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Long-time behaviour of generalised Zig-Zag process

Ninon Fétique ∗

Abstract

We study the long-time behaviour of an extension of some recent works on bacterial
chemotaxis. Indeed, we consider a d-dimensional piecewise-deterministic Markov process,
d ≥ 1, that models the motion of a bacterium in presence of a chemo-attractant, with
parameters depending both on the position and the velocity of the bacterium. We show
that under some good assumptions on the parameters of the model, the process converges
exponentially fast towards its invariant measure.
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1 Introduction
Piecewise-deterministic Markov processes (PDMPs) have been introduced by Davis, [9], to
distinguish these particular processes from diffusive processes. They are the subject of much
current work in various domains, since they are a simple alternative to diffusions to model
stochastic systems (see [2] for an overview of recent results on PDMPs). In this paper, we study
a PDMP that comes from biological modeling for the motion of flagellated bacteria which are
in presence of a chemo-attractant. The motion of such a bacterium has been described as run-
and-tumble, which means that the bacterium alternates sequences of linear runs with periods
of random reorientation (tumbling). The tumble-periods being typically much shorter than the
run-periods, we can suppose them to be instantaneous. Moreover, the presence of a chemo-
attractant in the environment of the bacterium influences the rate at which the bacterium
changes its direction, and also the new direction it takes (see [21] for more details on the
model).
More precisely, we consider the PDMP ((Xt, Vt))t≥0 with values in E = Rd × B(1), where
B(1) =

{
v ∈ Rd, |v| ≤ 1

}
is the Euclidian ball of radius 1, with infinitesimal generator given by

Lh(x, v) = v · ∇xh(x, v) + λ(x, v)

∫
B(1)

(h(x, v′)− h(x, v))Q(x, v, dv′), (1)

where Q(x, v, ·) is a probability kernel on B(1). We call this process "generalised Zig-Zag
process" since it is a generalisation of the process called Zig-Zag process in [4] and [3], in the
sense that we do not any more have a velocity with values in {−1, 1}d, but in B(1).
In our model, Xt represents the position of a bacterium at instant t, and Vt its velocity. The
form of the generator indicates that the first component X is continuous and evolves according
to dXt

dt
= Vt, whereas V is constant during a random time, and jumps according to the kernel Q

at rate λ(x, v) when (Xt, Vt) = (x, v). The fact that the motion of the bacterium is biaised by
the presence of a chemo-attractant will be taken into account in the assumptions we will make
on the jump rate λ and the velocity kernel Q.
In this paper, we are interested in the long-time behaviour of the process driven by (1) under
some good assumptions.

This process, driven by (1), has already been studied in different ways and under different
assumptions. Let first mention some works on the process in dimension 1 with a modeling
point of view: in [13], Fontbona, Guérin and Malrieu have shown the exponential ergodicity
of the telegraph process, namely the process with a jump rate equal to a1xv≤0 + b1xv>0 with
b > a > 0, and the velocity taking its values in {−1,+1}. For this, they give an exact description
of the excursions of the process away from the origin and give an explicit construction of a
coalescent coupling for both velocity and position. In [14] and [4], the previous results have
been extended by considering a more general jump rate, depending on the position and the
velocity of the bacterium. Calvez, Raoul and Schmeiser have shown in [6] by an analytical
method the exponential ergodicity of the process driven by (1) in the particular case where the
kernel Q is the uniform kernel on [−1, 1], and under similar assumptions to the ones introduced
here (see Section 5).
Furthermore, there exists also results for this process in high dimension. We can for instance
cite [3], in which Bierkens, Fearnhead and Roberts study the Ziz-Zag process, that is the process
with values in Rd × {−1,+1}d. They prove its ergodicity in the case where it can be seen as a
product of independant one-dimensional Zig-Zag processes. In [5], [10] and [19], the authors are
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interested in the ergodicity of the bouncy particle sampler, with values in Rd×Rd or Rd×Sd−1,
where Sd−1 is the unit sphere of Rd. This PDMP is a particular case of the process driven
by (1): for instance in [19], the jump rate is given by λ(x, v) = (v · ∇xU(x))+, where U is a
potential, and at each jump, the velocity is reflected according to optical laws on the level set
of U it has reached.
Finally, let us mention that the study of this kind of processes has an interest not only for
biological modelling, but also for simulating a target distribution.Let us refer to [4, 3, 5, 10,
19, 12], where the authors want to sample a distribution with a density proportional to e−U ,
where U is a potential on Rd. For a jump rate λ and a jump kernel Q well chosen, the
PDMP converges towards the targeted distribution. An example is the bouncy particle sampler
from [19] described in the previous paragraph. The estimation of the speed of convergence to
equilibrium of these processes gives then informations on the efficiency of the corresponding
algorithms to sample the target distribution. An interest of considering PDMPs to catch a
distribution is the irreversibility of PDMPs. Indeed, while many Markov chain Monte Carlo
(MCMC) methods rely on realisations from a discrete reversible ergodic Markov chain, it has
been observed that non-reversibility often implies favourable convergence properties (see for
instance [15, 16]). Moreover, PDMPs have the advantage to be easy to sample, and can even
in some cases being simulated without discretisation error.

Framework

Let us now introduce the framework of the paper. Denoting by x · v the scalar product of
x ∈ Rd and v ∈ Rd, and |x| the Euclidian norm of the vector x, the assumptions made on the
model are the following:

(H1) : There exists λmin > 0 such that for all (x, v) ∈ E, λ(x, v) ≥ λmin;

(H2) : The quantity λmax = sup{(x,v)∈E : x·v≤0} λ(x, v) is finite;

(H3) : There exists p > 0, θ0 ∈ (0, 1] such that for all (x, v) ∈ E,
∫
{v′∈V : x·v′

|x| ≤−θ0}
Q(x, v, dv′) ≥ p;

(H4) : There exists θ∗ ∈
[
0, (pθ0)2 λmin

λmax

)
, β > 1

(pθ0)2
and ∆ > 0 such that

inf
{x·v|x| ≥θ∗,|x|≥∆}

λ(x, v) ≥ βλmax.

Assumptions (H1) and (H2) mean that the jump rate is uniformly bounded by below, and
that it is bounded from above when the bacterium is moving towards 0, where the chemo-
attractant is assumed to be.
Assumptions (H3) and (H4) reflect the attraction of the bacterium to the origin. Indeed, in
Assumption (H3), we suppose that wherever the bacterium is, and whatever its velocity is,
when a jump happens, the bacterium always has a chance to go towards the origin. Moreover,
in Assumption (H4), we assume a kind of monotony of the jump rate. Roughly speaking, we
suppose that when the bacterium is far from the origin, and goes in a too bad direction, its jump
rate is strictly bigger than λmax, which is the maximum of the jump rate when the bacterium
is coming closer the origin.

Under these assumptions, we can show the exponential ergodicity (see Section 2 for the
definition) of the process (X, V ) driven by (1).
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Figure 1: Empirical distribution of Xt starting at (5,−1) for t ∈ {0.5, 5, 10, 17, 30, 40} with
λ(x, v) = 1xv<0 + 21xv≥0 and Q(x, v, dv′) = 1

2
1[−1,1](v

′)dv′.

Theorem 1.1. Let (Xt, Vt)t≥0 be a PDMP on E = Rd×B(1) with infinitesimal generator given
by (1).
If λ and Q satisfy Assumption (H1), (H2), (H3) and (H4), then the process is exponentially
ergodic.

In Figure 1, we can observe the convergence of the empirical law of (Xt)t≥0 in the case
λ(x, v) = 1xv<0 + 21xv≥0 and Q(x, v, dv′) = 1

2
1[−1,1](v

′)dv′.

The approach we will carry out in Section 3 to prove Theorem 1.1 is the method of Meyn
and Tweedie ([11, 17, 18]), by showing the existence of a Lyapunov function for the process,
and the existence of petite sets. In Section 2, we thus first briefly recall the generalities about
ergodicity of Markov processes.
Then, we will study in Section 4 the existence of exponential moments for the invariant measure.
For this purpose, the method we use is based on a convergence result of switching processes, a
notion we will therefore introduce.
Finally, we will go back to the particular case of the dimension 1 in Section 5, in which we study
our process with a different approach than in Section 3. In particular, in this section, we will
assume that the jump kernel does not depend on the position of the bacterium. Thus, only the
jump rate will favour the return towards the origin, and therefore the ergodicity of the process.
The interest of this alternative approach in dimension 1 is that it will give more quantitative
results on the exponential convergence of the process, and the exponential moments of the
invariant measure, whereas the results obtained for the d-dimensional process by the method
of Meyn and Tweedie are only qualitative. Moreover, the results obtained in this section can
be linked with the previous works [6], [13] and [14], since they are in fact a generalisation of
these latter. However, the disadvantage of this approach is that it can not be adapted in higher
dimension.
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2 Preliminaries

2.1 About ergodicity

In this paper, we will study the convergence of our process with the total variation distance.
Let us recall its definition. Let ν and ∼ν be two probability measures on a measurable space
E. We say that a probability measure on E × E is a coupling of ν and ∼ν if its marginals are
ν and ∼ν. Denoting by Γ(ν,

∼
ν) the set of all the couplings of ν and ∼ν, we say that two random

variables X and
∼
X satisfy (X,

∼
X) ∈ Γ(ν,

∼
ν) if ν and ∼ν are the respective laws of X and

∼
X. The

total variation distance between these two probability measures is then defined by

‖ν − ∼ν‖TV = inf
(X,
∼
X)∈Γ(ν,

∼
ν )

P(X 6=
∼
X). (2)

For other definitions of the total variation distance and its properties, see for instance [20].

Let us now introduce some usefull results to study the convergence of a Markov process
towards its invariant measure (see [17, 18, 11]).
Let (Yt)t≥0 be a Markov process on the state space E, and denote by P its semi-group and L

its infinitesimal generator. We say that the Markov process Y is exponentially ergodic if there
exists a probability measure π, a function M : E −→ R+ and a constant 0 < ρ < 1 such that

‖Pt(x, ·)− π‖TV≤M(x)ρt, for all t ≥ 0, (3)

where Pt(x, ·) = Px(Yt ∈ ·).
A set K is said to be petite for the process Y if there exists a probability measure ν on R+ and
a nontrivial measure µ on E such that, for all x ∈ K,∫ ∞

0

Pt(x, ·)ν(dt) ≥ µ(·). (4)

This notion is weaker than the notion of small sets: K is said to be a small set for the process
Y if there exists t0 > 0 and a non trivial measure µ on E such that, for all x ∈ K,

Pt0(x, ·) ≥ µ(·). (5)

Let K ⊂ E be a compact set, and let H : E −→ R be a function. We say that H is a Lyapunov
function (associated to the set K) for the process Y if H(x) ≥ 1 for all x ∈ E and if there
exists some constants α > 0 and β ≥ 0 such that for all x ∈ E,

LH(x) ≤ −αH(x) + β1K(x). (6)

Finally, we recall that the Markov process Y is called ϕ-irreducible if there exists a σ-finite
measure ϕ such that for all measurable set A with ϕ(A) > 0 we have, for all x ∈ E,
Ex
[∫∞

0
1Yt∈Adt

]
> 0. In that case, there exists a maximal irreducibility measure ψ such that

for any other irreducibility measure ν, ν is absolutely continuous with respect to ψ. We then
write B+(E) = {A ⊂ E measurable, ψ(A) > 0}. The process Y is said to be aperiodic if for
some small set C ∈ B+(E), there exists T > 0 such that for all t ≥ T and all x ∈ C we have
Pt(x,C) > 0.

We can now recall the main result we will use in Section 3.2 to prove Theorem 1.1.
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Theorem 2.1. ([17]) Let Y be an irreducible and aperiodic Markov process. If there exists a
petite set K for the process Y and a Lyapunov function associated to this set K (i.e. (4) and
(6) hold) , then the process Y is exponentially ergodic.

Remark 2.2. This theorem is a qualitative result and does not give a quantitative speed of
convergence. However, in Section 5, we will use an alternative way to show the exponential
ergodicity of our process in dimension 1, without needing to find a Lyapunov function, and this
would give more quantitative results.

2.2 Description of the process

Let us now describe the dynamic of the process.
The variables 0 = T0, T1, T2, . . . refer to the successive jumping times of the process, and for
n ≥ 1 we denote by τn the inter-jump time: τn = Tn − Tn−1.
In order to make the paper easier to read, we note Vi the velocity on the time interval [Ti, Ti+1),
instead of VTi .
Finally, we denote by F ((·, x, v) the survival function of T1 with initial data (X0, V0) = (x, v):
F (·, x, v) = Px,v(T1 > ·).
The time T1 satisfies, when (X0, V0) = (x, v):

T1 = inf

{
t ≥ 0,

∫ t

0

λ(Xs, Vs)ds ≥ E

}
= inf

{
t ≥ 0,

∫ t

0

λ(x+ vs, v)ds ≥ E

}
where E is an exponential variable with unit mean, because the process is deterministic between
jump times. We then get:

F (t, x, v) = Px,v(T1 > t)

= Px,v
(∫ t

0

λ(x+ vs, v)ds ≤ E

)
= exp

(
−
∫ t

0

λ(x+ vs, v)ds

)
.

The conditional distribution of the inter-jump times is then given by, for all n ≥ 0:

P (τn+1 ≥ t |XTn , Vn ) = exp

(
−
∫ t

0

λ(XTn + Vns, Vn)ds

)
.

3 Main result

In this section we prove our main result, Theorem 1.1, using Theorem 2.1. We first need to
find a Lyapunov function for the process.

3.1 A Lyapunov function

Let us introduce some constants which will appear in the definition of our Lyapunov function.
Thanks to Assumptions (H1), (H2), (H3) and (H4), the following quantities are well defined:
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θ1 ∈
(

max

{
θ∗λmax

pθ0λmin

;
1

pθ0β

}
, pθ0

)
;

α ∈
(

0 , min

{
pθ0λmin

θ∗
− λmax

θ1

; pθ0βλmax −
λmax

θ1

})
;

a ∈
(

1 +
λmax

αθ1

, min

{
pθ0λmin

αθ∗
;
pθ0βλmax

α

})
.

We then consider the function H defined on E = Rd × B(1) by

H(x, v) = eα|x|
(
a+ ϕ

(
x · v
|x|

))
,

where ϕ is a non-decreasing function of class C1 on [−1, 1], with ϕ(θ) = θ if θ ∈ [−1,−θ1], and
ϕ(θ) = 0 if θ ∈ [0, 1]. We introduce m the supremum norm of the derivative of ϕ, that is:

m = sup
θ∈[−1,1]

|ϕ′(θ)|.

Then, we have the following result:

Proposition 3.1. There exist some constants R > 0, η > 0 such that for all (x, v) ∈
(Rd\B(R))× B(1),

LH(x, v) ≤ −ηH(x, v).

The function H is then a Lyapunov function associated to the set B(R)× B(1) for the process
(X, V ) driven by the generator L.

Proof. For (x, v) ∈ E we have:

LH(x, v) = eα|x| (A1 + A2 + A3) (7)

with

A1 = α
x · v
|x|

(
a+ ϕ

(
x · v
|x|

))
A2 = ϕ

′
(
x · v
|x|

)
1

|x|

(
|v|2 −

(
x · v
|x|

)2
)

A3 = λ(x, v)

∫
B(1)

(
ϕ

(
x · v′

|x|

)
− ϕ

(
x · v
|x|

))
Q(x, v, dv′).

Let first remark that since the derivative of ϕ is bounded by m, we always have

A2 ≤
m

|x|
.
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Moreover, thanks to Assumption (H3) and the definition of the function ϕ, we can bound A3

as follows:

A3 ≤ λ(x, v)

[∫
{v′∈B(1)/x·v

′
|x| ≤−θ0}

ϕ

(
x · v′

|x|

)
Q(x, v, dv′)− ϕ

(
x · v
|x|

)]

≤ λ(x, v)

[
−θ0

∫
{v′∈B(1)/x·v

′
|x| ≤−θ0}

Q(x, v, dv′)− ϕ
(
x · v
|x|

)]

≤ −λ(x, v)

[
pθ0 + ϕ

(
x · v
|x|

)]
.

We can now study Equation (7) depending on the different values taken by x·v
|x| .

• If x·v
|x| ∈ [−1,−θ1]:

LH(x, v) ≤ eα|x|
[
−αθ1(a− 1) +

m

|x|
+ λmax

]
.

• If x·v
|x| ∈ (−θ1, 0):

LH(x, v) ≤ eα|x|
[
m

|x|
− λ(x, v) (pθ0 − θ1)

]
≤ e|x|

[
m

|x|
− λmin (pθ0 − θ1)

]
.

• If x·v
|x| ∈ [0, θ∗]:

LH(x, v) ≤ eα|x|
[
αθ∗a+

m

|x|
− λminpθ0

]
.

• If x·v
|x| ∈ (θ∗, 1], and if |x| ≥ ∆, with ∆ defined in Assumption (H4):

LH(x, v) ≤ eα|x|
[
αa+

m

|x|
− pθ0βλmax

]
.

Let us now define

R = max

{
m

αθ1(a− 1)− λmax

;
m

λmin (pθ0 − θ1)
;

m

pθ0λmin − αθ∗a
; ∆;

m

pθ0βλmax − αa

}
.

Thanks to the assumptions made on each parameter, the constant R is well defined and finite.
Therefore, the previous calculations give the existence of a constant η > 0 such that for all
(x, v) ∈ (Rd\B(R))× B(1):

LH(x, v) ≤ −ηeα|x|.

Finally, the function (y, w) 7−→ a+ ϕ
(
y·w
|y|

)
being bounded from above by a, we get:

LH(x, v) ≤ −ηaH(x, v),

which ends the proof.
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3.2 Proof of Theorem 1.1

Since we have already found a Lyapunov function, we still have to review three points in order
to use Theorem 2.1 : the irreducibility and the aperiodicity of the process, and the existence
of petite sets. These are the object of the following proposition.

Proposition 3.2. All compact sets of the form K × B(1), with K a compact set of Rd, are
petite for the process (X, V ).
Moreover, the process is irreducible and aperiodic.

Proof. We do not detail the proof since we just have follow the ideas of the proof of Lemma
2 in [10]. It is indeed enough to show that for all M > 0, for all (x, v) ∈ B(M) × B(1), for
all positive bounded function ϕ : E → R, there exist a constant C > 0 and a compact set
A ⊂ Rd × B(1), both independent of M and ϕ, such that:∫ ∞

0

e−tE(x,v) [ϕ(Xt, Vt)] dt ≥ C

∫ ∫
A

ϕ(y, w)dydw.

to deduce the first result of the proposition. Let us mention that the proof is based only on
Assumptions (H1), (H2) and (H3).
Then, the irreducibility of the process follows easily, and we refer once more to [10], Lemma 3,
for the aperiodicity.

Remark 3.3. Let us mention different proofs of this result in some particular cases.
In dimension 1, a proof has been given in [4] for the process with a velocity equal to −1 or +1,
with the same main ideas that in [10] and [19].
For the process in dimension 2, if the jump kernel has a density with respect to the Lebesgue
measure which is bounded from below by a strictly positive constant, and if the jump rate is
bounded, the previous proposition can be proved by geometric considerations, as in the proof of
Lemma 4.5 in [7].

Proof of Theorem 1.1. By Proposition 3.1 and 3.2, all conditions of 2.1 are satisfied, so that
the stated result follows.

4 Exponential moments for the invariant measure
In this section, we want to study the existence of exponential moments for the unique invariant
probabilty measure of the process (X, V ), that we denote by π, whose existence follows from
Theorem 1.1.

Let first say that if the lengths of the consecutive excursions away from 0 were independent
and identically distributed, the process (X, V ) would be a regenerative process, and we could
then apply standard results on regenerative processes (see [1] or [8] for instance) to collect some
informations on the invariant measure of the process. However, the excursions away from 0
do not satisfy this assumption in our case, because of the dependence in speed between two
consecutive excursions. We thus introduce the notion of switching process (see [8]), which is
adapted to our process.

Let ζ = (ζt)t≥0 be a càdlàg process with values in some state space F .
LetM(ζ; dz, dt) be a stochastic kernel on F which depends on ζ and such that we have in some
sense the good measurabilities. We suppose moreover that M(ζ;F × {0}) = 0.
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Definition 4.1. A switching process (SP) on F associated with ζ and M , with initial state
y0 ∈ F is a process (Ψt)t≥0 that can be constructed as follows :

1. let ζ(1) be a process such that L(ζ(1)) = L(ζ|ζ0 = y0);

2. let (Y1, T1) whose law conditionally to ζ(1) is M(ζ(1); dz, dt);

3. we define Ψt = ζ
(1)
t for t < T1 and ΨT1 = Y1;

we now suppose constructed ζ(1), . . . , ζ(n), Y1, T1, . . . , Yn, Tn (n ≥ 1);

5. let ζ(n+1) such that L(ζ(n+1)|ζ(1), . . . , ζ(n), Y1, T1, . . . , Yn, Tn) = L(ζ|ζ0 = Yn);

6. let (Yn+1, Tn+1) such that the law of (Yn+1, Tn+1 − Tn) conditionally to
(ζ(1), . . . , ζ(n), ζ(n+1), Y1, T1, . . . , Yn, Tn) is M(ζ(n+1); dz, dt);

7. we define Ψt = ζ
(n+1)
t if Tn ≤ t < Tn+1 and ΨTn+1 = Yn+1.

The times (Tn)n≥1 are called the jump times of the SP Ψ. We define T0 = 0 and Y0 = y0

and suppose that lim
n→+∞

Tn = +∞.

Remark 4.2. A PDMP is clearly a SP, with ζ a deterministic process, Tn the jump times of
the PDMP, and Yn the positions of the PDMP at times Tn.

Before stating the result we will use in this part, let us first briefly speak about Harris-
recurrence and non-arithmetic process (see for instance [8]). The Markov chain Y with state
space F is called Harris-recurrent if there exists a measurable set A ⊂ F , c > 0, m ≥ 1, and a
distribution ϕ such that

1. for all y ∈ F , Py (τA <∞) = 1, where τA = inf{n ≥ 0, Yn ∈ A};

2. for all y ∈ A, Py (Ym ∈ ·) ≥ cϕ(·).

Then, we recall that the process (Yn, Tn)n≥0 is non-arithmetic if the laws of the variables
Tn − Tn−1, n ≥ 1 have a part which is absolutely continuous with respect to the Lebesgue
measure (see [8] for the definition of an arithmetic process).

We have the following result concerning the convergence of SP:

Theorem 4.3 ([8]). Let (Ψt)t≥0 be a SP as is the definition.
We suppose that (Y, T ) is non-arithmetic and that Y is Harris-recurrent, and let ν be an in-
variant measure for this chain.
Let f : F −→ R be a measurable positive function such that (z, t) 7−→ E [f(Ψt)|Y0 = z] is
bounded on F × [0, t] for all t. We define g : F × R+ −→ R by g(z, t) = E [f(Ψt)1t<T1|Y0 = z].
We suppose :

1. for ν-almost all z ∈ F , t 7→ g(z, t) is almost everywhere continuous with respect to the
Lebesgue measure;

2. there exists ∆ > 0 such that∫
F

∑
n∈N

sup
n∆≤t<(n+1)∆

|g(z, t)|ν(dz) <∞.

10



Then for ν-almost all y ∈ F :

Ey [f(Ψt)] −→
t→∞

∫
F
E
[∫ T1

0
f(ζs)ds|ζ0 = z

]
ν(dz)∫

F
E [T1|ζ0 = z] ν(dz)

. (8)

The natural idea to apply this theorem in our context is to see our PDMP (X, V ) as a
SP associated to the chain ((XTn , Vn), Tn)n≥0. However, we are not able to control the right
quantity of Equation (8), because in that case, we do not know enough about the measure ν
which is the invariant measure of the chain (XTn , Vn) .
We will therefore see our process (X, V ) as a SP associated to other "jump times". Let Z0 = 0
and (Zn)n≥1 be the successive times at which the process X enters the ball B(1). We thus
have |XZn|= 1 for all n ≥ 1. Moreover, just before the time Zn, |Xt|≥ 1, and just after
the time Zn, |Xt|≤ 1. The PDMP (X, V ) we are looking at is a SP associated to the chain
((XZn , VZn), Zn)n≥0.
Indeed, let ζ = (X, V ) be our initial process. Let (x0, v0) ∈ Sd−1×B(1), where Sd−1 names the
unit sphere of Rd, such that |x0 + v0t|≤ 1 for small t. Let ζ(1), ζ(2), . . . be processes such that
L(ζ(1)) = L(ζ|ζ0 = (x0, v0)), and
L(ζ(n+1)|ζ(1), . . . , ζ(n), (XZ1 , V1), Z1, . . . , (XZn , VZn), Zn) = L(ζ|ζ0 = (XZn , VZn)) for all n ≥ 1.
Let us write M(ζ(1); dz, dt) the law of ((XZ1 , VZ1), Z1) conditionally to ζ(1).
The laws of the couples ((XZn+1 , VZn+1), Zn+1−Zn) differ only on the value of (XZn , VZn), which
is also the only data that changes in the laws of the ζ(n). Therefore, for all n ≥ 1, the couple
((XZn+1 , VZn+1), Zn+1 − Zn) has for law M(ζ(n); dz, dt).
According to the definition 4.1, we have defined by this way a SP.

Consequently, the previous theorem can be applied to our process, and it implies the exis-
tence of exponential moments for the invariant measure π of the PDMP (X, V ). More precisely
we have the following result:

Theorem 4.4. Let η be as in Proposition 3.1. Then for all 0 < β < η and all γ > 0, we have :∫
E

eβ|x|+γ|v|π(dx, dv) <∞,

where we recall that π is the unique invariant probability measure of the process (X, V ).

This result is a consequence of Proposition 3.1, which implies the existence of exponential
moments for the hitting time of the compact set B(1) associated to the Lyapunov function. Let
us precise this fact:

Proposition 4.5. Let us note τB(1) = inf{t ≥ 0, Xt ∈ B(1)} the hitting time of B(1). For all
(x, v) ∈ E,

Ex,v [eητB(1) ] ≤ H(x, v),

where η and H are defined in Proposition 3.1.

Proof. In order to make the proof easier to read, we note τ instead of τB(1).
For (x, v) ∈ E, Dynkin’s formula gives:

Ex,v
[
eη(t∧τ)

]
≤ Ex,v

[
H (Xt∧τ , Vt∧τ ) eη(t∧τ)

]
= H(x, v) + Ex,v

[∫ t∧τ

0

(η + L)H (Xs∧τ , Vs∧τ ) eη(s∧τ)ds

]
≤ H(x, v),

11



the last inequality resulting from Proposition 3.1.
Then, when t goes to infinity, the monotone convergence theorem gives:

Ex,v [eητ ] ≤ H(x, v).

Proof of Theorem 4.4. Let first remark that the chain (XZn , VZn)n≥0 is Harris-recurrent. In-
deed, let A = Sd−1 × B(1) be the state space of (XZn , VZn)n≥0. We obviously have, for all
(x, v) ∈ A, P (τA <∞) = 1. The second point in the definition of the Harris-recurrence can be
proved with ϕ the Lebesgue measure on Rd, using in particular the fact that Zm is almost-surely
finite for each m ≥ 1 thanks to Proposition 4.5.
Moreover, the chain ((XZn , VZn), Zn)n≥0 is non-arithmetic because the law of the times Zn+1−Zn
has a part which is absolutely continuous with respect to the Lebesgue measure.
Let us now introduce f : (x, v) ∈ Rd × B(1) 7−→ eβ|x|+γ|v| for 0 ≤ β < η and γ ≥ 0.
We first observe that f is a positive measurable function, and that

((x, v), t) −→ E [f(Xt, Vt)|(XZn , VZn) = (x, v)]

is bounded on
(
Sd−1 × B(1)

)
× [0, t] for all t.

Let ν be the unique invariant probability measure of the chain (XZn , VZn)n≥0, which exists since
the chain is positive Harris-recurrent.
Let us define the function g on

(
Rd × B(1)

)
× R+ by

g ((x, v), t) = Ex,v
[
eβ|Xt|+γ|Vt|1t<Z1

]
,

and let us check if g satisfies the assumption of Theorem 4.3:

1. For ν-almost all (x, v) ∈ Sd−1 ×B(1), the function t 7−→ g((x, v), t) is almost everywhere
continuous with respect to the Lebesgue measure since it is right-continuous and has thus
an at most countable set of discontinuities.

2. Let ∆ > 0. According to Markov inequality we have

Px,v (Z1 > t) ≤ e−ηtEx,v
[
eηZ1

]
.

Using Proposition 4.5 and the fact that the Lyapunov function H is uniformly bounded
on Sd−1 × B(1), we get the existence of a finite constant M such that for all (x, v) ∈
Sd−1 × B(1),

Px,v (Z1 > t) ≤Me−ηt.

Moreover, let remark that if (X0, V0) ∈ Sd−1×B(1), since |X0|= 1 and the velocity of the
process lives in B(1), then for all t ≥ 0, |Xt|≤ 1 + t.

12



Therefore we have∫
Sd−1×B(1)

∑
n∈N

sup
n∆≤t<(n+1)∆

|g ((x, v), t) |ν(dx, dv)

=

∫
Sd−1×B(1)

∑
n∈N

sup
n∆≤t<(n+1)∆

Ex,v
[
eβ|Xt|+γ|Vt|1t<Z1

]
ν(dx, dv)

≤
∫
Sd−1×B(1)

∑
n∈N

sup
n∆≤t<(n+1)∆

eβ(1+t)+γPx,v (Z1 > t) ν(dx, dv)

≤
∫
Sd−1×B(1)

∑
n∈N

sup
n∆≤t<(n+1)∆

eβ(1+t)+γMe−ηtν(dx, dv)

≤Meβ+γ
∑
n∈N

eβ(n+1)∆−ηn∆

= Meβ(1+∆)+γ
∑
n∈N

(
e∆(β−η)

)n
.

This quantity is finite since β < η.

The function g satisfying all the required assumptions, we can apply Theorem 4.3: for ν-almost
all (x0, v0) ∈ Sd−1 × B(1) we have

Ex0,v0
[
eβ|Xt|+γ|Vt|

]
−→
t→∞

∫
Sd−1×B(1)

Ex,v
[∫ Z1

0
eβ|Xs|+γ|Vs|ds

]
ν(dx, dv)∫

Sd−1×B(1)
Ex,v [Z1] ν(dx, dv)

.

The quantity on the right is clearly finite thanks to the previous calculations. Moreover, the
ergodic theorem gives:

Ex0,v0
[
eβ|Xt|+γ|Vt|

]
−→
t→∞

∫
Rd×B(1)

eβ|x|+γ|v|π(dx, dv).

We then deduce that∫
Rd×B(1)

eβ|x|+γ|v|π(dx, dv) =

∫
Sd−1×B(1)

Ex,v
[∫ Z1

0
eβ|Xs|+γ|Vs|ds

]
ν(dx, dv)∫

Sd−1×B(1)
Ex,v [Z1] ν(dx, dv)

,

and we have proved the theorem.

5 The particular case of dimension 1

In this section, we will study PDMPs in dimension 1, but in a different way, and under some dif-
ferent assumptions (see Section 5.4 for a comparison between the two approaches in dimension
1). This section is thus complementary to the previous study applied at the one-dimension.
An interest of this section is that the approach carried out gives more quantitative results.
Moreover, we recover with this approach the previous works on this kind of PDMPs ([4], [13],
[14]).
The main difference with the previous study in higher dimension is that, instead of giving a
Lyapunov function to prove the exponential ergodicity, we are going to estimate more precisely
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the hitting time of a compact set.

We consider here the PDMP ((Xt, Vt))t≥0 with values in R × [−1, 1] with infinitesimal gen-
erator given by

Lh(x, v) = v∂xh(x, v) + λ(x, v)

∫ 1

−1

(h(x, v′)− h(x, v))Q(x, v, dv′), (9)

where Q(x, v, ·) is a probability kernel on [−1, 1]. This process is the one-dimensional version
of the process driven by (1).

The framework of this section is the following:

(A1): Q(x, v, dv′) = q(v, v′)(ν(dv′) + µ(dv′)) with ν a discrete measure and µ a restriction of
the Lebesgue measure. We denote by V the support of Q and suppose that there exists
a constant qmin > 0 such that q(v, v′) ≥ qmin for all v, v′ ∈ V ;

(A2): The process is symmetric: V is symmetric with respect to 0 and λ(x, v) = λ(−x,−v) for
all (x, v) ∈ R× V ;

(A3): There exists 0 < λmin such that for all (x, v) ∈ R × V , λmin ≤ λ(x, v), and the quantity
supx≥0,v≤0 λ(x, v) is finite.

The importance of the existence of qmin in Assumption (A1) will not explicitly appear in
the following since we are not going to give all the proofs in detail, but we note that it is useful
in Proposition 5.8 and Theorem 5.9.
Assumption (A2) implies that the process is spatially symmetric with respect to the origin,
which will allow us to reduce the number of computations. Nevertheless, the following results
are still available without this symmetry.
The fact that we suppose the kernel Q to be independent of the position of the bacterium
implies that the chain composed by the velocities at the jump times is a Markov chain with
kernel Q. In particular, contrary to what is assumed in higher dimension, the attraction of the
bacterium by the origin is not favoured by the jump kernel since it does not take care of the
position of the bacterium with respect to the origin.
We make thus an additional assumption (A4) that takes into account this attraction to the
origin, because of the presence of a chemo-attractant there. This assumption is the one that
makes the process ergodic.

(A4) : ∃I∗ ⊂
[
0, inf

x≥0,v∈(0,1]

λ(x, v)

v

)
an interval I∗,∃0 < J∗ < 1,∀α ∈ I∗,∀v′ ∈ V ,∫ 1

−1

G(α, v)Q(v′, dv) ≤ J∗,

where

G(α, v) =

sup
x≥0

λ(x, v)

sup
x≥0

λ(x, v)− αv
1v<0 +

inf
x≥0

λ(x, v)

inf
x≥0

λ(x, v)− αv
1v≥0 (10)

for α ≥ 0 and v ∈ V .

14



Before stating the theorem that gives the exponential ergodicity of the process, we make
some remarks on Assumption (A4).

Remark 5.1. Let us give a sufficient condition to satisfy Assumption (A4) when the jump
kernel Q does not depend on the previous velocity.
Let us write Jv′(α) =

∫ 1

−1
G(α, v)Q(v′, dv).

For all v′ ∈ [−1, 1], the function Jv′ is C1 on [0, inf
x≥0,v∈]0,1]

λ(x,v)
v

), is convex and

Jv′(0) = 1 , J ′v′(0) =

∫ 1

−1

 v

sup
x≥0

λ(x, v)
1v<0 +

v

inf
x≥0

λ(x, v)
1v≥0

Q(v′, dv)

and lim
α→ inf

x≥0,v∈]0,1]
λ(x,v)
v

Jv′(α) = +∞.

If we assume that J ′v′(0) < 0, we get that there exists a unique α̂ ∈ (0, inf
x≥0,v∈]0,1]

λ(x,v)
v

) such

that J(α̂) = 1, and then there exists an interval Î ⊂ (0, α) such that for all α ∈ Î, Jv′(α) is
uniformly bounded by a constant strictly smaller than 1 on the interval Î.
Consequently, for all v′ ∈ [−1, 1],

∃Î ⊂ (0, inf
x≥0,v∈(0,1]

λ(x, v)

v
),∃0 < K̂ < 1,∀α ∈ Î ,

∫ 1

−1

G(α, v)Q(v′, dv) ≤ K̂.

In Assumption (A4), we suppose in addition that the interval Î and the constant K̂ are uniform
in v′. In particular, if Q(v′, dv) = Q(dv), the assumption J ′(0) < 0, that is

∫ 1

−1

 v

sup
x≥0

λ(x, v)
1v<0 +

v

inf
x≥0

λ(x, v)
1v≥0

Q(dv) < 0

is sufficient for Assumption (A4) to be satisfied.
This assumption is the equivalent of Assumption (H3) made by Calvez, Raoul and Schmeiser
in [6]. The probability study carried out in this section covers thus the framework of [6].

Remark 5.2. Let see that in the case where the kernel Q does not depend on the previous
velocity and is symmetric in the sense that q(v) = q(−v) for all v ∈ V, Assumption (A4) holds
in the particular case where inf

x≥0
λ(x, v) > sup

x≤0
λ(x, v) for all v ∈ [0, 1], i.e. when the velocity

tends to jump even more when the bacterium goes away from 0 than when it moves towards the
origin. This case is the one considered for instance in [4], [13] and [14], with a velocity taking
its values in {−1,+1}
Let us prove this fact. Under this assumption on the jump rate, with the same notations as in
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the previous remark, and using the symmetries of the process we have:

J ′v′(0) =

∫ 1

−1

 v

sup
x≥0

λ(x, v)
1v<0 +

v

inf
x≥0

λ(x, v)
1v≥0

 q(v)dv

=

∫ 0

−1

v

sup
x≥0

λ(x, v)
q(v)dv +

∫ 1

0

v

inf
x≥0

λ(x, v)
q(v)dv

= −
∫ 1

0

v

sup
x≥0

λ(x,−v)
q(v)dv +

∫ 1

0

v

inf
x≥0

λ(x, v)
q(v)dv

= −
∫ 1

0

v

sup
x≤0

λ(x, v)
q(v)dv +

∫ 1

0

v

inf
x≥0

λ(x, v)
q(v)dv

< 0.

And the end of Remark 5.1 ensures that Assumption (A4) is satisfied.

Let us now give the main theorem of this section.

Theorem 5.3. Let (Xt, Vt)t≥0 be the PDMP on R × [−1, 1] whose infinitesimal generator is
given by

Lh(x, v) = v∂xh(x, v) + λ(x, v)

∫ 1

−1

(h(x, v′)− h(x, v))Q(x, v, dv′).

Under Assumptions (A1), (A2), (A3) and (A4), the process is exponentially ergodic.

5.1 The hitting time of the origin

As mentioned before, we are going to estimate the exponential moments of the hitting times of
compact sets in order to prove Theorem 5.3. We introduce two new notations.
We denote by Z the first hitting time of 0, i.e.

Z = inf{t > 0, Xt = 0}, (11)

and S is the index of the first jump-time at which the position of the process has changed its
sign: S = inf{n ≥ 1, XTnX0 ≤ 0}.
We have the following result concerning the random variable Z:

Proposition 5.4. For every (x0, v0) ∈ R×V, there exists a constant Kx0,v0 <∞ such that for
every 0 < ρ < λmin(1− J∗), where J∗ is given by (A4),

Ex0,v0
[
eαZ
]
≤ Kx0,v0

1

1− λmin

λmin−ρJ∗
.

Moreover, Kx0,v0 is uniformly bounded from above for (x0, v0) ∈ [−x1, x1]× V for all x1 > 0.

To prove this proposition, we will first study the random variable S. Then, the inequality
Z ≤

∑S
i=1 τi a.s. will allow us to come back to Z.
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Proposition 5.5. For all (x0, v0) ∈ R× V, there exist a constant κx0,v0 <∞ such that for all
n ≥ 1,

Px0,v0 (S > n) ≤ κx0,v0(J∗)
n−1,

where J∗ is given by (A4).

Proof. In order to make the proof easier to read, we distinguish the cases where x0 and v0 are
positive or negative. We first look at the case x0 > 0 and v0 ∈ V ∩ [0, 1], and the other cases
are similar because of the symmetry of the process.

Let x0 > 0 and v0 ∈ V ∩ [0, 1].
We have S = inf{n ≥ 1, XTn ≤ 0}, and XTn = X0 +

∑n−1
i=0 Viτi+1 = x0 + v0τ1 +

∑n−1
i=1 Viτi+1.

Let α ∈ [0, inf
x≥0,v∈(0,1]

λ(x,v)
v

).

Since x0 is positive, on the event {S > n}, XTn is also positive, and the sign of α implies:

Px0,v0(S > n) ≤ Ex0,v0
[
eαXTn1S>n

]
= eαx0Ex0,v0

[
eα(v0τ1+

∑n−1
i=1 Viτi+1)1S>n

]
= eαx0Ex0,v0

[
eαv0τ1

n−1∏
i=1

eViτi+11S>n

]

= eαx0Ex0,v0

[
Ex0,v0

[
eαv0τ1

n−1∏
i=1

eViτi+11S>n|XT1 , V1, . . . , XTn−1 , Vn−1

]]
.

Since the inter-jump times τ1, . . . , τn are independent conditionally to the couples
(X0, V0), (XT1 , V1), . . . , (XTn−1 , Vn−1), and since {S > n} = {XT1 > 0, · · · , XTn > 0} we have:

Px0,v0(S > n) ≤ eαx0Ex0,v0

[
Ex0,v0 [eαv0τ1 ]

n−1∏
i=1

Ex0,v0
[
eαViτi+1|XTi , Vi

]
1XT1>0,··· ,XTn>0

]
. (12)

Moreover, we know that
P (τi+1 ≥ t|XTi , Vi) = F (t,XTi , Vi),

which gives, for 1 ≤ i ≤ n− 1:

E
[
eαViτi+1|XTi , Vi

]
=

∫ +∞

0

eαVitλ(XTi + Vit, Vi)e
−

∫ t
0 λ(XTi+Vis,Vi)dsdt

=

∫ +∞

0

λ(XTi + Vit, Vi)

λ(XTi + Vit, Vi)− αVi
(λ(XTi + Vit, Vi)− αVi) e−

∫ t
0(λ(XTi+Vit,Vi)−αVi)dsdt.

Furthermore, for α ∈ R and v ∈ [−1, 1] the function λ ∈ R+ 7−→ λ
λ−αv is increasing if αv ≤ 0

and decreasing otherwise. Therefore, if Vi ≥ 0, since on {S > n} the position of the bacterium
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is positive, we get:

E
[
eαViτi+1|XTi , Vi

]
1XT1>0,··· ,XTn>0

≤
inf
x≥0

λ(x, Vi)

inf
x≥0

λ(x, Vi)− αVi

∫ +∞

0

(λ(XTi + Vit, Vi)− αVi) e−
∫ t
0(λ(XTi+Vit,Vi)−αVi)dsdt

=
inf
x≥0

λ(x, Vi)

inf
x≥0

λ(x, Vi)− αVi
.

In the case Vi < 0 we get in the same way:

E
[
eαViτi+1|XTi , Vi

]
1XT1>0,··· ,XTn>0

≤
sup
x≥0

λ(x, Vi)

sup
x≥0

λ(x, Vi)− αVi
.

We have thus obtained the following inequality:

E
[
eαViτi+1|XTi , Vi, S

]
1XT1>0,··· ,XTn>0

≤ G(α, Vi),

where G is given by (10).
Getting back to (12), we get:

Px0,v0 (S > n) ≤ eαx0C(α, v0)Ex0,v0

[
n−1∏
i=1

G(α, Vi)

]
,

where we write C(α, v0) =
inf
x≥0

λ(x,v0)

inf
x≥0

λ(x,v0)−αv0 .

Using now the fact that (Vi)i≥0 is a Markov chain with kernel Q, we have:

Ex0,v0

[
n−1∏
i=1

G(α, Vi)

]
≤
∫ 1

−1

G(α, v1)× . . .×
∫ 1

−1

G(α, vn−1)Q(vn−2, dvn−1) . . . Q(v0, dv1).

We deduce from Assumption (A4), that for all α ∈ I∗ we have Ex0,v0
[∏n−1

i=1 G(α, Vi)
]
≤ (J∗)

n−1.
And finally:

Px0,v0 (S > n) ≤ eαx0C(α, v0)(J∗)
n−1, (13)

for all α ∈ I∗ , x0 > 0 and v0 ∈ V ∩ [0, 1].

For x0 > 0 and v0 ∈ V ∩ [−1, 0), the calculations are exactly the same, only the constant

C(α, v0) changes into
sup
x≥0

λ(x,v0)

sup
x≥0

λ(x,v0)−αv0 . In the following, we thus write

C(α, v0) =

sup
x≥0

λ(x, v0)

sup
x≥0

λ(x, v0)− αv0

1v0<0 +
inf
x≥0

λ(x, v0)

inf
x≥0

λ(x, v0)− αv0

1v0≥0 , for α ≥ 0.
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One more time, for x0 ≤ 0, the calculations are made in exactly the same way. The
symmetry of the process and Assumption (A4) ensure that, for all α such that −α ∈ I∗, for all
x0 ≤ 0 and all v0 ∈ V ,

Px0,v0 (S > n) ≤ eαx0C(−α, v0)(J∗)
n−1. (14)

Finally, we have proved in (13) and (14) that for all (x0, v0) ∈ R × V and all α such that
|α|∈ I∗,

Px0,v0 (S > n) ≤ e|αx0|C(|α|, v0)(J∗)
n−1. (15)

The proposition is then proved with κx0,v0 = e|αx0|C(|α|, v0).

Proof of Proposition 5.4. As mentioned before, we are going to use the inequality Z ≤
∑S

i=1 τi
a.s. to get some informations on the hitting time of the origin.
Let us notice the variables τi, i ≥ 1 are stochastically smaller than i.i.d. exponential variables
Ei, i ≥ 1 with mean 1

λmin
. Indeed, the survival function of the variable τi+1, conditionally to

XTi and Vi, is F (·, XTi , Vi) = exp
(∫ t

0
λ(XTi + Vis, Vi)ds

)
, and the jump rate λ is uniformly

bounded from below by λmin. The variables (Ei)i≥1 can be taken as independent because of
the independence of the variables (τi)i≥1 conditionally to (XTi , Vi)i≥0, and can also be taken as
independent of the variables (τi)i≥1.
Thanks to this comment and the previous proposition, we get, for η > 0 and α such that
|α|∈ I∗:

E
[
eηZ
]
≤ Ex0,v0

[
eη

∑S
i=1 τi

]
≤ Ex0,v0

[
eη

∑S
i=1 Ẽi

]
= Ex0,v0

[
E
[
eη

∑S
i=1 Ẽi |S

]]
= Ex0,v0

[
S∏
i=1

E
[
eηẼi

]]

= Ex0,v0

[(
λmin

λmin − η

)S]

=
+∞∑
n=0

(
λmin

λmin − η

)n
Px0,v0(S = n)

=
+∞∑
n=0

(
λmin

λmin − η

)n
(P(Sx0,v0 > n− 1)− P(Sx0,v0 > n))

≤ e|αx0|C(|α|, v0)
(1− J∗)
J2
∗

+∞∑
n=0

(
λmin

λmin − η
J∗

)n
.

Finally, for all η > 0 such that λmin
λmin−ηJ∗ < 1, we get :

E
[
eηZ
]
≤ e|αx0|C(|α|, v0)

(1− J∗)
J2
∗

1

1− λmin
λmin−ηJ∗

<∞, (16)
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which ends the proof of the proposition.

5.2 Exponential ergodicity of the process

As mentioned before, we are going to give a proof of the exponential ergodicity of our process
based on Proposition 5.4, without using the existence of a Lyapunov function. For this purpose,
we recall another result on the exponential ergodicity of a Markov process.

Theorem 5.6. (Theorem 6.2 in [11]) Let Y be an irreducible and aperiodic Markov process.
Suppose that there exists a function f ≥ 1, a closed measurable set C ∈ E and some constants
δ, η > 0, M <∞ such that

Ex

[∫ τC(δ)

0

eηtf(Yt)dt

]
<∞, for all x /∈ C

and

sup
x∈C

Ex

[∫ τC(δ)

0

eηtf(Yt)dt

]
≤M

where τC(δ) = inf{t ≥ δ, Yt ∈ C}.
If the set C is petite for Y , then the process is exponentially ergodic.

Remark 5.7. The proof of this theorem relies on the introduction of the function
H0(x) := 1 + Ex

[∫ τC(δ)

0
eηtf(Yt)dt

]
, which plays the role of a Lyapunov function for a Markov

chain linked to the process Y .

To apply this theorem, we need then, as previously, to find a petite set. The following propo-
sition states that all compact sets are petite for the process (X, V ), and is just a consequence
of Proposition 3.2.

Proposition 5.8. For all x1 > 0, the set C = [−x1, x1]× V is petite for the process (X, V ).

We can now prove Theorem 5.3:

Proof of Theorem 5.3. Let x1 > 0. Proposition 5.8 ensures that the closed set C = [−x1, x1]×V
is petite for the process (X, V ).
Moreover, let us consider the quantity Ex,v

[
eητC(δ)

]
with η, δ > 0. It satisfies the assumptions

of Theorem 5.6 (we have taken f ≡ 1) for 0 < η < λmin(1− J∗) thanks to Proposition 5.4.
Finally, let Leb be the Lebesgue measure on R. The process (X, V ) is Leb⊗Q-irreducible, and
aperiodic. The proof of these facts can be handled as mentioned previously in the general case.
The conclusion of Theorem 5.6 gives then the exponential ergodicity of (X, V ).

5.3 Exponential moments of the invariant measure

As in the general case, we can show that the invariant measure, that we still denote by π, has
exponential moments. The interest of the current study of the process is that it is quantitatively
more precise, since the estimation of the exponential moments of Z have been carried out
explicitly in the previous section.
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Theorem 5.9. Let γ > 0 such that λmin

λmin−γJ∗ < 1.
For all 0 < α < γ and all β > 0, we have :∫

R×[−1,1]

eα|x|+β|v|π(dx, dv) <∞.

Proof. The proof relies, as in Section 4, on Theorem 4.3. We see the process (X, V ) as a
SP between the successive hitting times of 0. Then, using the upper bound of the exponential
moments of the hitting time of 0 obtained in Proposition 5.4, we can verify that the assumptions
of Theorem 4.3 are satisfied, and the result follows.

5.4 Comparison between the two studies

First, let us recall that the proof of the exponential ergodicity carried out in any dimension is
obviously relevant in dimension 1, whereas the converse is not possible, or at least not directly.
Indeed, the process in dimension 1 is quite simple since it goes towards the origin or not in
terms of the sign of Xt · Vt. In higher dimension, if we want to estimate the hitting time of a
compact set, let say a ball, we can not see if the process is evolving towards the ball just in
terms of the sign of Xt · Vt, and the computations do not proceed as well as in dimension 1.
Nevertheless, even if the approach handled in dimension 1 can not be expanded in higher di-
mension, it has the advantage to give more quantitative results than those obtained with the
Lyapunov function.
Finally, let see that the two approaches carried out in dimension 1 and in higher dimension
cover different types of PDMPs.

• Let look at the process studied in [13], [14] and [4], whose generator has the following
form :

Lf(x, v) = v∂xf(x, v) + λ(x, v) (f(x,−v)− f(x, v)) ,

for (x, v) ∈ R× {−1,+1}.
This process does not satisfy Assumption (A4), because for v′ = −1 we have

∫ 1

−1

G(α̃, v)Q(−1, dv) = G(α̃, 1) =
inf
x≥0

λ(x, 1)

inf
x≥0

λ(x, 1)− α
> 1,

whereas it is still ergodic. Indeed, even if it does not satisfy Assumption (H3), the
Lyapunov function obtained in 2.1 can be adapted (see [4] or [14] for an explicit formula).

• In the d-dimensional case, Assumption (H4) assume a kind of monotony of the jump rate,
which is not necessary in Assumption (A4) in the one-dimensional case. We can thus
construct a particular jump rate which, associated to the kernel Q, satisfies Assumption
(A4), but does not verify Assumption (H4). Let for instance consider the case

Lf(x, v) = v∂xf(x, v) + (21sgn(x)v≥− 1
2

+
1

2
1sgn(x)v<− 1

2
)
1

2

∫ 1

−1

(f(x, v′)− f(x, v)) dv′,

for (x, v) ∈ R× [−1, 1].
This process obviously does not satisfies Assumption (H4) since for all θ∗ ∈ [0, 1], and all
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∆ > 0, inf{sgn(x)v≥θ∗,|x|≥∆} λ(x, v) = 2 = sup{sgn(x)v≤0} λ(x, v).

Nevertheless, Assumption (A4) is verified for this process. Indeed, let α ∈
(

0, inf
x≥0,v∈(0,1]

λ(x,v)
v

)
,

we have:

1

2

∫ 1

−1

G(α, v)dv

=
1

2

∫ − 1
2

−1

sup
x≥0

λ(x, v)

sup
x≥0

λ(x, v)− αv
dv +

1

2

∫ −0

− 1
2

sup
x≥0

λ(x, v)

sup
x≥0

λ(x, v)− αv
dv +

1

2

∫ 1

0

inf
x≥0

λ(x, v)

inf
x≥0

λ(x, v)− αv
dv

=
1

2

∫ − 1
2

−1

1
2

1
2
− αv

dv +
1

2

∫ 1

− 1
2

2

2− αv
dv

=
1

4α
log

( 1
2

+ α
1
2

+ α
2

)
+

1

α
log

(
2 + α

2

2− α

)
.

A curve sketching shows that there exists an interval I∗ ⊂
[
0, inf

x≥0,v∈(0,1]

λ(x,v)
v

)
and a

constant J∗ ∈ (0, 1) such that for all α ∈ I∗, 1
2

∫ 1

−1
G(α, v)dv ≤ J∗, i.e. Assumption (A4)

is satisfied.

Acknowledgements. The author wants to thank Alain Durmus, Arnaud Guillin and Pierre
Monmarché for fruitful discussions about the Lypaunov function introduced in the paper, and
also Hélène Guérin and Florent Malrieu for their help. This work was supported by the Agence
Nationale de la Recherche project PIECE 12-JS01-0006-01.

References

[1] S. Asmussen. Applied Probability and Queues. Applications of mathematics : stochastic
modelling and applied probability. Springer, 2003.

[2] R. Azaïs, J.-B. Bardet, A. Genadot, N. Krell, and P.-A. Zitt. Piecewise deterministic
Markov process - recent results. ESAIM: Proceedings, 44:276–290, 2014. Clermont-Ferrand,
France, 29-31 August 2012.

[3] J. Bierkens, P. Fearnhead, and G. Roberts. The Zig-Zag Process and Super-Efficient
Sampling for Bayesian Analysis of Big Data. ArXiv e-prints, July 2016.

[4] J. Bierkens and G. Roberts. A piecewise deterministic scaling limit of lifted Metropolis–
Hastings in the Curie–Weiss model. Ann. Appl. Probab., 27(2):846–882, 2017.

[5] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet. The Bouncy Particle Sampler: A Non-
Reversible Rejection-Free Markov Chain Monte Carlo Method. ArXiv e-prints, October
2015.

[6] V. Calvez, G. Raoul, and C. Schmeiser. Confinement by biased velocity jumps: aggregation
of escherichia coli. Kinet. Relat. Models, 8(4):651–666, 2015.

22



[7] Nicolas Champagnat and Denis Villemonais. Exponential convergence to quasi-stationary
distribution for absorbed one-dimensional diffusions with killing. ALEA Lat. Am. J.
Probab. Math. Stat., 14(1):177–199, 2017.

[8] C. Cocozza-Thivent. Processus de renouvellement markovien proces-
sus de markov déterministes par morceaux. http://perso-math.univ-
mlv.fr/users/cocozza.christiane/recherche-page-perso/livreRMetPDMPv2.pdf, 2016.

[9] M. H. A. Davis. Piecewise-deterministic markov processes: A general class of non-diffusion
stochastic models. Journal of the Royal Statistical Society. Series B (Methodological),
46(3), 1984.

[10] G. Deligiannidis, A. Bouchard-Côté, and A. Doucet. Exponential Ergodicity of the Bouncy
Particle Sampler. ArXiv e-prints, May 2017.

[11] D. Down, S. P. Meyn, and R. L. Tweedie. Exponential and uniform ergodicity of markov
processes. The Annals of Probability, 23(4):1671–1691, 1995.

[12] A. Durmus, A. Guillin, and P. Monmarché. Geometric ergodicity for the bouncy particle
sampler. Work in progress.

[13] J. Fontbona, H. Guérin, and F. Malrieu. Quantitative estimates for the long-time behavior
of an ergodic variant of the telegraph process. Adv. in Appl. Probab., 44(4):977–994, 12
2012.

[14] J. Fontbona, H. Guérin, and F. Malrieu. Long time behavior of telegraph processes under
convex potentials. Stochastic Processes and their Applications, 126(10):3077–3101, 2016.

[15] C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu. Accelerating diffusions. Ann. Appl.
Probab., 15(2):1433–1444, 2005.

[16] T. Lelièvre, F. Nier, and G. A. Pavliotis. Optimal non-reversible linear drift for the
convergence to equilibrium of a diffusion. J. Stat. Phys., 152(2):237–274, 2013.

[17] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlarg,
London, 1993.

[18] S. P. Meyn and R. L. Tweedie. Stability of markovian processes iii: Foster-Lyapunov
criteria for continuous-time processes. Advances in Applied Probability, 25(3):518–548,
1993.

[19] P. Monmarché. Piecewise deterministic simulated annealing. ALEA Lat. Am. J. Probab.
Math. Stat., 13(1):357–398, 2016.

[20] N. O’Connell. Review: Torgny Lindvall, lectures on the coupling method. Ann. Probab.,
23(3):1456–1460, 07 1995.

[21] H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems.
Journal of Mathematical Biology, 26:263–298, 1988.

23


	Introduction
	Preliminaries
	About ergodicity
	Description of the process

	Main result
	A Lyapunov function
	Proof of Theorem 1.1

	Exponential moments for the invariant measure
	The particular case of dimension 1
	The hitting time of the origin
	Exponential ergodicity of the process
	Exponential moments of the invariant measure
	Comparison between the two studies


