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Abstract

Time series with missing values occur in almost any domain of applied sciences. Ignoring missing values can lead
to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). This paper proposes an
approach to fill in large gap(s) within time series data under the assumption of effective information. To obtain the
imputation of missing values, we find the most similar sub-sequence to the sub-sequence before (resp. after) the miss-
ing values, then complete the gap by the next (resp. previous) sub-sequence of the most similar one. Dynamic Time
Warping algorithm is applied to compare sub-sequences, and combined with the shape-feature extraction algorithm for
reducing insignificant solutions. Eight well-known and real-world data sets are used for evaluating the performance
of the proposed approach in comparison with five other methods on different indicators. The obtained results proved
that the performance of our approach is the most robust one in case of time series data having high auto-correlation
and cross-correlation, strong seasonality, large gap(s), and complex distribution.

Keywords: Imputation, Missing data, Univariate time series, DTW, Similarity

1. Introduction

Recent advances in monitoring systems, communica-
tion and information technology, storage capacity and re-
mote sensing systems make it possible to consider huge
time series databases. These databases have been col-
lected over many years with intraday samplings. How-
ever, they are usually incomplete due to sensor failures,
communication/transmission problems or bad weather
conditions for manual measures or maintenance. This
is particularly the case for marine samples (Rousseeuw
et al. (2013), Ceong et al. (2012)). Incomplete missing
data are problematic (Gómez-Carracedo et al. (2014)) be-
cause most data analysis algorithms and most statistical
softwares are not designed to handle this kind of data.
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CAILLAULT)

Let consider some terminologies and a real marine data
set to illustrate the problem. A time series x = {xt |t =

1, 2, · · · ,N} is a set of N observations successive indexed
in time, occurring in uniform intervals. A single hole at
index t is an isolated missing value where observations at
time t − 1 and t + 1 are available, we note xt = NA (NA
stands for not available). A hole of size T , also called gap,
is an interval [t : t + T − 1] of consecutive missing values
and is denoted x[t : t + T − 1] = NA. We define a large
gap when T is larger than the known-process change, so
it depends on each application. At the MAREL Carnot
station, a marine water monitoring platform in the east-
ern English Channel, France (Lefebvre (2015)), 19 large
time series are collected every 20 minutes as fluorescence,
turbidity, oxygen saturation and so on. These data contain
single and large holes. For example, oxygen saturation se-
ries has 131,472 observations and only 81.9% available.
This series comprises 4,004 isolated missing values and
many consecutive missing data. The size of these gaps are
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various from one hour to few months; the largest gap is a
3,044 points corresponding to 42 days. Single holes and
gaps having T < tide duration-holes (807 missing points)
could be easily replaced by local averages. For the other
gaps, the phytoplankton bloom dynamics or composition
changes too fast to use linear or spline imputation method.

Other classical solution consists in ignoring missing
data or listwise deletion. But it is easy to imagine that this
drastic solution may lead to serious problems, especially
for time series data (the considered values would depend
on the past values). The first potential consequence of this
method is information loss which could lose efficiency
(Noor et al. (2014)). The second consequence is about
systematic differences between observed and unobserved
data that leads to biased and unreliable results (Hawthorne
and Elliott (2005)).

Therefore, it is crucial to propose a new technique to es-
timate missing values. One prospective approach to solve
missing data problems is the adoption of imputation tech-
niques (Junninen et al. (2004)). These techniques should
ensure that the obtained results are efficient (having min-
imal standard errors) and reliable (effective, curve-shape
respect).

According to our knowledge, there is no application
for filling time series data with large missing gap(s) size
for univariate time series. We therefore investigate and
propose an algorithm to complete large gap(s) of univari-
ate time series based on Dynamic Time Wrapping (Sakoe
and Chiba (1978)). We do not deal with all the missing
data over the entire series, but we focus on each large gap
where series-shape change could occur over the duration
of this large gap. Further, the distribution of missing val-
ues or entire signal could be very difficult to estimate, so
it is necessary to make some assumptions. Our approach
makes the assumption that the information about missing
values exists within the univariate time series and takes
into account the time series characteristics.

This paper is organized as follows. First,we discuss the
related work in section 2. The analysis of time series data
is discussed in Section 3. The proposed approach is intro-
duced in Section 4. Experimental results and discussion
on 8 data sets are illustrated in Section 5. Conclusion is
set out in Section 6.

2. Related work

In the literature, missing data mechanisms can be di-
vided into three categories. Each category is based on one
possible cause: "Missing data are completely random"
(Missing Completely At Random, MCAR, in the litera-
ture), "Missing data are random" (Missing At Random,
MAR) and "Missing data are not random" (Not Miss-
ing At Random, NMAR) (Little and Rubin (2014)). It
is important to understand the causes that produce miss-
ing data to develop an imputation task. This can help to
select an appropriate imputation algorithm (Moritz et al.
(2015)). But in practice, understanding the causes re-
mains a challenging task when missing data cannot be
known at all, or when these data have a complex distribu-
tion (Gómez-Carracedo et al. (2014)). Similarly, assign-
ing sub-sequences of missing values to a category can be
blurry (Moritz et al. (2015)). Commonly, most current
research works focus on the three types of missing data
previously defined to find out corresponding imputation
methods. Regarding imputation methods, a large number
of successful approaches have been proposed for complet-
ing missing data.

Concerning the imputation task for multivariate time
series, many studies have been investigated using ma-
chine learning techniques as Shah et al. (2014), Liao et al.
(2014), Rahman et al. (2015) and model techniques such
as Raghunathan and Siscovick (1996), Schafer (1997),
Van Buuren et al. (1999), Raghunathan et al. (2001),
Royston (2007), Joseph et al. (2009), Stuart et al. (2009),
Lee and Carlin (2010), Spratt et al. (2010), Gelman et al.
(2015), Deng et al. (2016). The efficiency of these algo-
rithms is based on correlations between signals or their
features, and missing values are estimated from the ob-
served values. However, handling missing values within
univariate time series data differs from multivariate time
series techniques. We must only rely on the available val-
ues of this unique variable to estimate the incomplete val-
ues of the time series. Moritz et al. (2015) showed that
imputing univariate time series data is a particularly chal-
lenging task.

Fewer studies are devoted to the imputation task for
univariate time series. Allison (2001) and Bishop (2006)
proposed to simply substitute the mean or the median of
available values to each missing value. These simple al-
gorithms provide the same result for all missing values
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leading to bias result and to undervalue standard error
(Crawford et al. (1995), Sterne et al. (2009)). Other im-
putation techniques for univariate time series are linear in-
terpolation, spline interpolation and the nearest neighbor
interpolation. These techniques were studied for missing
data imputation in air quality data sets (Junninen et al.
(2004)). The results showed that univariate methods are
dependent upon the size of the gap in time: the larger
gap, the less effective technique. Walter et al. (Walter.O
et al. (2013)) carried out a performance comparison of
three methods for univariate time series, namely, ARIMA
(Autoregressive Integrated Moving Average), SARIMA
(Seasonal ARIMA), and linear regression. The linear re-
gression method was more efficient and effective than the
other two methods, only when rearranging the data in pe-
riods. This study treated non-stationary seasonal time
series data but it did not take into account series with-
out seasonality. Chiewchanwattana et al. proposed the
Varied-Window Similarity Measure (VWSM) algorithm
(Chiewchanwattana et al. (2007)). This method is bet-
ter than the spline interpolation, the multiple imputation,
and the optimal completion strategy fuzzy c-means algo-
rithms. However, this research only focused on filling one
isolated missing value, but did not consider sub-sequence
missing. Moritz et al. (2015) performed an overview
about univariate time series imputation comparing six im-
putation methods. Nevertheless, this study only consid-
ered the MCAR type.

3. Time series characterization

Filling large gaps within time series requires firstly to
characterize the data. This step permits to extract useful
information from the data set and makes the data set easily
exploitable. The four specific components of time series
are trend, seasonal, cyclical and random change:

1. Trend component: That is the change of variable(s)
in terms of monitoring for a long time. If there ex-
ists a trend within the time series data (i.e. on the
average data), the measurements tend to increase (or
decrease) over time.

2. Seasonal component: This component takes into ac-
count intra-interval fluctuations. That means there is
a regular and repeated pattern of peaks and valleys
within the time series related to a calendar period

such as seasons, quarters, months, weekdays, and so
on.

3. Cyclical component: This component equals the sea-
sonal one, the difference is that its cycle duration is
more than one year.

4. Random change component: This component con-
siders random fluctuations around the trend; this
could affect the cyclical and seasonal variations of
the observed sequence, but it cannot be predicted by
previous data (in the past of time series).

There are different techniques to decompose time series
into components. “Decompose a time series into seasonal,
trend and irregular components using moving averages”
(R-starts package, R Core Team (2016)) is the most com-
mon technique. In this study, we use this technique to
analyze time series data.

Auto-correlation function (ACF) provides an additional
important indication of the properties of time series (i.e.
how past and future data points are related). Therefore, it
can be used to identify the possible structure of time se-
ries data, and to create reliable forecasts and imputations
(Moritz et al. (2015)). High auto-correlation values mean
that the future is strongly correlated to the past. Fig. 1 in-
dicates the auto-correlation of Mackey-Glass chaotic, wa-
ter level and Google data sets in our experiment.

4. The proposed method - DTWBI

In this part, we present a new method for imputing
missing values of univariate time series data.

A time series x is referred as incomplete time se-
ries when it contains missing values (or values are Not
Available-NA). Recall that the portion of a time series be-
tween two points xt and xt+T−1 with xi = NA (i = t :
t + T − 1) is called a gap of T -size at position t. In this
paper, we consider a large gap when T ≥ 6%N for small
time series (N < 10, 000) or when T is larger than the
known-process change.

The proposed approach finds the most similar sub-
sequence (Qs) to a query (Q), with Q (cf. Fig. 2) is
the sub-sequence before a gap of T size at position t
(Q = x[t − T : t − 1]), and completes this gap by the
following sub-sequence of the Qs.

To find the Qs similar sub-sequence, we use the princi-
ples of Dynamic Time Warping - DTW (Sakoe and Chiba
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Figure 1: ACF of Mackey-Glass chaotic, water level and Google time series

(1978)), especially transformed from original data to
Derivative Dynamic Time Warping - DDTW data (Keogh
and Pazzani (2001)). The DDTW data are used because
we can obtain information about the shape of sequence
(Keogh and Pazzani (2001)). The dynamics and the shape
of data before a gap are a key-point of our method. The
elastic matching is used to find a similar window to the
Q query of T size in the search database. Once the most
similar window is identified, the following window will
be copied to the location of missing values. Fig. 2 de-
scribes the different steps of our approach.

The detail of DTWBI (namely DTW-Based Imputa-
tion) algorithm is introduced in Algorithm 1. In the
proposed method, the shape-feature extraction algorithm
(Phan et al. (2016)) is applied before using DTW algo-
rithm in order to reduce the computation time. As we
know DTW time complexity is O(N2), so this is a very
useful step to decrease computation time of DTW method.
A reference window is selected to calculate DTW cost
only if the correlation between the shape-features (also
called the global features) of this window and the ones of
the query is very high. In addition, we apply the shape-
feature extraction algorithm because it better presents the
shape and dynamics of series through 9 elements, such
as moments (the 1st moment, the 2nd moment, the 3rd

moment), number of peaks, entropy, etc (see Phan et al.
(2016) for more detail). This is an important objective of
the proposed method. In Algorithm 1, we just mention the

Figure 2: Diagram of DTWBI method for univariate time series imputa-
tion

finding of similar windows before the gap. In case of find-
ing similar windows after the gap, the method just needs
to shift the corresponding index.
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5. Experimental results and discussion

5.1. Data presentation

In this study, we analyzed 8 data sets in order to eval-
uate the performance of the proposed technique. 4 data
sets come from TSA package (Hyndman and Khandakar
(2008)). These data sets are chosen because they are usu-
ally used in the literature, including Airpassenger, Beer-
sales, Google, and SP. Besides, we also choose other data
sets from various domains in different places:

1. Airpassenger - Monthly total international airline
passengers from 01/1960 to 12/1971.

2. Beersales - Monthly beer sales in millions of barrels,
from 01/1975 to 12/1990.

3. Google - Daily returns of the google stock from
08/20/04 to 09/13/06.

4. SP - Quarterly S&P Composite Index, 1936Q1 -
1977Q4.

5. CO2 concentrations - This data set contains monthly
mean CO2 concentrations at the Mauna Loa Obser-
vatory from 1974 to 1987 (Thoning et al. (1989)).

6. Mackey-Glass chaotic - The data is generated from
the Mackey-Glass equation which is the nonlinear
time delay differential (Mackey and Glass (1977)).

7. Phu Lien temperature - This data set is composed
of monthly mean air temperature at the Phu Lien
meteorological station in Vietnam from 1/1961 to
12/2014.

8. Water level - The MAREL Carnot data in France ac-
quired from 2005 up today. For our study, we focus
on the water level, sampling frequency of 20 minutes
from 01/1/2015 to 31/12/2009 (Lefebvre (2015)).

Table 1 summarizes characteristics of the data sets.

Table 1: Data characteristics

N0 Data set name N0 of
instants

Trend
(Y/N)

Seasonal
(Y/N) Frequency

1 Air passenger 144 Y Y Monthly
2 Beersales 192 Y Y Monthly
3 Google 521 N N Daily
4 SP 168 Y Y Quarterly
5 CO2 concentrations 160 Y Y Monthly
6 Mackey-Glass chaotic 1201 N N
7 Phu Lien temperature 648 N Y Monthly
8 Water level 131472 N Y 20 minutes

5.2. Univariate time series imputation algorithms
The performance of the proposed method compared

with 5 other existing methods for univariate time se-
ries (namely, na.interp, na.locf, na.approx, na.aggregate,
na.spline) is evaluated in this paper. All these methods are
implemented using R language (na stands for Not Avail-
able):

1. na.interp (forecast R-package): linear interpolation
for non-seasonal series and Seasonal Trend decom-
position using Loess (STL decomposition) for sea-
sonal series to replace missing values (Hyndman and
Khandakar (2008)). A seasonal model is fit to the
data, and then interpolation is made on the season-
ally adjusted series, before re-seasonalizing. So, this
method is especially devoted to strong and clear sea-
sonality data.

2. na.locf (last observation carried forward) (zoo R-
package): any missing value is replaced by the
most recent non-NA value prior to it (Zeileis and
Grothendieck (2005)). Conceptually, this method as-
sumes that the outcome would not change after the
last observed value. Therefore, there has been no
time effect since the last observed data.

3. na.approx (zoo R-package): generic function for re-
placing each NA with interpolated values (Zeileis
and Grothendieck (2005)).

4. na.aggregate (zoo R-package): generic function for
replacing each NA with aggregated values. This al-
lows imputing using the overall mean, by monthly
means, etc (Zeileis and Grothendieck (2005)). In our
experiment, we use the overall mean.

5. na.spline (zoo R-package): polynomial (cubic) in-
terpolation to fill in missing data (Zeileis and
Grothendieck (2005)).

5.3. Imputation performance indicators
After the completion of missing values, we assess the

performance of our method, and then compare it with ex-
isting imputation methods based on four different metrics
described as follows:

1. Similarity: S im(y, x) indicates the similarity between
actual data (X) and imputation data (Y). It is calcu-
lated by:

S im(y, x) =
1
T

T∑
i=1

1

1 +
|yi−xi |

max(x)−min(x)

(1)
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Where T is the number of missing values. A higher
similarity (similarity value ∈ [0, 1]) highlights a bet-
ter ability method for the task of completing missing
values.

2. NMAE: The Normalized Mean Absolute Error be-
tween the imputed value y and the respective true
value time series x is computed as:

NMAE(y, x) =
1
T

T∑
i=1

|yi − xi|

Vmax − Vmin
(2)

Where Vmax, Vmin are the maximum and the min-
imum values of input time series (time series has
missing data) by ignoring the missing values. A
lower NMAE means better performance method for
the imputation task.

3. RMSE: The Root Mean Square Error is defined as
the average squared difference between the imputed
value y and the respective true value time series x.
This indicator is very useful for measuring overall
precision or accuracy. In general, the most effective
method would have the lowest RMSE.

RMS E(y, x) =

√√√
1
T

T∑
i=1

(yi − xi)2 (3)

4. FSD: Fraction of Standard Deviation of the imputed
value y and the respective true value time series x is
defined as follows:

FS D(y, x) = 2 ∗
|S D(y) − S D(x)|
S D(y) + S D(x)

(4)

This fraction indicates whether a method is accept-
able or not (here SD stands for Standard Deviation).
For the imputation task, FSD should be closer to 0,
the imputation values are closer to the real values.

5.4. Experiment protocol
Indeed, we could not compare the ability of imputation

algorithms on real missing data because the true values
are not available. Therefore, we have to create simulated
missing gaps on full data to compare the performance of
imputation algorithms. For assessing the results, we use
a technique based on three steps. In the first step, we
create artificial missing data by deleting data values from

known time series. The second step consists in applying
the imputation algorithms to complete missing data. Fi-
nally, the third step compares the performance of the pro-
posed method with published methods using the different
imputation performance indicators as previously defined.

In the present study, 5 missing data levels are consid-
ered on 8 data sets. If the size of a data set (number of
instants of the data set) is less than or equal to 10,000 sam-
ples, we create gaps with different sizes: 6%, 7.5%, 10%,
12.5%, 15% of overall data set size. In contrast, when the
size of a data set is greater than 10,000 sampling points,
gaps are built at rates 0.6%, 0.75%, 1%, 1.25%, and 1.5%
of the data set size (here the largest gap of the water level
time series is 1,972 missing values, corresponding to the
missing rate 1.5%). For each missing rate, the algorithms
are conducted 10 times by randomly selecting the missing
positions on the data. We then run 50 iterations for each
data set.

5.5. Results and discussion

5.5.1. Comparison of quantitative performance
Table 2 shows imputation average results of DTWBI,

na.interp, na.locf, na.approx, na.aggregate, na.spline
methods applied on 8 data sets using 4 indicators: sim-
ilarity, NAME, RMSE, FSD.

• Airpassenger, Beersales, Google, SP data sets

The Airpassenger data set has both trend and season-
ality components. The result from Table 2 indicates that
when the gap size is greater than or equal to 10%, the pro-
posed method has the highest similarity and the lowest
NMAE and RMSE.

On the Beersales data set, considering similarity and
RMSE indicators: na.interp method provides the best re-
sult and the second one is our approach. By contrast
to these two indicators, our method has better results on
NMEA and FSD indicators at any missing rate. When
comparing na.interp method to the na.approx one on the
Airpassenger and Beersales data sets, we can see na.interp
shows better performance than na.approx method on any
indicators and at every level of missing data. It corre-
sponds to the fact that these two data sets have a clear sea-
sonality component. Na.interp method takes into account
the seasonality factor, so it can better handle seasonality

7



than na.approx does, although both algorithms use the in-
terpolation for completing missing data.

On Airpassenger and Beersales data sets, na.aggregate
approach gives less efficient results than na.interp. But on
Google series, na.aggregate method yields the best per-
formance: the highest similarity and the smallest NMEA,
RMSE indicators. Without any trend on this data set,
this method leads to the best result. For SP data set,
na.aggegate method still highlights a good performance
on NMEA and RMSE, but this approach has lower sim-
ilarity than it has on Google series. The na.aggegate
method replaces missing values by overall mean. How-
ever, SP series has a clear trend; therefore, na.aggregate
method seems not to be effective with series having a
strong trend.

In all data sets, FSD value of na.aggregate and na.locf
methods always equals 2, because they use the same value
for all missing data (last value for na.locf method; overall
mean for na.aggregate).

• CO2 concentrations, Mackey-Glass chaotic, Phu
Lien temperature, water level data sets

These data sets have a seasonality component (except
Mackey-Glass chaotic series but this data set is regularly
repeated), without any trend (excluding CO2 concentra-
tions data set) and high auto-correlation. Our method
demonstrates the best ability for completing missing data
on these series: the highest similarity, the lowest NMAE,
RMSE and FSD at any missing level. Furthermore, on
Airpassenger, Beersales, Google and SP data sets, the
similarity of our approach is lower, but the difference
value in this indicator between the proposed method and
the best method is small. On the contrary, for these four
data sets, our method outperforms the existing techniques
on any indicator and at any missing rate. The different
values of these indicators between the proposed method
and the other ones are quite large. The results confirm
that the imputation values generated from the proposed
method are close to the real values on data sets having
high auto-correlation (see Fig. 1, the ACF maximum val-
ues of water and chaotic series are approximate 1), which
means that there is a strong relationship between the avail-
able and the unknown values. Following the proposed
method, the second one is na.aggregate one applied on the
Mackey-Glass chaotic series, Phu Lien temperature and

water level series. As mentioned above (Table 1), these
data sets have no trend, that is why na.aggregate could
demonstrate its ability. However, on the C02 series with
clear trend, fully opposed to these 3 data sets, the perfor-
mance of this method is the worst one.

Although na.interp method is well indicated for han-
dling data sets with seasonality component: here with
these 4 data sets this approach does not illustrate its capa-
bility. It gives the same results as na.approx method and
lower results than our approach and the na.aggregate one
(on the Mackey-Glass chaotic, Phu Lien temperature and
water series). For any data set, na.spline method indicates
the lowest performance. However on the water series, this
method has the least performance for completing missing
values. This means that the spline method is not suitable
for this task.

5.5.2. Comparison of the visual performance
Table 2 indicates the quantitative comparison of 6 dif-

ferent methods for the task of completing missing values.
In this part, Fig. 3, 4, 5, 7, and 8 show the comparison of
visual imputation performance of different methods.

Fig. 3 presents the shape of imputation values
of 5 existing methods (na.interp, na.locf, na.approx,
na.aggregate and na.spline) with the true values at posi-
tion 106, the gap size of 9 on the Airpassenger series. As
we can notice on Table 2, considering low rates of missing
data, the proposed approach is less effective than na.interp
and na.aggregate methods for Airpassenger time series.
However, when looking at Fig. 4, we find that the shape
of the imputation values generated from DTWBI method
is very similar to the shape of true values. Despite high
similarity, low RMSE and NMAE, the shape of imputa-
tion values yielded from na.aggregate method (Fig. 3) is
not as effective as the proposed method (Fig. 4). As an-
alyzed above, the na.interp method better deals with sea-
sonal factor, so their imputed values are asymptotic to the
real values (Fig. 3).

Fig. 5 illustrates the visual comparison of DTWBI im-
putation values and real values on water level series at
position 23,282, and at 0.6% rate of missing values (cor-
responding to 789 missing points). The proposed method
proves again its capability for the task of completing miss-
ing values. We see that the shape of the imputation values
generated from our method and the one of the true values
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Figure 3: Visual comparison of imputed values of different imputation
methods with true values on Airpassenger series at position 106 with the
gap size of 9.
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Figure 4: Visual comparison of imputed values of proposed method with
true values on Airpassenger series at position 106 with the gap size of 9.

are almost completely identical. Fig. 6 shows the match-
ing pairs between the query and the most similar reference
window for the considered case. The values of matching
pairs are very close, which indicates the reason why the
DTWBI imputation values are very similar to the real val-
ues. In contrast to our approach, handling seasonal factor
of na.interp method is ineffective on water level data set.
This method does not provide good result such as on Air-
passenger series (Fig. 3); its performance is the same as
na.approx method (Fig. 7). Fig. 8 especially points out the
obvious inefficiency of na.spline method for the task of
completing missing values, considering series with high
auto-correlation and large gap size (789 missing values in
this case).

In this paper, we also calculate Cross-Correlation (CC)
coefficients between the query with each reference win-
dow, and then we find the maximum coefficient. CC
demonstrates that a pattern (here that is the query) exists
or not in the database. High CC value means that there ex-

ists the recurrence of the pattern in the database. There-
fore, we could easily find the pattern. Table 3 indicates
the maximum of cross-correlation between the query and
reference windows.

Table 3: The maximum of cross-correlation between the query and
reference windows.

Gap size Data set

#1 #2 #3 #4 #5 #6 #7 #8

6% 0.88 0.92 0.58 0.78 0.99 1 0.91 1
7.50% 0.91 0.91 0.55 0.74 0.99 0.99 0.91 1
10% 0.94 0.87 0.5 0.67 0.98 0.99 0.91 1
12.50% 0.95 0.89 0.44 0.65 0.98 0.99 0.9 1
15% 0.95 0.85 0.4 0.65 0.98 0.99 0.9 1

#1-Airpassenger, #2-Beersales, #3-Google, #4-SP, #5-Co2 concentrations
#6-Mackey-Glass chaotic, #7-Phu Lien temperature, #8-water level

This result is fully interpreted: for 4 data sets including
CO2 concentrations, Mackey-Glass chaotic series, Phu
Lien temperature and water level, their cross-correlation
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Figure 5: Visual comparison of imputed values of the proposed method
with true values on water level series at position 23,282 with the gap size
of 789.
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Figure 6: Visual comparison of the query with the similar window on
water level series at position 23,282 with the gap size of 789.
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Figure 7: Visual comparison of imputed values of different methods with
true values on water level series at position 23,282 with the gap size of
789.
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Figure 8: Visual comparison of imputed values of spline method with true
values on water level series at position 23,282 with the gap size of 789.

between the query and reference windows are very high
for each missing level (Table 3). This corresponds to the
results in Table 2: the proposed method yields the high-
est similarity and the lowest NMAE, RMSE, FSD. It also
means that the imputation values generated from DTWBI
method are very close to the true ones. For Google (#3)
and SP (#4) data sets, we see that CC are not high, that
is why our approach does not well prove its ability. With
Airpassenger data set (#1), when CC are greater than or
equal to 0.94, the proposed method highlights better re-
sults than other methods. On Beersales data set (#2), in
case of higher CC, DTWBI gives the best results in case
of lower CC.

From these results, we can notice that the proposed
method gives the best performance in case of high CC co-
efficient (> 0.9). Indeed, CC is an indicator that gives in-
formation about the pattern recurrence in the data. Based
on this indicator, we can predict if one pattern may oc-

cur in the past or in the following data from the posi-
tion we are considering. From the above analyses, we
can see that our algorithm outperforms other imputation
methods when data sets have high auto-correlation and
cross-correlation, no trend, strong seasonality, and com-
plex distribution, especially in case of large gap(s). High
cross-correlation means that these data sets are recurrent,
or in other words, these time series will repeat themselves
over some periods. The drawback of this method is the
computation time. The proposed algorithm may take a
long time to find the imputation values when the size of
the given data is large. The reason is the search for all pos-
sible sliding windows to find a reference window having
the maximum similarity to the query.

6. Conclusion

In this paper, we have proposed a new imputation
method for univariate time series data, namely DTWBI
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method. This methodology has been tested using 8 data
sets: Airpassenger, Beersales, Google, SP, Co2 concen-
trations, Mackey-Glass chaotic, Phu Lien temperature,
and water level. The accuracy of imputation values by
DTWBI is compared with 5 existing methods (na.interp,
na.locf, na.approx, na.aggegate and na.spline) using 4
quantitative indicators (similarity, NMAE, RMSE and
FSD). We also compare the visual performance of these
methods. The experiments show that our approach gives
better results than the other existing methods, and is the
best robust method in case of time series having high
cross-correlation and auto-correlation, large gap(s), com-
plex distribution, and strong seasonality. However, the
proposed framework is restricted to applications where
the necessary assumption of recurring data in the time se-
ries is set up (high cross-correlation indicator), and it re-
quires computation time for very large missing intervals.
The present work will allow to extend the proposed ap-
proach to complete missing values of multivariate time
series data in the future.
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Algorithm 1 DTWBI algorithm
Input: x = {x1, x2, . . . , xN}: incomplete time series

t: index of a gap (position of the first missing of
the gap)

T : size of the gap
θ_cos: cosine threshold (≤ 1)
step_threshold: increment for finding a threshold
step_sim_win: increment for finding a similar

window
Output: y - completed (imputed) time series

1: Step 1: Transform x to DDTW data Dx = DDTW(x)
2: Step 2: Construct a Q query - temporal window be-

fore the missing data Q = Dx[t − T : t − 1]
3: Step 3: Build a search database before the gap:

S DB = Dx[1 : t − 2T ] and deleting all lines contain-
ing missing parameter S DB = S DB\{dx j, dx j = NA}

4: Step 4: Find the threshold
5: i← 1; DTW_costs← NULL
6: while i <= length(S DB) do
7: k ← i + T − 1
8: Create a reference window: R(i) = S DB[i : k]
9: Calculate global feature of Q and R(i): g f Q, g f R

10: Compute cosine coefficient: cos =

cosine(g f Q, g f R)
11: if cos ≥ θ_cos then
12: Calculate DTW cost: cost =

DTW_cost(Q,R(i))
13: Save the cost to DTW_costs
14: end if
15: i← i + step_threshold
16: end while
17: threshold = min{DTW_costs}
18: Step 5: Find similar windows on the SDB
19: i← 1; Lop← NULL
20: while i < length(S DB) do
21: k ← i + T − 1
22: Create a reference window: R(i) = S DB[i : k]
23: Calculate global feature of Q and R(i): g f Q, g f R
24: Compute cosine coefficient: cos =

cosine(g f Q, g f R)
25: if cos ≥ θ_cos then
26: Calculate DTW cost: cost =

DTW_cost(Q,R(i))
27: if cost < threshold then
28: Save position of R(i) to Lop
29: end if
30: end if
31: i← i + step_sim_win
32: end while
33: Step 6: Replace the missing values at the position t

by vector after the Qs window having the minimum
DTW cost in the Lop list.

34: return y - with imputed series
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