Ninon Fétique 
  
Keywords: MSC Classification 2010: 60F17, 60J05, 60J25, 60J75 Piecewise-deterministic Markov process, long time behaviour, chemotaxis model

research documents, whether they are published or not. The documents may come    

Long-time behaviour of generalised Zig-Zag process

Introduction

Piecewise-deterministic Markov processes (PDMPs) have been introduced by Davis ( [START_REF] Davis | Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models[END_REF]) to distinguish these particular processes from diffusive processes. They are the subject of much current work in various domains, since they are a simple alternative to diffusions to model stochastic systems (see [START_REF] Azaïs | Piecewise deterministic Markov process -recent results[END_REF] for an overview of recent results on PDMPs). In this paper, we study a PDMP that comes from biological modeling for the motion of flagellated bacteria which are in presence of a chemo-attractant. The motion of such a bacterium has been described as runand-tumble, which means that the bacterium alternates sequences of linear runs with periods of random reorientation (tumbling). The tumble-periods being typically much shorter than the run-periods, we can suppose them to be instantaneous. Moreover, the presence of a chemoattractant in the environment of the bacterium influences the rate at which the bacterium changes its direction, and also the new direction it takes (see [START_REF] Othmer | Models of dispersal in biological systems[END_REF] for more details on the model). More precisely, we consider the PDMP ((X t , V t )) t≥0 with values in E = R d × B [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF], where B(1) = v ∈ R d , |v| ≤ 1 is the Euclidian ball of radius 1, with infinitesimal generator given by, for h in the domain of L (see [START_REF] Davis | Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models[END_REF] for a definition of the domain of the infinitesimal generator):

Lh(x, v) = v • ∇ x h(x, v) + λ(x, v) B(1) (h(x, v ) -h(x, v)) Q(x, v, dv ), (1) 
where Q(x, v, •) is a probability kernel on B(1). We call this process "generalized Zig-Zag process" since it is a generalization of the Zig-Zag process studied in [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF] and [START_REF] Bierkens | The Zig-Zag process and super-efficient sampling for bayesian analysis of big data[END_REF], in the sense that we do not any more have a velocity with values in {-1, 1} d , but in B(1).

In our model, X t represents the position of a bacterium at instant t, and V t its velocity. The form of the generator indicates that the first component X is continuous and evolves according to dXt dt = V t , whereas V is constant during a random time, and jumps according to the kernel Q at rate λ(x, v) when (X t , V t ) = (x, v). The fact that the motion of the bacterium is biaised by the presence of a chemo-attractant will be taken into account in the assumptions we will make further on the jump rate λ and the velocity kernel Q. In this paper, we are interested in the long-time behaviour of the process driven by [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF] under some good assumptions.

Many special cases of this process, driven by [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF], have already been studied in different ways and under different assumptions. Let first mention some works on the process in dimension 1 with a modeling point of view: in [START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF], Fontbona, Guérin and Malrieu have shown the exponential ergodicity of the process with a jump rate equal to a1 xv≤0 + b1 xv>0 with b > a > 0, and the velocity taking its values in {-1, +1}. For this, they give an exact description of the excursions of the process away from the origin and give an explicit construction of a coalescent coupling for both velocity and position. In [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] and [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF], the previous result has been extended by considering a more general jump rate, depending on the position and the velocity of the bacterium. Calvez, Raoul and Schmeiser have shown in [START_REF] Calvez | Confinement by biased velocity jumps: aggregation of escherichia coli[END_REF] by an analytical method the exponential ergodicity of the process driven by [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF] in the particular case where the kernel Q is the uniform kernel on [-1, 1], and under similar assumptions to the ones introduced here (see Section 5). Furthermore, there exist also results for this process in high dimension. We can for instance cite [START_REF] Bierkens | The Zig-Zag process and super-efficient sampling for bayesian analysis of big data[END_REF], in which Bierkens, Fearnhead and Roberts study the Zig-Zag process, that is the process with values in R d × {-1, +1} d . They prove its ergodicity in the case where it can be seen as a product of independent one-dimensional Zig-Zag processes. Then, Bierkens, Roberts and Zitt generalize these results in [START_REF] Bierkens | Ergodicity of the zigzag process[END_REF], not considering only the case of a product of one-dimensional Zig-Zag process. In [START_REF] Bouchard-Côté | The Bouncy Particle Sampler: a nonreversible rejection-free Markov chain Monte Carlo method[END_REF], [START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF] and [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF], the authors are interested in the ergodicity of the bouncy particle sampler, with values in

R d × R d or R d × S d-1
, where S d-1 is the unit sphere of R d . This PDMP is a particular case of the process driven by (1): for instance in [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF], the jump rate is given by λ(x, v) = (v • ∇ x U (x)) + , where U is a potential, and at each jump, the velocity is reflected according to optical laws on the level set of U it has reached. Recently, a new model have been studied: in [START_REF] Wu | The Coordinate Sampler: a non-reversible Gibbs-like MCMC sampler[END_REF], Robert and Wu introduce the coordinate sample, which is a variant of the Zig-Zag process, since the velocity does not live in {-1, +1} d but in {e i , 1 ≤ i ≤ d} the canonical base of R d . For this process, only one component of the position evolves between the jumps. The authors show in the paper the exponential ergodicity of this process under some conditions. Finally, let us mention that the study of this kind of processes has an interest not only for biological modelling, but also for simulating a target distribution. In fact, almost all of the recent study in dimension d do this for the sampling. Let us refer to [START_REF] Bierkens | The Zig-Zag process and super-efficient sampling for bayesian analysis of big data[END_REF][START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF][START_REF] Bierkens | Ergodicity of the zigzag process[END_REF][START_REF] Bouchard-Côté | The Bouncy Particle Sampler: a nonreversible rejection-free Markov chain Monte Carlo method[END_REF][START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF][START_REF] Durmus | Geometric ergodicity of the bouncy particle sampler[END_REF][START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF][START_REF] Wu | The Coordinate Sampler: a non-reversible Gibbs-like MCMC sampler[END_REF], where the authors want to sample from a distribution with a density proportional to e -U , where U is a potential on R d . For a jump rate λ and a jump kernel Q well chosen (with respect to U ), the PDMP converges towards the targeted distribution. The estimation of the speed of convergence to equilibrium of these processes gives then information on the efficiency of the corresponding algorithms to sample from the target distribution. Comparisions of the efficiency of the different samplers are done in [START_REF] Andrieu | Hypercoercivity of Piecewise Deterministic Markov Process-Monte Carlo[END_REF] and [START_REF] Wu | The Coordinate Sampler: a non-reversible Gibbs-like MCMC sampler[END_REF] for instance. An interest of considering PDMPs to catch a distribution is the irreversibility of PDMPs. Indeed, while many Markov chain Monte Carlo (MCMC) methods rely on realisations from a discrete reversible ergodic Markov chain, it has been observed that non-reversibility often implies favourable convergence properties (see for instance [START_REF] Hwang | Accelerating diffusions[END_REF][START_REF] Lelièvre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF]). Moreover, PDMPs have the advantage to be easy to sample, and can even in some cases being simulated without discretisation error.

Framework

Let us now introduce the framework of the paper. Denoting by x • v the scalar product of x ∈ R d and v ∈ R d , and |x| the Euclidian norm of the vector x, the assumptions made on the model are the following:

(H 1 ) : There exists λ min > 0 such that for all (x, v) ∈ E, λ(x, v) ≥ λ min ; (H 2 ) : The quantity λ max = sup {(x,v)∈E : x•v≤0} λ(x, v) is finite; (H 3 ) : There exists p > 0, θ 0 , θ ∈ (0, 1] such that for all (x, v) ∈ E satisfying x•v |x| > -θ, {v ∈V : x•v |x| ≤-θ 0 } Q(x, v, dv ) ≥ p; (H 4 ) : There exists θ * ∈ 0, (pθ 0 ) 2 λ min λmax , β > 1 (pθ 0 ) 2 and ∆ > 0 such that inf { x•v |x| ≥θ * ,|x|≥∆} λ(x, v) ≥ βλ max .
Assumptions (H 1 ) and (H 2 ) mean that the jump rate is uniformly bounded by below, and that it is bounded from above when the bacterium is moving towards 0, where the chemoattractant is assumed to be. The existence of the lower bound λ min is here to ensure the irreducibility of the process. We refer to Section 1.3 of [START_REF] Bierkens | Ergodicity of the zigzag process[END_REF] for illustrations of the difficulties if the switching rate λ can be zero. Assumptions (H 3 ) and (H 4 ) reflect the attraction of the bacterium to the origin. Indeed, in Assumption (H 3 ), we suppose that if the bacterium does not "enough" go towards the origin, when a jump happens, it has a chance to go towards it. Moreover, in Assumption (H 4 ), we assume a kind of monotonicity of the jump rate. Roughly speaking, we suppose that when the bacterium is far from the origin, and goes in a too bad direction, its jump rate is strictly bigger than λ max , which is the maximum of the jump rate when the bacterium is coming closer the origin. Assumptions (H 1 ), (H 2 ) and (H 4 ) appear in the works [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF][START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF][START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF]. However, in these papers, there is no assumption equivalent to (H 3 ). But it is in fact normal: the Zig-Zag process has a velocity in {-1, 1}, and thus, as soon as the bacterium goes in a bad direction, the jump makes it go towards the origin, and the assumption is in fact satisfied. All of these assumptions seem to be reasonable for the modelling of the motion of bacteria as described above.

Remark 1.1. We only consider the case of the speed in the ball unit ball of R d , but the results can easily be adapted if the speed lies in a compact set K of R d . Moreover, although we could hope to obtain similar results with an unbounded velocity (with probably other assumptions on the jump rate), we do not deal with this case since it is not really relevant from a modelling point of view.

Under these assumptions, we can show the exponential ergodicity (see Section 2 for the definition) of the generalized Zig-zag process (X, V ). Theorem 1.2. Let (X t , V t ) t≥0 be a PDMP on E = R d × B(1) with infinitesimal generator given by (1). If λ and Q satisfy Assumptions (H 1 ), (H 2 ), (H 3 ) and (H 4 ), then the process is exponentially ergodic.

In Figure 1, we can observe the convergence of the empirical law of (X t ) t≥0 in the case

λ(x, v) = 1 xv<0 + 21 xv≥0 and Q(x, v, dv ) = 1 2 1 [-1,1] (v )dv .
The interest of this convergence result in relation to those already existing is that it concerns a very general class of PDMPs. The approach we will carry out in Section 3 to prove Theorem 1.2 is the classical method of Meyn and Tweedie ([14,[START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Meyn | Stability of markovian processes iii: Foster-Lyapunov criteria for continuous-time processes[END_REF]), by showing the existence of a Lyapunov function for the process, and the existence of petite sets. In Section 2, we thus first briefly recall the generalities about ergodicity of Markov processes. Then, we will study in Section 4 the existence of exponential moments for the invariant measure in Theorem 4.2. For this purpose, we will use a convergence result on semi-regenerative processes, since our PDMP is such a process. Finally, we will go back to the particular case of the dimension 1 in Section 5, in which we study our process with a different approach than in Section 3. In particular, in this section, we will assume that the jump kernel does not depend on the position of the bacterium. Thus, Figure 1: Empirical distribution of X t starting at (5, -1) for t ∈ {0.5, 5, 10, 17, 30, 40} with

λ(x, v) = 1 xv<0 + 21 xv≥0 and Q(x, v, dv ) = 1 2 1 [-1,1] (v )dv .
only the jump rate will favour the return towards the origin, and therefore the ergodicity of the process. We will establish in Theorems 5.3 and 5.9 the exponential ergodicity of the process and the existence of exponential moments for its invariant probability measure. The results obtained in this section can be linked with the previous works [START_REF] Calvez | Confinement by biased velocity jumps: aggregation of escherichia coli[END_REF], [START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF] and [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF], since they are in fact a generalization of these latter. We mention at the end of the paper that the two studies applied in dimension 1 are complementary, since one can be applied at some process whereas the other can not, and conversely.

Preliminaries

About ergodicity

In this paper, we study the convergence of our process with the total variation distance. Let us recall its definition. Let ν and ∼ ν be two probability measures on a measurable space E. We say that a probability measure on E × E is a coupling of ν and ∼ ν if its marginals are ν and 

- ∼ ν T V = inf (X, ∼ X)∈Γ(ν, ∼ ν ) P(X = ∼ X). (2) 
For other definitions of the total variation distance and its properties, see for instance [START_REF] Lindvall | Lectures on the coupling method[END_REF].

Let us now introduce some usefull results to study the convergence of a Markov process towards its invariant measure (see [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF][START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Meyn | Stability of markovian processes iii: Foster-Lyapunov criteria for continuous-time processes[END_REF]). Let (Y t ) t≥0 be a Markov process on the state space E, and denote by P its semi-group and L its infinitesimal generator. We say that the Markov process Y is exponentially ergodic if there exists a probability measure π, a function M : E -→ R + and a constant 0 < ρ < 1 such that

P t (x, •) -π T V ≤ M (x)ρ t , for all t ≥ 0, (3) 
where

P t (x, •) = P x (Y t ∈ •).
A set K is said to be petite for the process Y if there exists a probability measure ν on R + and a nontrivial measure µ on E such that, for all x ∈ K,

∞ 0 P t (x, •)ν(dt) ≥ µ(•). ( 4 
)
This notion is weaker than the notion of small sets: K is said to be a small set for the process Y if there exists t 0 > 0 and a non trivial measure µ on E such that, for all x ∈ K,

P t 0 (x, •) ≥ µ(•). (5) 
Let K ⊂ E be a compact set, and let H : E -→ R be a function. We say that H is a Lyapunov function (associated to the set K) for the process Y if H(x) ≥ 1 for all x ∈ E and if there exists some constants α > 0 and β ≥ 0 such that for all x ∈ E,

LH(x) ≤ -αH(x) + β1 K (x). (6) 
Finally, we recall that the Markov process Y is called ϕ-irreducible if there exists a σ-finite measure ϕ such that for all measurable set A with ϕ(A) > 0 we have, for all x ∈ E,

E x ∞ 0 1 Yt∈A dt > 0.
In that case, there exists a maximal irreducibility measure ψ such that for any other irreducibility measure ν, ν is absolutely continuous with respect to ψ. We then write B + (E) = {A ⊂ E measurable, ψ(A) > 0}. The process Y is said to be aperiodic if for some small set C ∈ B + (E), there exists T > 0 such that for all t ≥ T and all x ∈ C we have P t (x, C) > 0.

We can now recall the main result we will use in Section 3.2 to prove Theorem 1.2.

Theorem 2.1. ( [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF]) Let Y be an irreducible and aperiodic Markov process. If there exists a petite set K for the process Y and a Lyapunov function associated to this set K (i.e. (4) and (6) hold) , then the process Y is exponentially ergodic.

Description of the process

Let us now describe the dynamics of the process. The variables 0 = T 0 , T 1 , T 2 , . . . refer to the successive jumping times of the process, and for n ≥ 1 we denote by τ n the inter-jump time:

τ n = T n -T n-1 .
In order to make the paper easier to read, we note V i the velocity on the time interval

[T i , T i+1 ), instead of V T i . Finally, we denote by F ((•, x, v) the survival function of T 1 with initial data (X 0 , V 0 ) = (x, v): F (•, x, v) = P x,v (T 1 > •). The time T 1 satisfies, when (X 0 , V 0 ) = (x, v): T 1 = inf t ≥ 0, t 0 λ(X s , V s )ds ≥ E = inf t ≥ 0, t 0 λ(x + vs, v)ds ≥ E
where E is an exponential variable with unit mean, because the process is deterministic between jump times. We then get:

F (t, x, v) = P x,v (T 1 > t) = P x,v t 0 λ(x + vs, v)ds ≤ E = exp - t 0 λ(x + vs, v)ds .
The conditional distribution of the inter-jump times is then given by, for all n ≥ 0:

P (τ n+1 ≥ t |X Tn , V n ) = exp - t 0 λ(X Tn + V n s, V n )ds .

Main result

In this section we prove our main result, Theorem 1.2, using Theorem 2.1. We first need to find a Lyapunov function for the process.

A Lyapunov function

Let us introduce some constants which will appear in the definition of our Lyapunov function. Thanks to Assumptions (H 1 ), (H 2 ), (H 3 ) and (H 4 ), the following quantities are well defined:

θ 1 ∈ max θ * λ max pθ 0 λ min ; 1 pθ 0 β , min pθ 0 , θ ; α ∈ 0 , min pθ 0 λ min θ * - λ max θ 1 ; pθ 0 βλ max - λ max θ 1 ; a ∈ 1 + λ max αθ 1 , min pθ 0 λ min αθ * ; pθ 0 βλ max α .
We then consider the function

H defined on E = R d × B(1) by H(x, v) = e α|x| a + ϕ x • v |x| ,
where ϕ is a non-decreasing function of class

C 1 on [-1, 1], with ϕ(θ) = θ if θ ∈ [-1, -θ 1 ], and 
ϕ(θ) = 0 if θ ∈ [0, 1].
We introduce m the supremum norm of the derivative of ϕ, that is:

m = sup θ∈[-1,1] |ϕ (θ)|.
Then, we have the following result:

Proposition 3.1. There exist some constants R > 0, η > 0 such that for all

(x, v) ∈ (R d \B(R)) × B(1), LH(x, v) ≤ -ηH(x, v).
The function H is then a Lyapunov function associated to the set B(R) × B(1) for the process (X, V ) driven by the generator L.

Remark 3.2. This function H can be compared to the one of [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF][START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] in dimension 1. It is also qualitatively equivalent to the ones of [START_REF] Bierkens | Ergodicity of the zigzag process[END_REF][START_REF] Durmus | Geometric ergodicity of the bouncy particle sampler[END_REF][START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF], but here it is written in terms of the jump rate λ, while in the papers cited before, they give a Lyapunov function depending on their potential U .

Proof. We can check that H is in the domain of the generator L. For (x, v) ∈ E we have:

LH(x, v) = e α|x| (A 1 + A 2 + A 3 ) (7) 
with

A 1 = α x • v |x| a + ϕ x • v |x| A 2 = ϕ x • v |x| 1 |x| |v| 2 - x • v |x| 2 A 3 = λ(x, v) B(1) ϕ x • v |x| -ϕ x • v |x| Q(x, v, dv ).
Let first remark that since the derivative of ϕ is bounded by m, we always have

A 2 ≤ m |x| .
Moreover, thanks to Assumption (H 3 ) and the definition of the function ϕ, if x and v are such that x•v |x| > -θ, we can bound A 3 as follows:

A 3 ≤ λ(x, v) {v ∈B(1)/ x•v |x| ≤-θ 0 } ϕ x • v |x| Q(x, v, dv ) -ϕ x • v |x| ≤ λ(x, v) -θ 0 {v ∈B(1)/ x•v |x| ≤-θ 0 } Q(x, v, dv ) -ϕ x • v |x| ≤ -λ(x, v) pθ 0 + ϕ x • v |x| .
We can now study Equation ( 7) depending on the different values taken by x•v |x| .

•

If x•v |x| ∈ [-1, -θ 1 ]: LH(x, v) ≤ e α|x| -αθ 1 (a -1) + m |x| + λ max . • If x•v |x| ∈ (-θ 1 , 0): LH(x, v) ≤ e α|x| m |x| -λ(x, v) (pθ 0 -θ 1 ) ≤ e α|x| m |x| -λ min (pθ 0 -θ 1 ) . • If x•v |x| ∈ [0, θ * ]: LH(x, v) ≤ e α|x| αθ * a + m |x| -λ min pθ 0 . • If x•v |x| ∈ (θ * , 1]
, and if |x| ≥ ∆, with ∆ defined in Assumption (H 4 ):

LH(x, v) ≤ e α|x| αa + m |x| -pθ 0 βλ max .
Let us now take R > r where

r = max m αθ 1 (a -1) -λ max ; m λ min (pθ 0 -θ 1 ) ; m pθ 0 λ min -αθ * a ; ∆; m pθ 0 βλ max -αa .
Thanks to the assumptions made on each parameter, the constant r is well defined and finite. Therefore, the previous calculations give the existence of a constant η > 0 such that for all

(x, v) ∈ (R d \B(R)) × B(1): LH(x, v) ≤ -ηe α|x| .
Finally, the function (y, w) -→ a + ϕ y•w |y| being bounded from above by a, we get:

LH(x, v) ≤ -ηaH(x, v),
which ends the proof.

Proof of Theorem 1.2

Since we have already found a Lyapunov function, we still have to review three points in order to use Theorem 2.1 : the irreducibility and the aperiodicity of the process, and the existence of petite sets. These are the object of the following proposition.

Proposition 3.3. All compact sets of the form K × B(1), with K a compact set of R d , are petite for the process (X, V ). Moreover, the process is irreducible and aperiodic.

Proof. We do not detail the proof since we just have follow the ideas of the proof of Lemma 2 in [START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF]. It is indeed enough to show that for all M > 0, for all (x, v) ∈ B(M ) × B(1), for all positive bounded function ϕ : E → R, there exist a constant C > 0 and a compact set A ⊂ R d × B(1), both independent of M and ϕ, such that:

∞ 0 e -t E (x,v) [ϕ(X t , V t )] dt ≥ C A ϕ(y, w)dydw.
to deduce the first result of the proposition. Let us mention that the proof is based only on Assumptions (H 1 ), (H 2 ) and (H 3 ).

Then, the irreducibility of the process follows easily, and we refer once more to [START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF], Lemma 3, for the aperiodicity.

Remark 3.4. Let us mention different proofs of this result in some particular cases.

In dimension 1, a proof has been given in [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF] for the process with a velocity equal to -1 or +1, with the same main ideas that in [START_REF] Deligiannidis | Exponential ergodicity of the Bouncy Particle Sampler[END_REF] and [START_REF] Monmarché | Piecewise deterministic simulated annealing[END_REF].

For the process in dimension 2, if the jump kernel has a density with respect to the Lebesgue measure which is bounded from below by a strictly positive constant, and if the jump rate is bounded, the previous proposition can be proved by geometric considerations, as in the proof of Lemma 4.5 in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution for absorbed one-dimensional diffusions with killing[END_REF].

Proof of Theorem 1.2. By Proposition 3.1 and 3.3, all conditions of 2.1 are satisfied, so that the stated result follows.

4 Exponential moments for the invariant measure

In this section, we want to study the existence of exponential moments for the unique invariant probabilty measure of the process (X, V ), that we denote by π, whose existence follows from Theorem 1.2.

Let first say that if the lengths of the consecutive excursions away from the origin were independent and identically distributed, the process (X, V ) would be a regenerative process, and we could then apply standard results on regenerative processes (see [START_REF] Asmussen | Applied Probability and Queues[END_REF] or [START_REF] Cocozza-Thivent | Processus de renouvellement markovien, Processus de Markov déterministes par morceaux[END_REF] for instance) to collect some information on the invariant measure of the process. This is for instance what is done in [START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF], since the simple Zig-zag process is a regenerative process when we look at it at the successive hitting-times of the origin. However, the excursions away from the origin of the generalized Zig-zag process do not satisfy this assumptions of independence and identical distribution because of the dependence in speed between two consecutive excursions. Nevertheless, the generalized Zig-zag process is a semi-regenerative process (see [START_REF] Asmussen | Applied Probability and Queues[END_REF] or [START_REF] Cocozza-Thivent | Processus de renouvellement markovien, Processus de Markov déterministes par morceaux[END_REF] for the definition). Indeed, let Z 0 = 0 and (Z n ) n≥1 be the successive times at which the process X enters the ball B(R) (with R defined in Proposition 3.1). The PDMP (X, V ) is a semiregenerative process associated to the renewal process ((X Zn , V Zn ), Z n ) n≥0 .

Before stating the result on regenerative process that we will use in this part, let us first briefly speak about Harris-recurrence and non-arithmetic process (see for instance [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF][START_REF] Asmussen | Applied Probability and Queues[END_REF][START_REF] Cocozza-Thivent | Processus de renouvellement markovien, Processus de Markov déterministes par morceaux[END_REF]). The Markov chain Y with state space F is called Harris-recurrent if there exists a measurable set A ⊂ F , c > 0, m ≥ 1, and a distribution ϕ such that 1. for all y ∈ F , P y (τ

A < ∞) = 1, where τ A = inf{n ≥ 0, Y n ∈ A}; 2. for all y ∈ A, P y (Y m ∈ •) ≥ cϕ(•).
Then, we recall that the process (Y n , T n ) n≥0 is non-arithmetic if the laws of the variables T n -T n-1 , n ≥ 1 have a part which is absolutely continuous with respect to the Lebesgue measure (see [START_REF] Cocozza-Thivent | Processus de renouvellement markovien, Processus de Markov déterministes par morceaux[END_REF] for the definition of an arithmetic process).

We have the following result concerning the convergence of semi-regenerative process, that we can found in [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF][START_REF] Asmussen | Applied Probability and Queues[END_REF] or [START_REF] Cocozza-Thivent | Processus de renouvellement markovien, Processus de Markov déterministes par morceaux[END_REF]: Theorem 4.1. Let (Ψ t ) t≥0 be a semi-regenerative process associated to the renewal process

(Y, T ) = (Y n , T n ) n≥0 .
We suppose that (Y, T ) is non-arithmetic and that Y is Harris-recurrent, and let ν be an invariant measure for this chain. Let f : F -→ R be a measurable positive function such that (z, t) -→ E [f (Ψ t )|Y 0 = z] is bounded on F × [0, t] for all t. We define g :

F × R + -→ R by g(z, t) = E [f (Ψ t )1 t<T 1 |Y 0 = z].
We suppose :

1. for ν-almost all z ∈ F , t → g(z, t) is almost everywhere continuous with respect to the Lebesgue measure;

2. there exists ∆ > 0 such that

F n∈N sup n∆≤t<(n+1)∆ |g(z, t)|ν(dz) < ∞.
Then for ν-almost all y ∈ F :

E [f (Ψ t )|Y 0 = y] -→ t→∞ F E T 1 0 f (Ψ s )ds|Y 0 = z ν(dz) F E [T 1 |Y 0 = z] ν(dz) . (8) 
Consequently, the previous theorem can be applied to our process, and it implies the existence of exponential moments for the invariant measure π of the PDMP (X, V ). More precisely we have the following result: Theorem 4.2. Let (X t , V t ) t≥0 be the generalized Zig-zag process satisfying Assumptions (H 1 ), (H 2 ), (H 3 ) and (H 4 ). Let η be as in Proposition 3.1. Then for all 0 < β < η and all γ > 0, we have :

E e β|x|+γ|v| π(dx, dv) < ∞,
where we recall that π is the unique invariant probability measure of the process (X, V ). Remark 4.3. This result ensures that at the equilibrium, the process is concentrated around the origin. From a modelling point of view, it means that in long time, the bacterium evolves around the chemo-attractant and does not go too far from it.

This theorem is a consequence of Proposition 3.1, which implies the existence of exponential moments for the hitting time of the compact set B(R) associated to the Lyapunov function. Let us precise this fact:

Proposition 4.4. Let us note τ B(R) = inf{t ≥ 0, X t ∈ B(R)} the hitting time of B(R). For all (x, v) ∈ E, E x,v [e ητ B(R) ] ≤ H(x, v)
, where η and H are defined in Proposition 3.1.

Proof. In order to make the proof easier to read, we note τ instead of τ B(R) . For (x, v) ∈ E, Dynkin's formula gives:

E x,v e η(t∧τ ) ≤ E x,v H (X t∧τ , V t∧τ ) e η(t∧τ ) = H(x, v) + E x,v t∧τ 0 (η + L)H (X s∧τ , V s∧τ ) e η(s∧τ ) ds ≤ H(x, v),
the last inequality resulting from Proposition 3.1. Then, when t goes to infinity, the monotone convergence theorem gives:

E x,v [e ητ ] ≤ H(x, v).
Proof of Theorem 4.2. Let first remark that the chain (X Zn , V Zn ) n≥0 is Harris-recurrent. Indeed, let A = S d-1 R × B(1) be the state space of (X Zn , V Zn ) n≥0 (S d-1 R denotes the sphere of R d with radius R). We obviously have, for all (x, v) ∈ A, P (τ A < ∞) = 1. The second point in the definition of the Harris-recurrence can be proved with ϕ the Lebesgue measure on R d , using in particular the fact that Z m is almost-surely finite for each m ≥ 1 thanks to Proposition 4.4. Moreover, the chain ((X Zn , V Zn ), Z n ) n≥0 is non-arithmetic because the law of the times Z n+1 -Z n has a part which is absolutely continuous with respect to the Lebesgue measure. Let us now introduce f : (x, v) ∈ R d × B(1) -→ e β|x|+γ|v| for 0 ≤ β < η and γ ≥ 0. We first observe that f is a positive measurable function, and that

((x, v), t) -→ E [f (X t , V t )|(X Zn , V Zn ) = (x, v)] is bounded on S d-1 R × B(1) × [0, t] for all t.
Let ν be the unique invariant probability measure of the chain (X Zn , V Zn ) n≥0 , which exists since the chain is positive Harris-recurrent. Let us define the function

g on S d-1 R × B(1) × R + by g ((x, v), t) = E x,v e β|Xt|+γ|Vt| 1 t<Z 1 ,
and let us check if g satisfies the assumption of Theorem 4.1: 1), the function t -→ g((x, v), t) is almost everywhere continuous with respect to the Lebesgue measure since it is right-continuous and has thus an at most countable set of discontinuities.

1. For ν-almost all (x, v) ∈ S d-1 R × B(
2. Let ∆ > 0. According to Markov inequality we have

P x,v (Z 1 > t) ≤ e -ηt E x,v e ηZ 1 .
Using Proposition 4.4 and the fact that the Lyapunov function H is uniformly bounded on S d-1 R × B(1), we get the existence of a finite constant M such that for all (x, v) ∈ S d-1 R × B(1), 1), since |X 0 |= R and the velocity of the process lives in B(1), then for all t ≥ 0, |X t |≤ R + t.

P x,v (Z 1 > t) ≤ M e -ηt . Moreover, let remark that if (X 0 , V 0 ) ∈ S d-1 R × B(

Therefore we have

S d-1 ×B(1) n∈N sup n∆≤t<(n+1)∆ |g ((x, v), t) |ν(dx, dv) = S d-1 ×B(1) n∈N sup n∆≤t<(n+1)∆ E x,v e β|Xt|+γ|Vt| 1 t<Z 1 ν(dx, dv) ≤ S d-1 ×B(1) n∈N sup n∆≤t<(n+1)∆ e β(R+t)+γ P x,v (Z 1 > t) ν(dx, dv) ≤ S d-1 ×B(1) n∈N sup n∆≤t<(n+1)∆ e β(R+t)+γ M e -ηt ν(dx, dv) ≤ M e βR+γ n∈N e β(n+1)∆-ηn∆ = M e β(R+∆)+γ n∈N e ∆(β-η) n .
This quantity is finite since β < η.

The function g satisfying all the required assumptions, we can apply Theorem 4.1:

for ν-almost all (x 0 , v 0 ) ∈ S d-1 R × B(1) we have E x 0 ,v 0 e β|Xt|+γ|Vt| -→ t→∞ S d-1 R ×B(1) E x,v Z 1 0 e β|Xs|+γ|Vs| ds ν(dx, dv) S d-1 R ×B(1) E x,v [Z 1 ] ν(dx, dv) .
The quantity on the right is clearly finite thanks to the previous calculations. Moreover, the ergodic theorem gives:

E x 0 ,v 0 e β|Xt|+γ|Vt| -→ t→∞ R d ×B(1)
e β|x|+γ|v| π(dx, dv).

We then deduce that

R d ×B(1) e β|x|+γ|v| π(dx, dv) = S d-1 R ×B(1) E x,v Z 1 0 e β|Xs|+γ|Vs| ds ν(dx, dv) S d-1 R ×B(1) E x,v [Z 1 ] ν(dx, dv)
, and we have proved the theorem.

The particular case of dimension 1

In this section, we study PDMPs in dimension 1, but in a different way, and under some different assumptions (see Section 5.4 for a comparison between the two approaches in dimension 1). This section is thus complementary to the previous study applied at the one-dimension. We consider here the PDMP ((X t , V t )) t≥0 with values in R × [-1, 1] with infinitesimal generator given by

Lh(x, v) = v∂ x h(x, v) + λ(x, v) 1 -1 (h(x, v ) -h(x, v)) Q(x, v, dv ), (9) 
where

Q(x, v, •) is a probability kernel on [-1, 1].
This process is the one-dimensional version of the process driven by [START_REF] Alsmeyer | The markov renewal theorem and related results[END_REF].

The framework of this section is the following:

(A 1 ): Q(x, v, dv ) = q(v, v )(ν(dv ) + µ(dv ))
with ν a discrete measure and µ a restriction of the Lebesgue measure. We denote by V the support of Q and suppose that there exists a constant q min > 0 such that q(v, v ) ≥ q min for all v, v ∈ V;

(A 2 ): The process is symmetric: V is symmetric with respect to 0 and λ(x, v) = λ(-x, -v) for all (x, v) ∈ R × V;

(A 3 ): There exists 0 < λ min such that for all (x, v) ∈ R × V, λ min ≤ λ(x, v), and the quantity sup x≥0,v≤0 λ(x, v) is finite.

The importance of the existence of q min in Assumption (A 1 ) will not explicitly appear in the following since we are not going to give all the proofs in detail, but we note that it is useful in Proposition 5.8 and Theorem 5.9. Assumption (A 2 ) implies that the process is spatially symmetric with respect to the origin, which will allow us to reduce the number of computations. Nevertheless, the following results are still available without this symmetry. The fact that we suppose the kernel Q to be independent of the position of the bacterium implies that the chain composed by the velocities at the jump times is a Markov chain with kernel Q. In particular, contrary to what is assumed in higher dimension, the attraction of the bacterium by the origin is not favoured by the jump kernel since it does not take care of the position of the bacterium with respect to the origin. We make thus an additional assumption (A 4 ) that takes into account this attraction to the origin, because of the presence of a chemo-attractant there. This assumption is the one that makes the process ergodic.

(A 4 ) : ∃I * ⊂ 0, inf x≥0,v∈(0,1] λ(x, v) v an interval I * , ∃0 < J * < 1, ∀α ∈ I * , ∀v ∈ V, 1 -1 G(α, v)Q(v , dv) ≤ J * ,
where

G(α, v) = sup x≥0 λ(x, v) sup x≥0 λ(x, v) -αv 1 v<0 + inf x≥0 λ(x, v) inf x≥0 λ(x, v) -αv 1 v≥0 (10) 
for α ≥ 0 and v ∈ V.

Before stating the theorem that gives the exponential ergodicity of the process, we make some remarks on Assumption (A 4 ).

Remark 5.1. Let us give a sufficient condition to satisfy Assumption (A 4 ) when the jump kernel Q does not depend on the previous velocity.

Let us write

J v (α) = 1 -1 G(α, v)Q(v , dv). For all v ∈ [-1, 1], the function J v is C 1 on [0, inf x≥0,v∈]0,1] λ(x,v) v ), is convex and J v (0) = 1 , J v (0) = 1 -1   v sup x≥0 λ(x, v) 1 v<0 + v inf x≥0 λ(x, v) 1 v≥0   Q(v , dv)
and lim

α→ inf x≥0,v∈]0,1] λ(x,v) v J v (α) = +∞.
If we assume that J v (0) < 0, we get that there exists a unique α ∈ (0, inf

x≥0,v∈]0,1] λ(x,v) v
) such that J(α) = 1, and then there exists an interval Î ⊂ (0, α) such that for all α ∈ Î, J v (α) is uniformly bounded by a constant strictly smaller than 1 on the interval Î.

Consequently, for all v ∈ [-1, 1], ∃ Î ⊂ (0, inf x≥0,v∈(0,1] λ(x, v) v ), ∃0 < K < 1, ∀α ∈ Î, 1 -1 G(α, v)Q(v , dv) ≤ K.
In Assumption (A 4 ), we suppose in addition that the interval Î and the constant K are uniform in v . In particular, if Q(v , dv) = Q(dv), the assumption J (0) < 0, that is

1 -1   v sup x≥0 λ(x, v) 1 v<0 + v inf x≥0 λ(x, v) 1 v≥0   Q(dv) < 0 is sufficient for Assumption (A 4 ) to be satisfied.
This assumption is the equivalent of Assumption (H3) made by Calvez, Raoul and Schmeiser in [START_REF] Calvez | Confinement by biased velocity jumps: aggregation of escherichia coli[END_REF]. The probability study carried out in this section covers thus the framework of [START_REF] Calvez | Confinement by biased velocity jumps: aggregation of escherichia coli[END_REF].

Remark 5.2. Let see that in the case where the kernel Q does not depend on the previous velocity and is symmetric in the sense that q(v) = q(-v) for all v ∈ V, Assumption (A 4 ) holds in the particular case where inf

x≥0 λ(x, v) > sup x≤0 λ(x, v) for all v ∈ [0, 1],
i.e. when the velocity tends to jump even more when the bacterium goes away from 0 than when it moves towards the origin. This case is the one considered for instance in [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF], [START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF] and [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF], with a velocity taking its values in {-1, +1} Let us prove this fact. Under this assumption on the jump rate, with the same notations as in the previous remark, and using the symmetries of the process we have:

J v (0) = 1 -1   v sup x≥0 λ(x, v) 1 v<0 + v inf x≥0 λ(x, v) 1 v≥0   q(v)dv = 0 -1 v sup x≥0 λ(x, v) q(v)dv + 1 0 v inf x≥0 λ(x, v) q(v)dv = - 1 0 v sup x≥0 λ(x, -v) q(v)dv + 1 0 v inf x≥0 λ(x, v) q(v)dv = - 1 0 v sup x≤0 λ(x, v) q(v)dv + 1 0 v inf x≥0 λ(x, v) q(v)dv < 0.
And the end of Remark 5.1 ensures that Assumption (A 4 ) is satisfied.

Let us now give the main theorem of this section.

Theorem 5.3. Let (X t , V t ) t≥0 be the PDMP on R × [-1, 1] whose infinitesimal generator is given by Lh(x, v) = v∂ x h(x, v) + λ(x, v) 1 -1 (h(x, v ) -h(x, v)) Q(x, v, dv ). 
Under Assumptions (A 1 ), (A 2 ), (A 3 ) and (A 4 ), the process is exponentially ergodic.

The hitting time of the origin

As mentioned before, we are going to estimate the exponential moments of the hitting times of compact sets in order to prove Theorem 5.3. We introduce two new notations. We denote by Z the first hitting time of 0, i.e.

Z = inf{t > 0, X t = 0}, (11) 
and S is the index of the first jump-time at which the position of the process has changed its sign: S = inf{n ≥ 1, X Tn X 0 ≤ 0}. Our goal in this section is to get information on the exponential moments of Z. For this purpose, we will first study the random variable S. Then, the inequality Z ≤ S i=1 τ i a.s. will allow us to come back to Z. Proposition 5.4. For all (x 0 , v 0 ) ∈ R × V and all α such that |α|∈ I * , we have, for all n ≥ 1,

P x 0 ,v 0 (S > n) ≤ κ α,x 0 ,v 0 J * n-1 , with κ α,x 0 ,v 0 = e |αx 0 | G (|α|, v 0 ) ,
where G and J * are defined by Assumption (A 4 ).

Proof. In order to make the proof easier to read, we distinguish the cases where x 0 and v 0 are positive or negative. We first look at the case x 0 > 0 and v 0 ∈ V ∩ [0, 1], and the other cases are similar because of the symmetry of the process.

Let x 0 > 0 and v 0 ∈ V ∩ [0, 1].

We have S = inf{n ≥ 1, X Tn ≤ 0}, and

X Tn = X 0 + n-1 i=0 V i τ i+1 = x 0 + v 0 τ 1 + n-1 i=1 V i τ i+1 . Let α ∈ [0, inf x≥0,v∈(0,1] λ(x,v) v ).
Since x 0 is positive, on the event {S > n}, X Tn is also positive, and the sign of α implies:

P x 0 ,v 0 (S > n) ≤ E x 0 ,v 0 e αX Tn 1 S>n = e αx 0 E x 0 ,v 0 e α(v 0 τ 1 + n-1 i=1 V i τ i+1) 1 S>n = e αx 0 E x 0 ,v 0 e αv 0 τ 1 n-1 i=1 e V i τ i+1 1 S>n = e αx 0 E x 0 ,v 0 E x 0 ,v 0 e αv 0 τ 1 n-1 i=1 e V i τ i+1 1 S>n |X T 1 , V 1 , . . . , X T n-1 , V n-1 .
Since the inter-jump times τ 1 , . . . , τ n are independent conditionally to the couples (X 0 , V 0 ), (X T 1 , V 1 ), . . . , (X T n-1 , V n-1 ), and since {S > n} = {X T 1 > 0, • • • , X Tn > 0} we have:

P x 0 ,v 0 (S > n) ≤ e αx 0 E x 0 ,v 0 E x 0 ,v 0 [e αv 0 τ 1 ] n-1 i=1 E x 0 ,v 0 e αV i τ i+1 |X T i , V i 1 X T 1 >0 ,••• ,X Tn>0 . (12) 
Moreover, we know that

P (τ i+1 ≥ t|X T i , V i ) = F (t, X T i , V i ), which gives, for 1 ≤ i ≤ n -1: E e αV i τ i+1 |X T i , V i = +∞ 0 e αV i t λ(X T i + V i t, V i )e -t 0 λ(X T i +V i s,V i )ds dt = +∞ 0 λ(X T i + V i t, V i ) λ(X T i + V i t, V i ) -αV i (λ(X T i + V i t, V i ) -αV i ) e -t 0 (λ(XT i +V i t,V i )-αV i) ds dt.
Furthermore, for α ∈ R and v ∈ [-1, 1] the function λ ∈ R + -→ λ λ-αv is increasing if αv ≤ 0 and decreasing otherwise. Therefore, if V i ≥ 0, since on {S > n} the position of the bacterium is positive, we get:

E e αV i τ i+1 |X T i , V i 1 X T 1 >0 ,••• ,X Tn>0 ≤ inf x≥0 λ(x, V i ) inf x≥0 λ(x, V i ) -αV i +∞ 0 (λ(X T i + V i t, V i ) -αV i ) e -t 0 (λ(XT i +V i t,V i )-αV i) ds dt = inf x≥0 λ(x, V i ) inf x≥0 λ(x, V i ) -αV i .
In the case V i < 0 we get in the same way:

E e αV i τ i+1 |X T i , V i 1 X T 1 >0 ,••• ,X Tn>0 ≤ sup x≥0 λ(x, V i ) sup x≥0 λ(x, V i ) -αV i .
We have thus obtained the following inequality:

E e αV i τ i+1 |X T i , V i , S 1 X T 1 >0 ,••• ,X Tn>0 ≤ G(α, V i ),
where G is given by [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution for absorbed one-dimensional diffusions with killing[END_REF].

Getting back to [START_REF] Davis | Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models[END_REF], we get:

P x 0 ,v 0 (S > n) ≤ e αx 0 G(α, v 0 )E x 0 ,v 0 n-1 i=1 G(α, V i ) .
Using now the fact that (V i ) i≥0 is a Markov chain with kernel Q, we have:

E x 0 ,v 0 n-1 i=1 G(α, V i ) ≤ 1 -1 G(α, v 1 ) × . . . × 1 -1 G(α, v n-1 )Q(v n-2 , dv n-1 ) . . . Q(v 0 , dv 1 ).
We deduce from Assumption (A 4 ), that if α ∈ I * we have

E x 0 ,v 0 n-1 i=1 G(α, V i ) ≤ J * n-1
. And finally:

P x 0 ,v 0 (S > n) ≤ e αx 0 G(α, v 0 )J * n-1 , (13) 
for all α ∈ I * , x 0 > 0 and v 0 ∈ V ∩ [0, 1].

For x 0 > 0 and v 0 ∈ V ∩ [-1, 0), the calculations are exactly the same. The case x 0 ≤ 0 can also be made in the same way. The symmetry of the process and Assumption (A 4 ) ensure that, for all α such that -α ∈ I * , for all x 0 ≤ 0 and all v 0 ∈ V,

P x 0 ,v 0 (S > n) ≤ e αx 0 G(-α, v 0 )J * n-1 . (14) 
Finally, we have proved in ( 13) and ( 14) that for all (x 0 , v 0 ) ∈ R × V and all α such that |α|∈ I * ,

P x 0 ,v 0 (S > n) ≤ e |αx 0 | G(|α|, v 0 )J * n-1 , (15) 
which is the result of the proposition.

Proposition 5.5. For all (x 0 , v 0 ) ∈ R × V, all 0 < ρ < λ min (1 -J * ) and all α such that |α| we have:

E x 0 ,v 0 e ρZ ≤ K α,x 0 ,v 0 1 1 -λ min λ min -ρ J * , where K α,x 0 ,v 0 = κ α,x 0 ,v 0 1 -J * J * 2 = e |αx 0 | G (|α|, v 0 ) 1 -J * J * 2 .
Moreover, K α,x 0 ,v 0 is uniformly bounded from above for (x 0 , v 0 ) ∈ [-x 1 , x 1 ] × V for all x 1 > 0.

Proof. As mentioned before, we are going to use the inequality Z ≤ S i=1 τ i a.s. to get some informations on the hitting time of the origin. Let us notice the variables τ i , i ≥ 1 are stochastically smaller than i.i.d. exponential variables E i , i ≥ 1 with mean 1 λ min . Indeed, the survival function of the variable τ i+1 , conditionally to

X T i and V i , is F (•, X T i , V i ) = exp t 0 λ(X T i + V i s, V i )ds
, and the jump rate λ is uniformly bounded from below by λ min . The variables (E i ) i≥1 can be taken as independent because of the independence of the variables (τ i ) i≥1 conditionally to (X T i , V i ) i≥0 , and can also be taken as independent of the variables (τ i ) i≥1 . Thanks to this comment and the previous proposition, we get, for ρ > 0 and α such that |α|∈ I * :

E e ρZ ≤ E x 0 ,v 0 e ρ S i=1 τ i ≤ E x 0 ,v 0 e ρ S i=1 Ẽi = E x 0 ,v 0 E e ρ S i=1 Ẽi |S = E x 0 ,v 0 S i=1 E e ρ Ẽi = E x 0 ,v 0 λ min λ min -ρ S = +∞ n=0 λ min λ min -ρ n P x 0 ,v 0 (S = n) = +∞ n=0 λ min λ min -ρ n (P(S x 0 ,v 0 > n -1) -P(S x 0 ,v 0 > n)) ≤ e |αx 0 | G(|α|, v 0 ) 1 -J * J 2 * +∞ n=0 λ min λ min -ρ J * n .
Finally, for all ρ > 0 such that λ min λ min -ρ J * < 1, we get :

E e ρZ ≤ e |αx 0 | G(|α|, v 0 ) 1 -J * J 2 * 1 1 -λ min λ min -ρ J * < ∞, (16) 
which ends the proof of the proposition.

Exponential ergodicity of the process

In this section, we are going to give a proof of the exponential ergodicity of our process based on Proposition 5.5. For this purpose, we recall another result on the exponential ergodicity of a Markov process.

Theorem 5.6. (Theorem 6.2 in [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF]) Let Y be an irreducible and aperiodic Markov process. Suppose that there exists a function f ≥ 1, a closed measurable set C ∈ E and some constants To apply this theorem, we need then, as previously, to find a petite set. The following proposition states that all compact sets are petite for the process (X, V ), and is just a consequence of Proposition 3.3. Proposition 5.8. For all x 1 > 0, the set C = [-x 1 , x 1 ] × V is petite for the process (X, V ).

δ, η > 0, M < ∞ such that E x τ C (δ) 0 e ηt f (Y t )dt < ∞,
We can now prove Theorem 5.3:

Proof of Theorem 5.3. Let x 1 > 0. Proposition 5.8 ensures that the closed set C = [-x 1 , x 1 ]×V is petite for the process (X, V ). Moreover, let us consider the quantity E x,v e ητ C (δ) with η, δ > 0. It satisfies the assumptions of Theorem 5.6 (we have taken f ≡ 1) for 0 < η < λ min (1 -J * ) thanks to Proposition 5.5. Finally, let Leb be the Lebesgue measure on R. The process (X, V ) is Leb ⊗ Q-irreducible, and aperiodic. The proof of these facts can be handled as mentioned previously in the general case. The conclusion of Theorem 5.6 gives then the exponential ergodicity of (X, V ).

Exponential moments of the invariant measure

As in the general case, we can show that the invariant measure, that we still denote by π, has exponential moments. Theorem 5.9. Let γ > 0 such that λ min λ min -γ J * < 1. For all 0 < α < γ and all β > 0, we have :

R×[-1,1]
e α|x|+β|v| π(dx, dv) < ∞.

Proof. The proof relies, as in Section 4, on Theorem 4.1. We see the process (X, V ) as a semiregenerative process between the successive hitting times of 0. Then, using the upper bound of the exponential moments of the hitting time of 0 obtained in Proposition 5.5, we can verify that the assumptions of Theorem 4.1 are satisfied, and the result follows.

Comparison between the two studies

Let us first recall that the proof of the exponential ergodicity carried out in any dimension is obviously relevant in dimension 1, whereas the converse is not possible, or at least not directly. Indeed, the process in dimension 1 is quite simple since it goes towards the origin or not in terms of the sign of the scalar product X t • V t . In higher dimension, if we want to estimate the hitting time of a compact set, let say a ball, we can not see if the process is evolving towards the ball just in terms of the sign of X t • V t , and the computations do not as well as in dimension 1. Let now see that the two approaches carried out in dimension 1 and in higher dimension cover different types of PDMPs.

• Let look at the process studied in [START_REF] Fontbona | Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process[END_REF], [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] and [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF], whose generator has the following form :

Lf (x, v) = v∂ x f (x, v) + λ(x, v) (f (x, -v) -f (x, v)) ,
for (x, v) ∈ R × {-1, +1}. This process does not satisfy Assumption (A 4 ), because for v = -1 we have whereas it is still ergodic. Indeed, its ergodicity has been prooved in [START_REF] Bierkens | A piecewise deterministic scaling limit of lifted Metropolis-Hastings in the Curie-Weiss model[END_REF] or [START_REF] Fontbona | Long time behavior of telegraph processes under convex potentials[END_REF] for instance, with the introduction of a Lyapunov function, and this can also be deduce from Theorem 1.2, if the jump-rate λ satisfies the good assumptions.

• In the d-dimensional case, Assumption (H 4 ) assume a kind of monotony of the jump rate, which is not necessary in Assumption (A 4 ) in the one-dimensional case. We can thus construct a particular jump rate which, associated to the kernel Q, satisfies Assumption (A 4 ), but does not verify Assumption (H 4 ). Let for instance consider the case 

  Denoting by Γ(ν, ∼ ν) the set of all the couplings of ν and ∼ ν, we say that two random variables X and ∼ X satisfy (X, ∼ X) ∈ Γ(ν, ∼ ν) if ν and ∼ ν are the respective laws of X and ∼ X. The total variation distance between these two probability measures is then defined by ν

eRemark 5 . 7 .

 57 ηt f (Y t )dt ≤ M where τ C (δ) = inf{t ≥ δ, Y t ∈ C}.If the set C is petite for Y , then the process is exponentially ergodic. The proof of this theorem relies on the introduction of the functionH 0 (x) := 1 + E x τ C (δ) 0e ηt f (Y t )dt , which plays the role of a Lyapunov function for a Markov chain linked to the process Y .

1 - 1 G

 11 (α, v)Q(-1, dv) = G(α,

Lf 1 - 1 G

 11 (x, v) = v∂ x f (x, v) + (21 sgn(x)v≥-x, v ) -f (x, v)) dv , for (x, v) ∈ R × [-1, 1].This process obviously does not satisfies Assumption (H 4 ) since for all θ * ∈ [0, 1], and all ∆ > 0, inf {sgn(x)v≥θ * ,|x|≥∆} λ(x, v) = 2 = sup {sgn(x)v≤0} λ(x, v).Nevertheless, Assumption (A 4 ) is verified for this process. Indeed, let α ∈ 0, inf x≥0,v∈(0,1] λ(x,v) v shows that there exists an intervalI * ⊂ 0, inf x≥0,v∈(0,1] λ(x,v) vand a constant J * ∈ (0, 1) such that for all α ∈ I * , 1 2 (α, v)dv ≤ J * , i.e. Assumption (A 4 ) is satisfied.
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