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Abstract—2D echocardiography remains nowadays the
main clinical imaging modality in daily practice for as-
sessing the cardiac function. This task requires an accurate
segmentation of the left ventricle (LV) and myocardium
at end diastole (ED) and systole (ES). Because of intrinsic
high variability in image quality in ultrasound data, manual
interactions are still needed to obtain a precise delineation
of the heart structures. This is both time consuming for
specialists and not reproducible. In this study, we investigate
a machine learning solution based on the Structured Random
Forest algorithm to fully automate the segmentation of the
myocardium and LV on heterogeneous clinical data. We
compare its performance to the semi-automatic state of the
art Active Appearance Model (AAM). The competitive results
that were achieved lead us to believe that supervised learning
may be the key to automatic heart segmentation.

Index Terms—2D Echocardiography, Structured Random
Forests, Machine learning, Multiclass segmentation

I. INTRODUCTION AND BACKGROUND

Segmentation in echocardiography has always been a
challenging research theme due to the bad quality of
ultrasound images (low signal to noise ratio, artefacts,
poor contrast, high variability...). Since it is fast, cheap
and safe, this modality remains the most clinically used.
Although 3D images of the heart are now technologically
available, cardiologists generally manually do the seg-
mentation of 2D acquisitions to establish their medical
diagnostic. A reliable and automatic solution would be
a great help in daily examinations. We propose to use
a learning algorithm to tackle the issue of automatically
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obtaining a segmentation map out of ultrasound slices
of the heart.

A. Related work

As described in [1], the heart’s segmentation has for
long been approached with bottom-up algorithms and
active contours, which naturally struggle due to bad con-
trast, fuzzy contours and missing edges [2]. This could
be partially solved by the use of shape priors methods
[3] (active shape models, registration-based techniques)
to produce anatomically plausible shapes [4] [5]. These
however often require supervision or indications from
the cardiologist. [6] For a few years, database-driven
approaches have been more and more applied in med-
ical imaging. This trend born in Computer Vision was
followed with a little inertia because of the difficulty
to construct medical databases. International challenges
such as the 3D cardiac ultrasound left ventricule Cetus
challenge in 2014 provide access to data and allow
direct and meaningful comparisons of algorithms [7].
Machine learning [8] and deep learning approaches [9]
show high potential and are intensively investigated.
In particular, decision trees algorithms [10] [11] were
successfully applied to echography [12] as well as other
modalities [13]. The Structured Random Forests (SRF)
was introduced by [14] in computer vision and extended
by [15] to edge detection. They were later used on the 3D
ultrasound Cetus dataset by [16] and by [17] to compute
edge probabilities of the endocardium i.e the LV border.
Unlike classical Random Forests [11], the SRF predictions



are not noisy. Their outputs correspond to full structures
with clear transitions, as expected in natural images [14].

B. Contributions

The LV ejection fraction, alongside myocardium de-
formations, are primary indicators of heart pathologies.
In cardiac ultrasounds, extracting both global and local
contexts [18] is essential to localize and identify struc-
tures of interest. We believe simultaneously segmentat-
ing several structures would be sign of a good use of
the contextual information and hence of a reliable algo-
rithm. Our additions to the formalism presented in [16]
are the following: first, the modification from an edge
detection approach to a segmentation one, where each
pixel is given a class representing the structure it belongs
to. Second, the incorporation of contextual information
in manually-crafted features, which we found deeply
improved structures’ detection. The resulting method is
able to efficiently and simultaneously provide segmen-
tations for both the left ventricle and the myocardium.

II. MULTICLASS SEGMENTATION BY STRUCTURED
RANDOM FORESTS

A forest is an ensemble of decision trees. Each tree
is able to make a prediction of its own and is built
to be slightly different from the others. That way, the
forest’s average prediction corrects the bias that could
be brought on by over-fitting the training dataset. Each
tree is trained on a random subset of the data and has
access to a limited amount of features.

A. Random Forests for classification

SRF are built in a similar manner as classical Random
Forests (RF) [8], that is by recursively constructing nodes
which split the training data into two subsets according
to their given label Y and their features X. A test h at
node i is defined by a function with a binary outcome
such as :

hi(X, τ) = [X(ki) < τ] (1)

Two purer subsets are obtained by optimizing an infor-
mation gain based cost function at each node to find the
most suitable test dividing a set S into two subsets. We
use the Shannon entropy :

H(S) = ∑y∈Y pylog(py) (2)

To avoid over-fitting, random selection of tested features
Xi (50%) and restricted selection of thresholds τ (only
those seen in the node data) are used. Regularizing
randomness is also included in the data selection used
to train each tree (bagging). A leaf is formed when a
stopping criteria is met (maximal depth, minimal infor-
mation gain or minimal number of data at a node).

B. Structured Outputs
In RF, a tree learns to map pixels to their correspond-

ing class by successive binary tests on features. SRF
differ only in that they do not take pixels as input but
image patches. They predict instead of a single label
a multiclass segmentation patch. Each data patch is
characterized by its segmentation S and its feature vector
Xp. To use an information gain based on entropy as split
quality evaluation, we need to assign a label to patches.
Similar segmentation patches should be associated to the
same label. To do so, we extract the class of pixels chosen
at random to summarize each segmentation patch in a
1D vector. At each node, we apply principal component
analysis (PCA) on the node data. A label is then assigned
according to the sign of the first components and the
medioid patch, closest to mean, is chosen as the leaf’s
subset’s representative.

C. Contextual Features
Inspired by [15], we compute gradient-type features

for every image. A patch is associated to the concatena-
tion of the features of all its pixels, but also to a few
pair-wise differences of features. These are computed
between pairs of pixels to take into account spatial
evolution of edges across the patch. The feature space
includes the intensity at the initial resolution, and the
magnitude of gradient and histogram of gradient (HOG)
computed at several scales. Scales can provide different
contextual information, from local to global. Each scale s
of the image is obtained by downsampling the image by
a factor 2*s and applying a smoothing triangular filter.
The HOG space is divided into 4, resulting in a total of
5 features maps per scale. All are brought back to the
initial resolution by bilinear interpolation.

D. Testing
At test time, we compute the new image features, split

it into patches and submit them to the decision trees
successive binary tests. The prediction for a given patch
is the representative segmentation of the leaf that was
reached. Several trees are trained as independent classi-
fiers and brought together in an ensemble model. The
model’s ensemble strategy is to assign to each pixel the
class that was most voted for. A pixel receives numerous
predictions because each tree will make a prediction
for each patch that contains it. This way the forest
performs a local segmentation where each pixel benefits
from neighboring regions predictions. We observe as in
[14] that the averaging process on structured outputs
smoothes the overall segmentation map.

E. Pre-processing
We preprocess the data so that intensities over a given

image are normalised as in [6]. Post-processing involves
the suppression of supposed false positives by keeping
only the biggest predicted structure for each class.



III. EXPERIMENT AND COMPARISON

A. Database
This study aims at developing an automatic segmenta-

tion solution that would suit clinical needs. We gathered
in collaboration with the University Hospital of Saint-
Etienne a still on-growing database of 250 patients car-
diac cycles, which were segmented by experts at End
Diastoly (ED) and End Systoly (ES). The data represents
daily examinations acquired with a GE vivid E9, from
sick patients to athletes. It is highly heterogeneous not
only due to the heterogeneity in patients but also in size
of images, zoom, angle of view... We divide it in the ED
set, which contains all images at ED, and the ES set to
study the performance of the algorithm on both instants
independently.

B. Settings
For both ED and ES, we use 200 patients as train

subjects to build a multiclass segmentation forest and
the remaining 50 as test subjects. The parameters opti-
mization of the algorithm comes from a previous study
on a different dataset, which acted as a validation set.
We build 8 trees with the first 100 train patients and 8
others on the last 100 patients. The resulting 16 trees are
all able to predict the segmentation on a new image and
have each learnt from 400 000 2D patches. We compute
features at scales 1, 3 and 5 as previously described to
provide local, mid-level and global context. A 2D patch
of size 64 is summarized by 64 randomly selected pixels
and we use the 3 first PCA components to establish
labels. Trees maximum depth is settled at 32 but all trees
ended up with a smaller depth. This means the other
stopping criteria -the minimum number of patches in a
leaf (8) and the minimum information gain (1e-10)- were
predominants. At test time, we extract patches with a
stride of 2 and associate to each pixel the most voted
class from all trees on all patches that contain it.

C. Evaluation
For a meaningful comparison, we compute three met-

rics to account for the segmentation quality and evaluate
robustness : the Dice, the Mean Average Distance (MAD)
and the Hosdorff Distance (HD). Both distances metrics
are computed in mm and relate to the structures borders
: the endocardium for the left ventricule (LV) and the
epicardium for the myocardium (Myo). We chose not to
take into account the metrics outside of the ultrasound
sector where there is no image information.

D. Active Appearance Model
We compare our fully automatic solution to semi-

automatic state of the art Active Shape Model (ASM)
presented in [19]. It requires five initialization points
from the user: 2 at the basis, 1 at the apex and 2 at the
septum. 4 points are on the endocardium border and the
last one initiate the myocardium thickness.

TABLE I
END DIASTOLY

Struct Algorithm Dice HD MAD

LV
AAM 0.90±0.04 7.24±2.77 2.84±1.20

MS-SRF 0.92±0.03 8.20±4.77 2.13±0.91
MS-SRF-r 0.92±0.03 7.41±3.91 2.04±0.86

Myo
AAM 0.92±0.03 7.51±2.37 2.91±1.10

MS-SRF 0.88±0.08 8.51±6.9 2.42±1.95
MS-SRF-r 0.90±0.05 6.73±3.89 2.01±0.85

Fig. 1. Segmentation at ED for a test patient with great contrast. Some
internal structures in the LV can be seen (papillary muscles, atrioventricular
valves) that could lead a classical algorithm astray. The context makes it an
easy-to-solve case for the MS-SRF

E. Results

Tables I and II summarize the results on both datasets
and are followed by visual examples of the SRF seg-
mentation performance where ground truth contours
are dotted (best seen in color). We use the results on
the full test set in our comparison analysis between
Multistructural SRF (MS-SRF) and AAM. Though our
automatic solution performs generally well, there are
6 cases on which it performs significantly worse. This
happens on both ED and ES, which indicates it struggles
on specific patients. The most likely reasons for these
failures are unusual intensity patterns and contrast as
can be observed in figure 3. It is possible that with
more training cases, the algorithm could learn to solve
them. We also display the statistical results that were
obtained without these particular cases (MS-SRF-r), as
an indicator to the potential of this method.

We can infer from our experiments that the SRF pro-
vide a very interesting fully automatic solution for multi-
structures cardiac segmentation as its performance is on

TABLE II
END SYSTOLY

Struct Algorithm Dice HD MAD

LV
AAM 0.89±0.06 6.9±3.04 2.25±1.29

MS-SRF 0.93±0.04 10.23±5.44 2.88±1.44
MS-SRF-r 0.93±0.03 9.04±4.24 2.57±1.17

Myo
AAM 0.93±0.03 6.64±2.16 2.43±0.9

MS-SRF 0.90±0.08 12.71±13.14 3.33±2.53
MS-SRF-r 0.92±0.04 8.77±4.50 2.53±1.16



Fig. 2. Segmentation at ES for a test patient with mi-quality contrast. The
septum border appears clearly, which helps the overall segmentation.

Fig. 3. One of the very difficult case. Very low contrast, unusual intensity
patterns and shape configuration are in our opinion responsible.

par with the semi-automatic AAM. It can solve a large
variety of configurations as can be seen on the visuals.
Thanks to the averaging of local segmentation patches,
the predicted structures are coherent, full and closed.

F. Discussion

The weakness of our algorithm lies in its robustness
to very unusual cases. Though there is definitely need
for further improvement before considering a clinical
application, we deem the results very encouraging. One
way to improve robustness would be to learn a lot more
data, hoping to learn enough variability to cope with
all possible cases. To us, extracting more discriminative
features from the image and/or adding shape priors in
our formalism are the best leads.

IV. CONCLUSION

In this paper, we present the framework of our mul-
ticlass segmentation algorithm which we apply to 2D
echocardiography segmentation. This study is part of a
larger one aiming to use machine learning to develop an
automatic solution to cardiac segmentation.

ACKNOWLEDGMENT

This work was supported by the LABEX PRIMES pro-
gram (ANR-11-LABX-0063) of Universite de Lyon, oper-
ated by the French National Research Agency (ANR).

REFERENCES

[1] G. Carneiro, J.C. Nascimiento, and A. Freitas, “The segmentation
of the left ventricle of the heart from ultrasound data using deep
learning architecture and derivative-based search methods,” IEEE
Transactions on Image Processing, vol.21, no .3, pp. 968–982, 2012.

[2] M. Mulet-Parada, J. A. Noble, ”2D+T acoustic boundary detection
in echocardiography”, Med. Image Analysis, vol. 4, pp. 21-30,
2000.

[3] T. Dietenbeck, M. Alessandrini, D. Barbosa, J. D’Hooge, D. Fri-
boulet, O. Bernard, “Detection of the whole myocardium in 2D-
echocardiography for multiple orientations using a geometrically
constrained level-set,” Med. Image Anal., vol. 16, no. 2, pp. 386-
401, 2012.

[4] N. Paragios, M. P. Jolly, M. Taron, R. Ramaraj, “Active shape mod-
els and segmentation of the left ventricle in echocardiography,”
Proc. Int. Conf. Scale Space Theories PDEs Methods Computer
Vision, vol. 3459, pp. 131-142, Apr. 79 2005.

[5] S. K. Setarehdan, J. J. Soraghan, “Automatic cardiac LV boundary
detection and tracking using hybrid fuzzy temporal and fuzzy
multiscale edge detection,” IEEE Trans. Biomed. Eng., vol. 46, no.
11, pp. 1364-1378, Nov. 1999.

[6] J. G. Bosch, S. C. Mitchell, B. P. F. Lelieveldt, F. Nijland, O. Kamp,
M. Sonka, J. H. C. Reiber, “Automatic segmentation of echocar-
diographic sequences by active appearance motion models,” IEEE
Trans. Med. Imag., vol. 21, no. 11, pp. 1374–1383, Nov. 2002.

[7] O. Bernard, J.G. Bosch, B. Heyde, M. Alessandrini, D. Barbosa et
al., ”Standardized Evaluation System for Left Ventricular Segmen-
tation Algorithms in 3D Echocardiography,” in IEEE Transactions
on Medical Imaging, vol. 35, no. 4, pp. 967-977, April 2016.

[8] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision forests: A
unified framework for classification, regression, density estima-
tion,manifold learning and semi-supervised learning,” Foundat.
Trends Comput.Graph. Vis., vol. 7, no. 2-3, pp. 81–227, 2012.

[9] O. Ronneberger, P. Fischer, T. Brox, ”U-Net: Convolutional net-
works for biomedical image segmentation”, Proc. Med. Image
Comput. Comput.-Assist. Intervention, pp. 234-241, 2015.

[10] A. Criminisi , J. Shotton, “Decision Forests for Computer Vision
and Medical Image Analysis,” Springer Publishing Company,
Incorporated; 2013. p. 387.

[11] V. Lempitsky, M. Verhoek, J. A. Noble, and A. Blake, “Random
forest classification for automatic delineation of myocardium in
real-time 3D echocardiography,” In International Conference on
Functional Imaging and Modeling of the Heart, Springer, Berlin,
Heidelberg June 2009. pp. 447–456

[12] S. Ahmadi, K. Boetzel, C. Hennersperger, C. Kroll, F. Milletari,
and al, “Robust Segmentation of Various Anatomies in 3D Ultra-
sound Using Hough Forests and Learned Data Representations,”
MICCAI. pp 111-118, 2015

[13] A. Criminisi, J. Shotton, S. Bucciarelli, “Decision forests with
long-range spatial context for organ localization in CT volumes,”
MICCAI Workshop on Probabilistic Models for Medical Image
Analysis, September 2009

[14] P. Kontschieder, S. R. Bulo, P. Marcello, H. Bischof, Structured
Labels in Random Forests for Semantic Labelling and Object
Detection, EEE transactions on pattern analysis and machine
intelligence. 2014; pp 2104–2116.

[15] P. Dollar, and C. L. Zitnick. “Fast edge detection using structured
forests.” IEEE transactions on pattern analysis and machine intel-
ligence; 2015. pp.1558–1570.

[16] J. Domingos, R. Stebbing, and J. A. Noble, “Endocardial segmen-
tation using structured random forests in 3D echocardiography,”
Proc MICCAI Chall Echocardiogr Three-Dimens Ultrasound Seg-
mentation CETUS Boston MIDAS J. 2014; pp. 33–40.

[17] O. Oktay, A. Schuh, M. Rajchl, K. Keraudren, A. Gomez, M.
P. Heinrich, et al, “Structured decision forests for multi-modal
ultrasound image registration,” Proc. Medical Image Computing
Computer-Assisted Intervent (MICCAI), pp. 363-371, 2015.

[18] D. Boukerroui, A. Baskurt, J. A. Noble, O. Basset, ”Segmentation
of ultrasound imagesmultiresolution 2-D and 3-D algorithm based
on global and local statistics,” Pattern Recognit. Lett., vol. 24, no.
45, pp. 779-790, Feb. 2003

[19] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance
Models,” IEEE transactions on pattern analysis and machine
intelligence. June 2001, pp. 681-685.

[20] D. Barbosa, T. Dietenbeck, B. Heyde, H. Houle, D. Friboulet,
J. Dhooge, O. Bernard, “Fast and fully automatic 3-D echocar-
diographic segmentation using b-spline explicit active surfaces:
feasibility study and validation in a clinical setting,” Ultrasound
Med. Biol., 39 (2013), pp. 89101


