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We propose a general class of adaptive controllers for leader-follower simultaneous tracking and stabilization of force-controlled nonholonomic mobile robots, under the hypothesis that the leader velocities are either integrable (parking problem), or persistently exciting (tracking problem). For the first time in the literature, we establish uniform global asymptotic stability for the origin of the closed-loop system (in the kinemtacis state space). We also show that the kinematics controller renders the system robust to perturbations in the sense of integral-to state stability. Then, we show that for the case in which the force dynamics equations are also considered (full model), any velocity-tracking controller with the property that the error velocities are square integrable may be used to ensure global tracking or stabilization. This modularity and robustness of our controller, added to the strength of our stability statements, renders direct the extension of our main results to the difficult scenario of control under parametric uncertainty.

Introduction

There exists a considerable bulk of literature on control of mobile robots; a paradigm studied at least since the landmark article on leader-follower tracking control, [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]. Another problem, which is motivated by the well-known Brockett's condition, is that of stabilization to a set-point. As it is well known, nonholonomic robots are not stabilizable to a point via static smooth feedback. As a result, one must employ either discontinuous feedback [START_REF] Astolfi | Discontinuous control of nonholonomic systems[END_REF] or time-varying feedback [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF]. A somewhat hybrid variant of these problems, which inherits the difficulties of both, is that of parking -see [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF]Remark 1]. In this scenario, in addition to following the leader reference trajectories, the latter vanish to a point.

A variety of control techniques have been proposed in the literature to solve either of the three problems enunciated above. For tracking control, in [START_REF] Panteley | Exponential tracking of a mobile car using a cascaded approach[END_REF] were proposed, for the first time, linear controllers with persistency of excitation; the key condition to ensure tracking control being that the reference angular velocity is persistently exciting. While this control approach has been used in other works (e.g., [START_REF] Guo | Adaptive leader-follower formation control for autonomous mobile robots[END_REF]) it is clear that it is not fit for the case of following straight paths, stabilization to a point or parking. On the other hand, for instance in [START_REF] Cao | A time-varying cascaded design for trajectory tracking control of non-holonomic systems[END_REF][START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] nonlinear timevarying controllers are designed to allow for reference velocity trajectories that converge to zero. It is worth to emphasize that [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] covers the case when both the angular and forward velocity may converge to zero.

The simultaneous tracking-stabilization control problem for nonholonomic mobile robots consists in solving, via a unique controller, all of the problems considered above: the tracking scenario, in which reference trajectories do not vanish, set-point stabilization (the reference trajectories are zero), and the parking problem, in which case the leader velocities converge to zero. To the best of our knowledge the simultaneous tracking-stabilization has been addressed only in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF][START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF][START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF][START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF].

In [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] a saturated time-varying kinematic controller is proposed to track the leader trajectories under different scenarios determined by the nature of its velocities. In [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF] a unified velocity controller is proposed to solve the problem under all possible configurations of the leader velocities using the concept of transverse functions. In [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] and [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] a unified force controller is proposed in order to make the tracking error converging to the origin under the tracking and the parking scenarios. In [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], an approach that has the advantage to be simple and well structured, is introduced. It consists in using the combination of a tracking controller and a stabilization controller carefully weighted by a function that depends on the leader velocities. This function may be seen as a smoothed version of a supervisor function which is in charge of switching between two controllers.

Inspired by [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF], in this paper we extend the class of stabilization controllers. Our contributions are the following. To the best of our knowledge, for the first time in the literature we establish uniform global asymptotic stability (UGAS) in the state space of the kinematic errors. In addition to this, our method of proof is original since we provide, also for the first time, strict Lyapunov functions for the tracking scenario. Furthermore, we establish integral input-to-state stability (integral ISS) for the kinematics model. The significance of this result cannot be over-estimated, it leads directly to a general statement for the case in which the full model (kinematics and dynamics) is considered. Indeed, we show that any force controller that guarantees velocity tracking, including under parametric uncertainty, may be easily incorporated. The construction of our Lyapunov functions is based on the techniques developed in [START_REF] Malisoff | Constructions of Strict Lyapunov functions[END_REF] as well as some technical results established in [START_REF] Angeli | Separation principles for input-output and integral-input-to-state stability[END_REF][START_REF] Angeli | A characterization of integral input-to-state stability[END_REF].

The rest of the paper is organized as follows. In Section 2 we formulate the control problem and we present our main theoretical findings. In Section 3 we present the proofs of our main results. Simulations that illustrate our theoretical findings are presented in Section 4 and concluding remarks are given in Section 5.

Problem formulation and its solution 2.1 Problem statement

Let us consider the following dynamical model of a force-controlled nonholonomic vehicle:

ẋ = v cos θ ẏ = v sin θ θ = ω (1) v = f 1 (t, v, ω, z) + g 1 (t, v, ω, z)u 1 ω = f 2 (t, v, ω, z) + g 2 (t, v, ω, z)u 2 (2) 
where v and ω denote the forward and angular velocities respectively, the first two elements of z := [x y θ] correspond to the Cartesian coordinates of a point on the robot with respect to a fixed reference frame, and θ denotes the robot's orientation with respect to the same frame. The two control inputs are the torques u 1 and u 2 . The equations (1) correspond to the kinematics model while (2) correspond to the force-balance equations.

The tracking-control problem consists in making the robot follow a fictitious reference vehicle modeled by

ẋr = v r cos θ r (3a) ẏr = v r sin θ r (3b) θr = ω r , (3c) 
that moves about with reference velocities v r (t) and ω r (t). More precisely, it is desired to steer the differences between the Cartesian coordinates to some values d x , d y , and to zero the orientation angles and the velocities of the two robots, that is, the quantities

p θ := θ r -θ, p x := x r -x -d x , p y := y r -y -d y .
The distances d x , d y define the position of the robot with respect to the (virtual) leader and are assumed to be constant. Then, as it is customary, we transform the error coordinates [p θ p x p y ] of the leader robot from the global coordinate frame to local coordinates fixed on the robot, that is, we define

  e θ e x e y   :=   1 0 0 0 cos θ sin θ 0 -sin θ cos θ     p θ p x p y   . (4) 
In these new coordinates, the error kinematics equations become

ėθ = ω r (t) -ω (5a) ėx = ωe y -v + v r (t) cos(e θ ) (5b) ėy = -ωe x + v r (t) sin(e θ ). (5c) 
The complete system also includes Eqs [START_REF] Angeli | A characterization of integral input-to-state stability[END_REF]. Generally speaking, the control problem consists in steering the error trajectories e(t), solutions of [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], to zero via the inputs u 1 and u 2 in (2). A natural method consists in designing, first, virtual control laws w * and v * so that, 

Then, to design control inputs u 1 and u 2 such that lim t→∞ (ṽ, w) = (0, 0)

where ṽ :

= v -v * , ω := ω -ω * . (8) 
Depending on the conditions on the reference trajectories v r and ω r we identify the following mutually exclusive scenarios:

Tracking scenario (S1): it is assumed that there exist T and µ > 0 such that

t+T t |v r (τ )| 2 + |ω r (τ )| 2 dτ ≥ µ ∀t ≥ 0. ( 9 
)
Stabilization scenario (S2): it is assumed that |v r (t)| + |ω r (t)| → 0 and there exists β > 0 such that, for all t ≥ t • :

t t• |v r (τ )| + |ω r (τ )| dτ < β, ∀t ≥ t • . (10) 

Main result

Under the conditions described above, we design a universal controller that achieves the trajectory tracking objective ( 6), [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] in either of the two scenarios described above. Our contributions are the following:

• we propose a class of control inputs v * and ω * that extends the one proposed in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] to ensure uniform global asymptotic stability of the origin for (5);

• for the velocity error kinematics in closed loop, we establish integral input-to-state stability with respect to the error velocities [ṽ, ω];

• for any control inputs u 1 and u 2 ensuring that ṽ → 0 and ω → 0, we establish global attractivity of the origin provided that the error velocities converge sufficiently fast (they are square-integrable).

The control laws that ensure the properties above are:

v * := v r (t) cos(e θ ) + k x e x , (11) 
ω * := ω r + k θ e θ + k y e y v r φ(e θ ) + ρ(t)k y f (t, e x , e y ) [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF] where φ is the so-called sync function defined by φ(e θ ) := sin(e θ ) e θ , ρ(t) := exp -

t 0 |v r (τ )| + |ω r (τ )| dτ , (13) 
and f : R ≥0 × R 2 → R is a continuously differentiable function defined such that the following hypotheses hold. A1. There exist a non-decreasing function σ 1 : R ≥0 → R ≥0 and σ 2 > 0 such that

max ∂f ∂t , ∂f ∂e x , ∂f ∂e y ≤ σ 1 (| [e x e y ] |) (14) |f (t, e x , e y )| ≤ σ 2 | [e x e y ] |. ( 15 
)
A2. For the function

f • (t, e y ) := f (t, 0, e y ) (16) 
we assume that ∂f • /∂t is uniform δ-persistently exciting with respect to e y that is,

|e y | = 0 =⇒ t+T t ∂f • ∂t (τ, e y ) dτ ≥ µ ∀ t ≥ 0 (17) 
-cf. [START_REF] Loría | δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity[END_REF]Definition 3]. Roughly speaking, the purpose of the function f is to excite the e ydynamics as long as |e y | is separated from zero. The controller [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF], which achieves both the tracking and the stabilization control goals, is a weighted sum of the tracking controller of [START_REF] Maghenem | Lyapunov-based formation-tracking control of nonholonomic systems under persistency of excitation[END_REF],

ω * tra := ω r + k θ e θ + k y e y v r φ(e θ ),
and the stabilization controller in the preliminary version of this paper, [START_REF] Maghenem | Global tracking-stabilization control of mobile robots with parametric uncertainty[END_REF]. That is,

ω * stab := ω r + k θ e θ + k y f (t, e x , e y )
-cf. [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF][START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF].

The weight function ρ(t) acts as a smoothly-switching supervisor promoting the application of either ω * tra or ω * stab , depending on the task scenario S1 or S2. More precisely, from [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] we see that

ρ satisfies ρ = -|v r (t)| + |ω r (t)| ρ (18) 
and ρ → 0 exponentially fast if (9) holds. Hence, the tracking scenario S1 is promoted. If, instead, (10) holds, the reference velocities converge and ρ(t) > exp (-β). Hence, the action of the stabilization controller is favoured.

Remark 1

The idea of so merging the two controllers for the two scenarios S1 and S2 was introduced in [START_REF] Miao | Adaptive control for simultaneous stabilization and tracking of unicycle mobile robots[END_REF]. The class of controllers satisfying A1-A2 covers those in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF]; in particular, the function f is not necessarily globally bounded and may depend only on e y . A more significant contribution with respect to the literature is that we establish uniform global asymptotic stability for (5) in closed-loop with (v, ω) = (v * , ω * ); this is in contrast with [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunov-based approach[END_REF] and [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF] where it is proved that the convergence property (6) holds. In addition, we establish integral ISS of ( 5) with respect to [ṽ, ω].

• Proposition 1 (Main result) Consider the system (5) with v = ṽ + v * , ω = ω + ω * , and the virtual inputs [START_REF] Ioannou | Robust adaptive control[END_REF] and [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]. Let k x , k θ , and k y > 0. Assume that there exist ωr , ωr , vr , vr > 0

such that 1 |ω r | ∞ ≤ ωr , | ωr | ∞ ≤ ωr , |v r | ∞ ≤ vr , | vr | ∞ ≤ vr .
Furthermore, assume that A1-A2 hold. Then, if either (9) or (10) hold the closed-loop system resulting from (5), ( 8), [START_REF] Ioannou | Robust adaptive control[END_REF], and (12) has the following properties: (P1) if ṽ = ω = 0, the origin {e = 0} is uniformly globally asymptotically stable; (P2) the closed-loop system is integral input-to-state stable with respect to η := [ṽ ω] ;

(P3) if η → 0 and η ∈ L 2 , then (6) holds.
The proof is presented in Section 3. Below, we present an example of an adaptive controller that ensures that ṽ, ω → 0 for any once continuously differentiable v * , ω * .

Example

As in [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], we consider mobile robots modeled by ż = J(z)ν (19a)

M ν + C( ż)ν = τ (19b)
where z := [x y θ] contains the Cartesian coordinates (x, y) and the orientation θ of the robot, τ ∈ R 2 corresponds to the (torque) control input; ν := [ν 1 ν 2 ] stands for the angular velocities corresponding to the two robot's wheels, M is the inertia matrix, which is constant, symmetric and positive definite, and C( ż) is the matrix of Coriolis forces, which is skew-symmetric. In addition, we use the coordinate transformation matrix

J(z) = r 2   cos(θ) cos(θ) sin(θ) sin(θ) 1/b -1/b  
where r is the radius of either steering wheel and b is the distance from the center of either wheel to the Cartesian point (x, y). The relation between the wheels' velocities, ν, and the robot's velocities in the fixed frame, ż, is given by

v ω := r 2b b b 1 -1 ν 1 ν 2 ⇔ ν 1 ν 2 = 1 r 1 b 1 -b v ω (20) 
which may be used in (19a) to obtain the familiar model [START_REF] Angeli | Separation principles for input-output and integral-input-to-state stability[END_REF]. We assume that the inertia parameters and the constants contained in C( ż) are unknown while r and b are considered to be known. Let M and Ĉ denote, respectively, the estimates of M and C. Furthermore, let ν

* := [ν * 1 ν * 2 ] , ν * 1 ν * 2 = 1 r 1 b 1 -b v * ω * , (21) 
and let us introduce the certainty-equivalence control law

τ * := M ν * + Ĉ( ż)ν * -k d ν, k d > 0 ( 22 
)
where ν := ν -ν * . Then, let us define M := M -M and C := Ĉ -C, so

τ * := M ν * + C( ż)ν * -k d ν + M ν * + Cν * (23) 
and, setting τ = τ * in (19b), we obtain the closed-loop equation

M ν + [C( ż) + k d I]ν = Ψ( ż, ν * , ν * ) Θ ( 24 
)
where Θ ∈ R m is a vector of constant (unknown) lumped parameters in M and C, Θ denotes the estimate of Θ, Θ := Θ -Θ is the vector of estimation errors, and Ψ :

R 3 × R 2 × R 2 → R m×2 is a continuous known function.
To obtain [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF], we used the property that (19b) is linear in the constant lumped parameters. In addition, we use the passivity-based adaptation law -cf. [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF],

Θ = -γΨ( ż, ν * , ν * )ν, γ > 0. ( 25 
)
Then, a direct computation shows that the total derivative of

V (ν, Θ) := 1 2 |ν| 2 + 1 γ | Θ| 2
along the trajectories of ( 24), [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF], yields

V (ν, Θ) ≤ -k d |ν| 2 .
Integrating the latter from 0 to infinity we obtain that ν ∈ L 2 ∩ L ∞ and Θ ∈ L ∞ . It follows, e.g., from [11, Lemma 3.2.5], that ν → 0 and, in view of [START_REF] Maghenem | Lyapunov-based formation-tracking control of nonholonomic systems under persistency of excitation[END_REF],

lim t→∞ |ṽ(t)| + |ω(t)| = 0. ( 26 
)
3 Proof of the main result

For each scenario, S1 and S2 we establish uniform global asymptotic stability for the closed-loop kinematics equation ( 5) restricted to η = 0 (P1). Then, we establish the iISS with respect to η (P2) by showing that the closed-loop trajectories are bounded under the condition that η is square integrable -cf. [START_REF] Angeli | Separation principles for input-output and integral-input-to-state stability[END_REF].

Under Scenario S1

The proof of Proposition 1 under condition ( 9) is constructive; we provide a strict Lyapunov function. To that end, we start by observing that the error system ( 5), ( 8), ( 11) and ( 12) takes the form ė =A vr (t, e)e + B 1 (t, e)ρ(t)

+ B 2 (e)η, (27) 
where ρ(t) is defined in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF], 

A vr (t, e) :=   -k θ 0 -v r (t)k y φ(e θ ) 0 -k x ω * (t,
Writing the closed-loop dynamics as in ( 27) is convenient to stress that the "nominal" system ė = A vr (t, e)e has a familiar structure encountered in model reference adaptive control. Moreover, defining

V 1 (e) := 1 2 e 2 x + e 2 y + 1 k y e 2 θ , (29) 
we obtain, along the trajectories of ė = A vr (t, e)e,

V1 (e) ≤ -k x e 2 x -k θ e 2 θ .
This is a fundamental first step in the construction of a strict Lyapunov function for the "perturbed" system [START_REF] Panteley | Growth rate conditions for stability of cascaded time-varying systems[END_REF]. Now, to establish the proof in the case of scenario S1, we follow the steps 1 -3 below: 1) We build a strict Lyapunov function V (t, e) for the nominal system ė = A vr (t, e)e. This establishes P1.

2) We construct a function W (t, e) for the perturbed system ė = A vr (t, e)e + B 1 (t, e)ρ.

3) We use W (t, e) to prove integral ISS of ( 27) with respect to η (i.e., P2) as well as the boundedness of the trajectories under the assumption that η ∈ L 2 . This and the assumption that η → 0 implies (6), i.e., P3.

Step 1. We establish UGAS for the nominal system

ė = A vr (t, e)e (30) 
via Lyapunov's direct method2 . Let F [START_REF] Astolfi | Discontinuous control of nonholonomic systems[END_REF] , S [START_REF] Astolfi | Discontinuous control of nonholonomic systems[END_REF] : R ≥0 → R ≥0 , and

P [k] : R ≥0 × R ≥0 → R ≥0 be smooth polynomials in V 1
with strictly positive and bounded coefficients of degree 3 and k respectively. After [19, Proposition 1], there exists a positive definite radially unbounded function

V : R ≥0 × R 3 → R ≥0 defined as V (t, e) := P [3] (t, V 1 )V 1 (e) -ω r (t)e x e y +v r (t)P [1] (t, V 1 )e θ e y , (31) 
and such that

F [3] (V 1 ) ≤ V (t, e) ≤ S [3] (V 1 ), ( 32 
)
where V 1 is defined in [START_REF] Samson | Control of chained system: Application to path following and time-varying point stabilization of mobile robots[END_REF], It is showed in [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF] that the total derivative of V along the trajectories of (30) satisfies

V (t, e) ≤ - µ T V 1 (e) -k x e 2 x -k θ e 2 θ . (33) 
Hence uniform global asymptotic stability of the null solution of (30) follows.

Step 2. Now we construct a strict Lyapunov function for the system ė =A vr (t, e)e + B 1 (t, e)ρ(t).

To that end, we start by "reshaping" the function V defined in (31) to obtain a particular negative bound on its time derivative. Let

Z(t, e) := Q [3] (V 1 )V 1 (e) + V (t, e) (35) 
where

Q [3] (V 1
) is a third order polynomial of V 1 , with a strictly positive coefficients. Then, in view of (33), the total derivative of Z along the trajectories of (30) satisfies

Ż(t, e) ≤ - µ T V 1 (e) -Q [3] (V 1 ) k x e 2 x + k θ e 2 θ . (36) 
Next, we recall that in view of ( 9) ρ(t), which staisfies ( 18) is uniformly integrable. Therefore, for any γ > 0, there exists c > 0 such that 

G(t) := exp -γ t 0 ρ(s)ds ≥ c > 0 ∀t ≥ 0 ( 
+ G(t) ∂ V + Q [3] (V 1 )V 1 ∂e B 1 (t, e)ρ(t) (39) 
Y (t, e) := G(t) µ T V 1 (e) + Q [3] (V 1 ) k x e 2 x + k θ e 2 θ . (40) 
Note that, in view of (37), Y (t, e) is positive definite. We proceed to show that the rest of the terms bounding Ẇ are negative semi-definite. To that end, we develop (dropping the arguments of f (t, e x , e y ) )

∂V ∂e B 1 (t, e) = ∂V ∂V 1 ∂V 1 ∂e B 1 (t, e) -ω r k y f (•) e x + e 2 y -v r P [1] (t, V 1 )k y f (•) [e θ e x + e y ] (41) 
and

∂ Q [3] (V 1 )V 1 ∂e B 1 (t, e) = ∂ Q [3] (V 1 )V 1 ∂V 1 ∂V 1 ∂e B 1 (t, e), (42) 
and we decompose B 1 (t, e) into

B 1 (t, e) =   -k y f (•) 0 0   +   0 0 0 0 0 k y f (•) 0 -k y f (•) 0   e.
Then, since

∂V 1 ∂e   0 0 0 0 0 k y f (•) 0 -k y f (•) 0   e = 0,
it follows that it follows that

∂V 1 ∂e B 1 (t, e) = - ∂V 1 ∂e θ k y f (•) = -e θ f (•).
Thus, using the latter equation, we obtain

Ẇ (t, e) ≤ -Y (t, e) + Ġ(t)Z(t, e) -G(t)ρ(t)f (•) ∂ V + Q [3] (V 1 )V 1 ∂V 1 e θ + v r f (•)G(t)ρ(t)P [1] (t, V 1 ) [-k y e θ e x -k y e y ] + ω r G(t)ρ(t)f (•) -k y e x + k y e 2 y . (43) 
In view of (15) and the boundedness of v r and ω r , there exists a polynomial R [3] (V 1 ) with nonnegative coefficients, such that

R [3] (V 1 )V 1 ≥ -f (•) ∂ V + Q [3] (V 1 )V 1 ∂V 1 e θ + ω r f (•) -k y e x + k y e 2 y + v r f (•)P [1] (t, V 1 ) [-k y e θ e x -k y e y ] . (44) 
Hence, since

V (t, e) ≥ F [3] (V 1 )V 1 -see (32), we obtain Ẇ ≤ -Y (t, e) + Ġ(t)F [3] (V 1 )V 1 + G(t)ρ(t)R [3] (V 1 )V 1 .
On the other hand, in view of (37), Ġ(t) ≤ -γG(t)ρ(t) for any γ > 0 and the coefficients of

F [3] (V 1
) are strictly positive. Therefore, there exists γ > 0 such that

γF [3] (V 1 ) ≥ R [3] (V 1 )
and, consequently, Ẇ (t, e) ≤ -Y (t, e) for all t ≥ 0 and all e ∈ R 3 . Uniform global asymptotic stability of the null solution of (34) follows.

Step 3. In order to establish iISS with respect to η and boundedness of the closed-loop trajectories subject to η ∈ L 2 , we proceed as in [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF]Proposition 4]. Let W 1 (t, e) := ln (1 + W (t, e)) .

(45)

The derivative of W 1 along trajectories of ( 27) satisfies

Ẇ1 ≤ -G m µ T V 1 (e) + Q [3] k x e 2 x + k θ e 2 θ 1 + W (t, e) + ∂W ∂e B 2 η 1 + W (t, e) (46) 
with Then, using the fact that ∂V 1 ∂e B 22 (η)e = 0, defining

G m := exp -γ ∞ 0 ρ(t)dt . Next,
H(e, V 1 ) := Q [3] + P [3] + ∂Q [3] ∂V 1 V 1 + ∂P [3] ∂V 1 V 1 + vr |e θ | |e y | ∂P [1] ∂V 1 , and 
ξ = e θ k y e x , (47) 
we obtain

∂W ∂e B 2 η ≤ H(e, V 1 )|ξ||η| + ωr |e y ||η| + vr P [1] |e y ||η| + ωr V 1 |η| + vr P [1] |e θ ||e x ||η| ≤ H(e, V 1 ) 1 2 |ξ| 2 + 2 |η| 2 + ωr 1 2 V 1 + 2 V 1 |η| 2 + ωr 1 2 V 1 + 2 |η| 2 + vr 1 2 V 1 + 2 P 2 [1] |η| 2 + vr P [1] 1 2 V 1 |e θ | 2 + 2 |η| 2 ≤ H(e, V 1 ) + vr P [1] k 2 y V 1 1 2 |ξ| 2 + [2ω r + vr ] 1 2 V 1 + 2 |η| 2 H(e, V 1 ) + ωr V 1 + ωr + vr P 2 [1] + vr P [1]
.

Next, we choose > 0 such that

H + vr P [1] k 2 y V 1 |ξ| 2 ≤ G m Q [3] k x e 2 x + k θ e 2 θ , 2ω r + vr ≤ G m µ T . Such > 0 exists because Q [3] is a third order polynomial of V 1 with strictly positive coefficients. So (46) becomes Ẇ1 ≤ - G m 2 µ T V 1 (e) + Q [3] k x e 2 x + k θ e 2 θ 1 + W (t, e) + D [3] (V 1 ) 1 + W (t, e) 2 |η| 2 (48) 
where

D [3] (V 1
) is a third order polynomial satisfying

H + ωr V 1 + ωr + vr P 2 [1] + vr P [1] ≤ D [3] .
From the positivity of V , (32), and the definition of W in (38), we have

G m Q [3] (V 1 )V 1 ≤ W (t, e) ≤ S [3] (V 1 )V 1 (49) hence, Ẇ1 ≤ - G m 2 µ T V 1 + Q [3] (V 1 ) k x e 2 x + k θ e 2 θ 1 + S [3] (V 1 ) + D [3] (V 1 ) 1 + G m Q [3] (V 1 ) 2 |η| 2 . ( 50 
)
This implies the existence of a positive constant c > 0 and a positive definite function e → α such that

Ẇ1 ≤ -α(e) + c |η| 2 . ( 51 
)
The result follows from [START_REF] Angeli | A characterization of integral input-to-state stability[END_REF].

Under the scenario S2:

The proof of Proposition 1 under condition [START_REF] Hahn | Stability of motion[END_REF] relies on arguments for stability of cascaded systems as well as on tools tailored for systems with persistency of excitation; it is inspired by the preliminary version of this paper, [START_REF] Maghenem | Global tracking-stabilization control of mobile robots with parametric uncertainty[END_REF].

We start by rewriting the closed-loop equations in a convenient form for the analysis under the conditions of Scenario 2. To that end, to compact the notation, let us introduce f ρ (t, e x , e y ) := ρ(t)f (t, e x , e y ) (52) Φ(t, e θ , e x , e y ) = k θ e θ + k y f ρ (t, e x , e y ) (53)

Then, the closed-loop equations become ė = f e (t, e) + g(t, e)η, η = [ṽ ω] ,

where

f e (t, e) :=   -k θ e θ -k y f ρ -k y v r φ(e θ )e y -k x e x + Φe y + ω r + k y v r φ(e θ )e y e y -Φe x -ω r + k y v r φ(e θ )e y e x + v r sin e θ   , g(t, e) :=   0 -1 -1 e y 0 -e x   .
Following the proof-lines of [27, Lemma 1] for cascaded systems, we establish the following for the system (54): Claim 1. The solutions are uniformly globally bounded subject to η ∈ L 2 , Claim 2. The origin of ė = f e (t, e) is uniformly globally asymptotically stable (i.e., P1).

After [START_REF] Angeli | Separation principles for input-output and integral-input-to-state stability[END_REF] the last two claims together imply integral ISS with respect to η (i.e., P2). Moreover, Claim 1 implies the convergence of the closed-loop trajectories to the origin provided that the input η tends to zero and is square integrable (i.e., P3).

Proof of Claim 1

Let

W (e) := ln(1 + V 1 (e)), V 1 (e) := 1 2 e 2 x + e 2 y . (55) 
The total derivative of V 1 along the trajectories of (54) yields

V1 (e) ≤ -k x e 2 x + |e x ||ṽ| + |v r || sin(e θ )||e y | (56) hence, Ẇ (e) 
≤ 1 1 + V 1 - k x 2 e 2 x + |v r ||e y | + ṽ2 2k x (57) 
≤ |e y | 1 + V 1 |v r | + 1 2k x [1 + V 1 ] ṽ2 . (58) 
Integrating on both sides of (58) along the trajectories, from 0 to t, and invoking the integrability of v r and the square integrability of η we see that W (e(t)) is bounded for all t ≥ 0. Boundedness of e x (t) and e y (t) follows since W is positive definite and radially unbounded in (e x , e y ).

Next, we observe that the ėθ -equation in (54) corresponds to an exponentially stable system with bounded input u(t) = -k y v r (t)φ(e θ (t))e y (t) -k y f ρ (t, e x (t), e y (t)) -ω(t) hence, we also have e θ ∈ L ∞ .

Remark 2 For further development, we also emphasize that proceeding as above from Inequality (57) we conclude that e x ∈ L 2 , uniformly in the initial conditions. •

Proof of Claim 2

We split the drift of the nominal system ė = f e (t, e) into the output injection form:

f e (t, e) = F (t, e) + K(t, e) (59) 
where 

F (t, e) :=   -k θ e θ -k y f ρ (t,
Then, to establish UGAS for the origin of ė = f e (t, e) we invoke the output-injection statement [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]Proposition 3]. According to the latter, UGAS follows if: a) there exist: an "output" y, non decreasing functions k 1 , k 2 , and β: R ≥0 → R ≥0 , a class K ∞ function k, and a positive definite function γ such that, for all t ≥ 0 and all e ∈ R 3 , Uniform global stability is tantamount to uniform stability and uniform global boundedness of the solutions -see [START_REF] Hahn | Stability of motion[END_REF]. The latter was established already for the closed-loop system under the action of the "perturbation" η hence, it holds all the more in this case, where η = 0.

|K(t, e)| ≤ k 1 (|e|)k(|y|) (61) |y(t, e)| ≤ k 2 (|e|) (62) ∞ • γ |y(t)| dt ≤ β(|e(0)|); (63) 
In order to establish uniform stability, we use Lyapunov's direct method. Let R > 0 be arbitrary but fixed.

We claim that, for the system ė = F (t, e), there exists a Lyapunov function candidate V : R ≥0 × R 3 → R ≥0 and positive constants α 1 , α 2 , and α 3 such that

α 1 |e| 2 ≤ V (t, e) ≤ α 2 |e| 2 ∀t ≥ 0, e ∈ R 3 (65) 
∂V (t,e) ∂e ≤ α 3 |e| ∀t ≥ 0, e ∈ R 3 (66)

∂V ∂t + ∂V ∂e F (t, e) ≤ 0 ∀t ≥ 0, e ∈ B R (67) 
where B R := {e ∈ R 3 : |e| ≤ R}. Furthermore, from (64) it follows that

|K(t, e)| ≤ c(R + 1) |v r | + |ω r | |e| ∀ t ≥ 0, e ∈ B R .
Then, evaluating the time derivative of V along the trajectories of (59), we obtain

V (t, e) ≤ ∂V (t, e) ∂e K(t, e) ≤ α 3 c(R + 1) |v r | + |ω r | |e| 2 ≤ α 3 c[R + 1] α 1 |v r | + |ω r | V (t, e) ∀ t ≥ 0, e ∈ B R .
Defining v(t) := V (t, e(t)) and invoking the comparison lemma, we conclude that

v(t) ≤ exp cα 3 [R + 1] α 1 ∞ t• |v r (s)| + |ω r (s)| ds v(t • )
for all initial conditions t • ≥ 0 and e(t • ) generating trajectories e(t) ∈ B R . In view of [START_REF] Hahn | Stability of motion[END_REF], we obtain

|e(t)| 2 ≤ α 2 α 1 exp α 3 c[R + 1] α 1 β |e(t • )| 2
so uniform stability of (59) follows.

It is left to construct a Lyapunov function candidate V for the system ė = F (t, e), that satisfies the conditions (65)-(67). To that end, consider the coordinates

e z = e θ + g(t, e y ) ( 68 
)
where g : R ≥0 × R ≥0 → R ≥0 defined by g(t, e y ) := e -k θ (t-t•) g(t 

V (t, e) ≥ 1 2 c 2 R k θ k x e 2 x + e 2 y + 1 4 e 2 θ V (t, e) ≤ 1 2 c 2 R k θ k x + 2(1 + k y σ 2 ) 2 e 2 x + e 2 y + e 2 θ .
Thus the inequalities in (65) also hold. Condition c. Since the solutions are uniformly globally bounded, for any r > 0, there exists R > 0 such that |e(t)| ≤ R := {|e| ≤ R} for all t ≥ t • , all e • ∈ B r , and all t • ≥ 0. It is only left to establish uniform global attractivity. To that end, we observe that the nominal ė = F (t, e) has the form ėθ = -k θ e θ -k y f ρ (t, e x , e y ) (72a) ėx ėy = -k x Φ θ (t, e x , e y ) -Φ θ (t, e x , e y ) 0

e x e y (72b) 
where, for each e θ ∈ B R , we define the smooth parameterised function Φ θ : R ≥0 × R 2 → R as Φ θ (t, e x , e y ) := Φ(t, e θ , e x , e y ).

Then, the system (72) may be regarded as a cascaded system -cf. [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. Moreover, the system (72a) is input-to-state stable and the perturbation term k y f ρ (t, e x (t), e y (t)) is uniformly bounded. Therefore, in order to apply a statement for cascaded systems, we must establish that the origin of (72b) is globally asymptotically stable, uniformly in the initial conditions (t 

|e y | = 0 =⇒ t+T t Φ• θ (τ, e y ) dτ ≥ µ ∀ t ≥ 0 (73) 
-see [17, Lemma 1].

with m 1 = 0.6227, m 2 = -0.2577, c = 0.2025, r = 0.15, and b = 0.5. The initial conditions are set to [x r (0), y r (0), θ r (0)] = [0, 0, 0] for the reference vehicle and to [x(0), y(0), θ(0)] = [1, 1, 1] for the actual robot. The control gains are set to k x = k y = k θ = 1 and the function f which verifies the assumptions A1 and A2 is designed as f (t, e x , e y ) := p(t)e y with p(t) = 180 sin(0.5t) + 0.5, we notice that both p(t) and ṗ are persistently exciting signals. Therefore, the conditions ( 14), ( 15) and ( 17) hold. The desired distance between the leader and the follower robots is obtained by setting the desired orientation offset to zero and defining [d xr , d yr ] := [0, 0]. The control gains (γ, k d ) are taken equal to (10 -5 , 10) and the initial conditions for the adaptation law [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF] are set to Θ(0) = ( m1 , m2 , ĉ) = (0, 0, 0).

For the stabilization scenario S2, in Figure 3 we depict the system's response in terms of the tracking errors between the leader and the follower; in Figure 4 we depict the torque inputs for the follower robot. The simulation results under the Scenario S1 are shown in Figures 5,6. 

Conclusion

We have provided formal proof of uniform global asymptotic stability for the control of nonholonomic vehicles with generic dynamics. Our approach applies to the mutually exclusive scenarios of tracking control and stabilization (parking). The controller, which acts as a smooth supervisor choosing between two smooth time-varying control laws, covers others proposed in the literature.

The simplicity and modularity of our design seems promising to broach other scenarios such as control under input constraints. Our proofs are constructive for the tracking-control scenario and, moreover, the construction of strict Lyapunov functions makes it possible to extend our designs to the cases of output feedback and parametric uncertainty. While an example of the latter is given, the former is under study. Furthermore, current research is being carried out to relax the standing assumption of integrability of the reference velocities in the stabilization scenario, to allow for slowly-converging reference velocities.

  lim t→∞ e(t) = 0, e = [e θ e x e y ] .

  e) v r (t)φ(e θ ) -ω * (t, e) 0   , B 1 (t, e) :=   -k y f (t, e x , e y ) k y f (t, e x , e y )e y -k y f (t, e x , e y )e x   , B 2 (e) :=

  we decompose B 2 (e)η introduced in (27) into B 2 (e)η := B 21 (η) + B 22 (η)e where B 21 (η) :=

  v r φ(e θ )e y ω r + k y v r φ(e θ )e y e y -ω r + k y v r φ(e θ )e y e x + v r sin e θ   .

  b) the origin of ė = f e (t, e) is uniformly globally stable; c) the origin of ė = F (t, e) is UGAS.Condition a. Using (60), a direct computation shows that there exists c > 0 such that|K(t, e)| ≤ c |e| 2 + |e| | [v r ω r ] |,(64)so (61) holds with k 1 (s) := c(s 2 +s), k(s) := s, and y := [v r ω r ]. Moreover, (62) and (63) hold with γ(s) = s, since [v r ω r ] ∈ L 1 , for a constant functions β and k 2 which, moreover, are independent of the initial state. Condition b.
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 1 Figure 1: Reference velocities v r and ω r for the scenario S2
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 234 Figure 2: Reference velocities v r and ω r for the scenario S1
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 56 Figure 5: Relative errors (in norm) for each pair leader-follower under S1

  ex , e y ) -k x e x + Φ(t, e θ , e x , e y )e y -Φ(t, e θ , e x , e y )e x

  • , e y ) be such that |g(t • , e y )| ≤ |e y | which implies, using Assumption A1, that|g(t, e y )| ≤ (1 + k y σ 2 ) |e y | . Φe x -k y f (t, e x , e y )where f (t, e x , e y ) := f ρ (t, e x , e y ) -fρ (t, 0, e y ). Then, Assumption A1 implies that for any R > 0 there exists a positive constant c R > 0 such that Φex ≤ c R |e x | . Φe x + k y f (t, e x , e y ) (1 + k y σ 2 ) 2 |e y | 2 . e 2 z ≤e 2 θ + 2|e θ ||g(t, e y )| + |g(t, e y )| 2 ≤ 2e 2 θ + 2(1 + k y σ 2 ) 2 |e y | 2 , we see that the following bounds on V follow

	which trivially satisfies (66). Its total time derivative is
	V (t, e) = -	c 2 R k θ	e 2 x -e z k θ e z +	∂g ∂e y
		≤ -	c 2 R k θ	e 2 x -k θ e 2 z -c R |e z ||e x | ≤ 0, ∀e ∈ B R ,
	so (67) holds. Using (70) and the inequalities
	e 2 z ≥ e 2 θ -2|e θ ||g(t, e y )| + |g(t, e y )| 2 ≥	1 2	e 2 θ -
								t
								k y e -k θ (t-s) f (s, 0, e y )ds
								t•
	and, for further development we observe that
		∂g ∂t	(t, e y ) = -k θ g(t, e y ) + k y f ρ (t, 0, e y ).	(69)
	Let g(t (70)
	In the new coordinates, we obtain			
		ėz = -k θ e z -	∂g ∂e y
	max e∈B R	sup t≥0	fρ (t, e x , e y ) , sup t≥0	∂g ∂e y
	Thus, consider the following Lyapunov function candidate
	V (t, e) :=	1 2	c 2 R k θ k x	+ (1 + k y σ 2 ) 2 e 2 x + e 2 y +	1 2	e 2 z	(71)

• , e y ) +

  • , e x• , e y• ) ∈ R ≥0 × R 2 and in the "parameter" e θ ∈ B R . For this, we invoke [17, Theorem 3] as follows. Since k x > 0 there is only left to show that Φ • θ (t, e y )e y , whereΦ • θ (t, e y ) := Φ θ (t, 0, e y ),is uniformly δ-persistently exciting with respect to e y , uniformly for any θ ∈ B R -cf. [17, Definition 3],[START_REF] Loría | Uniform exponential stability of linear time-varying systems: revisited[END_REF]. Since Φ • θ is smooth, it suffices to show that for any |e y | = 0 and r, there exist T and µ such that

For a continuous function t → ϕ we define |ϕ(t)|∞ := sup t≥0 |ϕ(t)|.

This proof of uniform stability replaces the corresponding one proposed in[START_REF] Maghenem | Global tracking-stabilization control of mobile robots with parametric uncertainty[END_REF], which is incorrect.
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 Remark 3In general, µ depends both on e θ and on e y , but since e θ ∈ B R and B R is compact, by continuity, one can always choose the smallest qualifying µ, for each fixed e y . Therefore, as in [START_REF] Loría | δ-persistency of excitation: a necessary and sufficient condition for uniform attractivity[END_REF], µ may be chosen as a class K function dependent of |e y | only.

• Now, we show that (73) holds under Assumption A2. To that end, we remark that

-cf. Eq. ( 53), satisfies

where we used ėθ = -Φ and ėy = Φe x . Therefore, defining

The latter equation corresponds to that of a linear filter with state Φ This concludes the proof of UGAS for the nominal system ė = f e (t, e) hence, Claim 2. is proved.

This completes the proof of Proposition 1.

Simulations

To illustrate our main theoretical results we performed some simulation tests under Simulink TM of Matlab TM . Firstly, we define the reference velocities v r and ω r as a functions that converge to zero exponentially, according to the scenario S2 -see Figure 1. Then, in order to illustrate the performance of our controller under the first scenario S1 we design the leader reference velocities such that their norm is persistently exciting -see Figure 2. The robot's physical parameters are taken from [START_REF] Fukao | Adaptive tracking control of a nonholonomic mobile robot[END_REF]: