
multivariate time series imputation such as [6–16]. There are 2 meth-

ods of model-based imputation: the first method based on the mul-
tivariate normal (MVN), originally developed by Schafer [6]. MVN
applied Markov chain Monte Carlo algorithm to compute imputed
values under the assumption that all variables follow a multivariate
normal distribution. And, the second method used a chained equa-
tions to complete missing data (MICE) implemented by van Buuren
et al. [7,17] and Raghunathan et al. [8]. For each variable containing
missing values, MICE exploited the conditional distribution of all
the other variables to estimate imputed values.

Besides these two main techniques, machine learning techniques
like Random Forest or K-nearest Neighbors are used to predict miss-
ing values of one series according to the observed series. In this way,
Stekhoven and Bühlmann [18] investigated a random forest-based
method (called missForest). In the [11], Shah et al. implemented a
new version of MICE which imputes each variable using the random
forest method to perform better than the original multiple imputation
methods.

K-Nearest Neighbors (k-NN) imputation fills in missing val-
ues by a function built from the average K similar patterns in the
space of the available features. Four modification versions of k-NN
for high-dimensional imputation were suggested by Liao et al. [12].
In other work, Rahman et al. [13] combined a lagged k-NN with
Fourier methods for the imputation of biomedical time series data.
Other studies combined k-NN algorithms and Dynamic Time Warp-
ing (DTW) to consider a temporal windows around the missing value
or interval: DNA data imputation [19], microarray time-series data
imputation [20], gene expression imputation [21]. Recently, in [16]
a weighted k-NN version was combined with DTW to compare mul-
tiple points in time simultaneously. DTW-cost was used as distance
metric instead of pointwise distance measurements. And, the au-
thors also pointed out that datasets having high correlation between
features are required to outperform Random Forest imputation ap-
proach [16].

Almost above imputation algorithms for multivariate time series
usually exploit the correlations between features to estimate miss-
ing values. These correlations make it possible to use the values
of observed variables to predict the others containing missing data.
However, it is not efficient for multivariate series having low-or un-
correlated features (case of Marel Carnot dataset). For handling
missing values or intervals in this case, we must only rely on the
available values of the unique variable containing missing data to
estimate the incomplete values. Furthermore, it is important to as-
sure an acceptable similarity for each signal within the time series in
the same temporal window.

Therefore, in this paper, we propose an efficient method for fill-
ing missing values in low/un-correlated multivariate time series un-
der an only assumption of effective patterns (here a pattern corre-
sponds to the sub-sequence before (resp. after) a gap).



This paper is organized as follows. Section 2 details the pro-
posed approach and some available multivariate time series imputa-
tion algorithms. Section 3 explains experimental protocol including
data presentation, imputation performance criteria and experimental
process. Next, Section 4 demonstrates results and discussion for the
completion of large missing sub-sequences. Conclusions and future
work are drawn in Section 5.

2. IMPUTATION METHODS

2.1. DTWUMI - Proposed approach

In this part, we present our method for imputing missing intervals of
low/un-correlated multivariate time series data based on DTW met-
ric, named DTWUMI.

A multivariate time series is represented as N ×M matrix X
with M collected signals of size N. x(t, i) is the value of the i-th
signal at time t. xt = {x(t, i), i = 1, · · · ,M} is the vector at the
t-th observation of all variables.

X is referred as incomplete time series when it contains missing
values (or values are Not Available-NA). We define the term gap of
T -size at position t as a portion of X where at least one signal of
X between t and t + T − 1 containing consecutive missing values
(∃i|∀t ∈ [t, t+ T − 1], x(t, i) = NA).

A gap is considered large when T ≥ 5%N for small time series
(N < 10, 000) or when T is larger than known process change (this
depends on each application).

Figure 1 illustrates the mechanism of DTWUMI method. The
approach consists in finding the most similar sub-sequence (Qs) to
a query (Q), with Q is the sub-sequence after (resp. before) a gap.
We then complete this gap by the previous (resp. following) sub-
sequence of the Qs.

To obtain the Qs similar sub-sequence, we apply the principles
of Dynamic Time Warping [22]. The dynamics and the shape of data
after (resp. before) a gap are key point of this technique. Besides,
conserving the same temporal window on all variables is another
important factor of our algorithm. This means we create the query
on all variables Q of size T (see figure 1) and look for the simi-
lar windows in the search database based on the elastic matching of
multidimensional signals. Once the most similar window is identi-
fied, the previous window on the incomplete signal will be copied to
the location of missing values.

In addition, the DTW algorithm requires long computational
time. In order to decrease the computation time, before using DTW
method to estimate imputation values, we deployed the shape-
features extraction algorithm [23]. We only calculate DTW cost
of the query and a reference window when the correlation between
the shape-features of this window and the ones of the query is very
high. The shape-features extraction algorithm is utilized because it
better maintains the shape and dynamics of series through 9 global
features (see [23] for more details).

2.2. Multivariate time series imputation algorithms

We compare our method with several commonly multivariate time
series imputation approaches used state-of-the-art (including MI,
MICE, na.approx, missForest). R language is applied to implement
all these methods.

MI- Multiple Imputation [24]: For each observation in a vari-
able containing missing values, this method predicts imputed value
by finding an observation (from available values) with the closest

predictive mean to that variable. Bayesian models and weakly infor-
mative prior distributions are used to construct more stable estimates
of imputation models; multiple chains are run and convergence is as-
sessed after a pre-specified number of iterations within each chain.

MICE - Multivariate Imputation via Chained Equations
[17]: This method is based on the conditional (on all of other vari-
ables) distribution for each variable containing missing values to
estimate imputed ones under the assumption that the missing data
are missing at random (that means a missing value depends only on
available values and can be estimated based on them).

Linear interpolation - na.approx (zoo package) [25]: This al-
gorithm uses a generic function with interpolated values to estimate
each missing data.

missForest [18]: This approach is based on random forest algo-
rithm for filling in missing data. For each variable missForest builds
a random forest model on the observed part. Then this model is
used to predict missing values in the variable. The algorithm contin-
ues to repeat these two steps until a stopping criterion is met or the
user specified maximum of iterations is reached. For further details
see [18].

3. EXPERIMENT PROTOCOL

To validate our approach and compare with other methods, we con-
duct experiments on 3 different datasets with the same protocol and
gaps detailed as follows.

3.1. Data presentation

Three multivariate time series are handled in this paper. We choose
one from KEEL repository, one simulated dataset (this permits to
control the criterion of correlations and the amount of missing data)
and one real dataset hourly collected by IFREMER (France) in the
eastern English Channel.

NNGC1_F1_V1_003 (NNGC) dataset [26]: This time series
contains transportation data (4 attributes and 1745 instants) includ-
ing highway traffic, traffic data of cars in tunnels, traffic at automatic
payment systems on highways, traffic of individuals on subway sys-
tems, domestic aircraft flights, shipping imports, border crossings,
pipeline flows and rail transportation. The data contains a time se-
ries of hourly frequency.

Simulated dataset: We have created a simulated dataset as
follows: the first signal, 5 sine functions with various frequencies
and amplitudes are generated F = {f1, f2, f3, f4, f5}. Next, we
add 3 different noise levels to F data S = {F, F + noise1, F +
noise2, F + noise3}. Then S data is repeated 4 times (the size of
this dataset is 32,000). The second and third signals are constructed
based on the first signal to satisfy that the correlations between
these series are very low (≤ 0.1%). Corgen function of ecodist
R-package [27] is used for generating the last two signals.

Marel Carnot dataset [3]: These real data contain a set of var-
ious signals such as nitrate, silicate, oxygen saturation, pH, water
temperature, fluorescence, water level,... that characterize sea water.
They are collected from 1/1/2005 to 9/2/2009 at hourly frequency
(and consist of 35,334 time samples). However, this dataset con-
tains a lot of missing values, the number of missing ones is different
from each signal. In order to evaluate the performance of the pro-
posed method and to compare with other methods, we selected a
subset containing water level, fluorescence, and water temperature
(the water level and the fluorescence series are full data, while water
temperature signal has a few missing values). Also, these series have
low correlations.



Fig. 1. Illustration of the DTW-completion process: query building and similar sequence research, gap filling.

After filling in missing data, imputation values will be compared
with observed ones in the full dataset so we need to complete the wa-
ter temperature signal. For guaranteeing "fair-play" to all methods,
we utilized interpolation algorithm to complete these missing data in
the water temperature variable.

3.2. Imputation performance analysis

To assess theses imputation methods, 6 indicators are computed in-
cluding Similarity, R2 score, RMSE (for evaluating the accuracy)
and FSD, FA2, FB (for evaluating the shape).

Similarity defines the similar percentage between the imputed
value (Y) and the respective true values (X). It is calculated by:

Sim(Y,X) =
1

T

T∑
i=1

1

1 + |yi−xi|
max(X)−min(X)

(1)

Where T is the number of missing values. A higher similarity (∈
[0, 1]) highlights a better ability to complete missing values.

R2 score is calculated as the square of coefficient of correlation
between Y and X. A high score implies that imputation values are
very closer to true values.

RMSE - Root Mean Square Error is defined as the average
squared difference between Y and X (eq. 2). This indicator is very
useful for measuring overall precision or accuracy. In general, the
more effective method would have a lower RMSE.

RMSE(Y,X) =

√√√√ 1

T

T∑
i=1

(yi − xi)2 (2)

FSD - Fraction of Standard Deviation between Y and X) de-
fined by eq. 3 indicates whether a method is acceptable or not (here
SD stands for Standard Deviation). For the imputation task, if FSD
is closer to 0, the imputation values are closer to the real values.

FSD(Y,X) = 2 ∗ |SD(Y )− SD(X)|
SD(Y ) + SD(X)

(3)

FA2 represents the fraction of data points that satisfied smooth-
ing amplitude cover (eq. 4). A model is considered impeccable when

its FA2 is equal to 1.

FA2(Y,X) =
length(0.5 ≤ Y

X
≤ 2)

length(X)
(4)

FB - Fractional Bias is defined by eq. 5. When the FB tends to
0, a model is considered perfect.

FB(Y,X) = 2 ∗
∣∣∣∣mean(Y )−mean(X)

mean(Y ) +mean(X)

∣∣∣∣ (5)

3.3. Experiment process

We apply a technique based on three steps to evaluate the results in
the following:

• The 1st step: Create artificial missing data by deleting data
values from completed time series.

• The 2nd step: Use the imputation algorithms to complete
missing data.

• The 3rd step: Assess the performance of proposed method
and compare with published algorithms using the various in-
dicators previously defined.

In the present study, 7 missing data levels are considered on 3
datasets. Gaps are built at rates 1%, 2%, 3%, 4%, 5%, 7.5% and
10% of the dataset size on every signal (here missing sequences on
each variable of the Marel Carnot series correspond to around 15
days (353 consecutive missing) to 5 months (3533 NAs)). For each
missing ratio, the algorithms are conducted 5 times by randomly se-
lecting the missing positions on the data. We then run 35 iterations
for each data set.

4. RESULTS AND DISCUSSION

Table 1 presents the average performance evaluation of different
imputation algorithms for NNGC, simulated and Marel Carnot time
series for the 6 indicators. The best results for each missing rate
are highlighted in bold. These results confirm the good ability of
DTWUMI for filling missing values in uncorrelated multivariate
time series.



NNGC dataset: Table 1 shows a comparison of five imputation
methods on NNGC dataset that has 7 missing ratios (1-10% missing
values). We clearly find that missForest gives the highest similarity,
R2, FA2 and the lowest RMSE at every missing level. MICE is fol-
lowing the missForest method on these indicators. However, when
considering on other indexes such as FSD and FB, missForest only
proves its performance at small missing rates (≤ 3%). At larger
missing levels (4%-7.5%), MICE provides the smallest FB indica-
tor. And at 5%-10% missing rates MI gives best FSD. A lower value
indicates better performance. The results can explain that NNGC
dataset has high correlations between variables (approximate 0.79).
MICE and missForest estimate missing data based on other observed
variables. That is why these algorithms have better results and our
algorithm does not prove its performance when completing datasets
having high correlations. MI is also based on observed values for fill-
ing in missing data but under an assumption that all variables follow
a multivariate normal distribution. So with this dataset, this method
does not give good performance as MICE or missForest.

Simulated and Marel Carnot datasets: From the results of ta-
ble 1, it is clear that missForest, MI, and MICE do not demonstrate
their performance for completing missing data on these two datasets.
For all missing rates, MissForest is ranked the second as considering
similarity and RMSE indexes (the simulation data) and the third or
below for all indicators (Marel Carnot series). Because these two
datasets have very low correlations between variables, especially for
the simulated series which is an almost uncorrelated dataset. That
explains why, DTWUMI illustrates the best ability for imputation
task: the highest similarity, R2, FA2 and the lowest RMSE, FSD
for all missing ratios (table 1 - Simulated dataset). Regarding Marel
Carnot series, this dataset has low correlations (around 0.2), so that
our approach, DTWUMI, does not show the capability to fill in miss-
ing values as it does in the simulated dataset (table 1 - Marel Carnot
dataset). However, this method definitely indicates its imputation
performance when considering similarity, R2, FA2, RMSE indica-
tors at every missing level. In particular, our method further proves
the ability to fill in incomplete data with large missing rates (7.5%
and 10% on Marel Carnot dataset). These gaps correspond to 110.4
and 147.2 days sampled at hourly frequency.

With the NNGC series (table 1), the na.approx method always
produces the worst result for every indicator. On the simulated and
Marel Carnot datasets, this method gives quite good results when
comparing the quantitative performance: the lowest FB and/or FSD
at some missing rates (simulated series), the second rank on similar-
ity, R2, FA2 for all missing ratios (Marel Carnot dataset). However,
when looking at the shape of imputation values generated from of
this method, it absolutely shows the worst shape (figure 2, 3).

In this study, we also carry out comparing the visualization
performance of imputation values generated from different meth-
ods. Figure 2 presents the shape of imputed values yielded by five
different methods on the NNGC series. The missForest approach
proves again the capability to deal with the successive missing of
a correlated dataset. The form of imputation values produced from
missForest method is very close to the form of true values. How-
ever, with low-correlated dataset as Marel Carnot data, missForest
no longer demonstrates its ability (figure 3). In this case, our ap-
proach confirms its performance for the imputation task. The shape
of DTWUMI’s imputed values is almost identical to the form of true
values (figure 3).
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Fig. 2. Visual comparison of imputed values of different imputation
methods with true values on NNGC series with the gap size of 17 on
each signal.

5. CONCLUSION

In this paper, we propose an effective approach for uncorrelated mul-
tivariate time series imputation, namely DTWUMI. We have per-
formed several experiments on artificial and real datasets to demon-
strate the capability of our approach and compared it with published
algorithms (na.approx, MI, MICE, and missForest) on quantitative
and shape indicators. The visual performance of these methods is
also evaluated. The obtained results clearly show that our approach
provides better performance than the other existing methods in case
of time series having low or non-correlations between variables and
large gap(s). However, the proposed algorithm is restricted to ap-
plications with the necessary assumption of recurring data and suf-
ficient large datasets size. The present work will allow combining
DTWUMI with other algorithms (as Random Forest or Deep Learn-
ing) to efficiently complete missing data not only on uncorrelated
datasets but also on any type of multivariate time series in the future.
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