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An analytical model for the prediction of hot roll
temperatures in a hot rolling process

Vorhersage der Warmwalztemperatur in einem Warmwalzprozess
durch ein analytisches Modell

V. Velay1, A. Michrafy2

Temperature variations in the hot roll during a hot rolling process were analysed by
solving heat conduction equations for boundary conditions using an analytical meth-
od. The analysis was conducted in a steady-state regime, taking into account the
effects of process parameters such as the contact surface, roll velocity and various
cooling boundary conditions. Assuming the periodicity of the process, the develop-
ment of a solution in the Fourier series was employed to solve the governing equa-
tions. The temperature and its gradient distributions in the roll depth were analyti-
cally expressed according to the process parameters. The accuracy of the predicted
results was examined through comparison with predictions presented in the litera-
ture (finite element solutions and measurements). Results showed that an increase
in the rolling speed leads to a shorter contact time, which decreases the temperature
field in the work-roll.

Keywords: Hot rolling process / thermal transfer / process parameters

Schlüsselwörter: Warmwalzprozess / Wärmeübergang / Prozessparameter

1 Introduction

The hot rolling process is an important industrial
process for manufacturing sheets with the appropri-
ate mechanical properties. In this process, the work-
rolls are subjected to severe and periodic thermal
loading during contact with the hot strip [1]. The re-
peated thermal cycles are responsible for the failures
observed on the roll surface [2–7]. These failures are
essentially a consequence of the thermal gradient,
resulting from the heat transfer in the contact zone
between the strip, where the temperature can reach
1273 K (1000°C), and the external cooling condi-

tions applied on the roll [8]. In addition to the differ-
ence in temperature between the strip and the roll,
plastic strains generated by pressure applied by the
roller and frictional conditions required for success-
ful hot rolling cause a rise in the temperature at the
contact surface [9, 10]. The changing conditions of
heating and cooling operations are of considerable
importance, since they reduce the lifetime of the
work-roll, which is continuously subjected to ther-
mal gradients generating high thermal stresses. Fig-
ure 1 summarizes the various heat flows generated
in a hot rolling process from the heat exchange in
the contact zone between the strip and the roll and
the heat lost by air or water spray cooling. With the
aim of increasing the lifetime of the roll, it is essen-
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tial to know the temperature distribution in the work-
roll during the hot rolling process. Several studies
have been conducted to calculate temperature distri-
bution in the work-roll using numerical, semi-analy-
tical and analytical techniques [11–17]. The main
advantage of the finite element method is to solve
the governing heat-conduction equations for both
the strip and the work-roll simultaneously [14, 18].
However, this technique requires fine meshes near
the contact zone and hence high CPU time, which
makes it difficult to use as an on-line process control
method.
In contrast, the analytical solution seems to be

more suitable for providing closed form equations
for the temperature field and thermal stresses which
compute very efficiently [12].
In this investigation, the contact between the roll

and the strip is assumed perfect and the heat transfer
generated by both plastic deformation of the strip
and by friction is taken into account through a global
contact temperature. Unlike several other studies the
strip is not explicitly considered and the analysis of
the heat transfer is focused only on the roll [9, 10,
19–21]. The analysis is based on the temperature of
the contact surface, the process parameters, such as
the angular velocity ω, the entry thickness of the
strip – which corresponds to the φ1 angle – and var-
ious cooling boundary conditions denoted by the φ2
angle.

The objective of this work is to develop a semi-
analytical formulation of the heat transfer in the roll
during the hot rolling process with accurate and ap-
propriate time computation. In addition, this devel-
opment could be used as a predictive tool for the
optimization of the hot rolling process. The type of
solution will strongly depend on the process para-
meters considered (cooling conditions, angular velo-
city of rotation) [22–24].

2 Heat equation and boundary conditions

The heat transfer equation in the roll during hot roll-
ing is described by Eq. (1).

dT
dt

¼ aΔT ð1Þ

where a ¼ λ
ρCp

is the thermal diffusivity and λ, ρ

and Cp are respectively the thermal conductivity, the
density and the specific heat of the material.
The stationary state leads to the following rela-

tion:

dT
dt

¼ @T
@φ

_φ ¼ @T
@φ

ω ð2Þ

Figure 1. Various heat fluxes induced in the rolling process



Thus, the assumption of Eq. (2) combined with
Eq. (1) expressed in a polar coordinate system pro-
vides the following relation:

@2T

@ξ2
þ 1
ξ2

@2T
@φ2 þ

1
ξ
@T
@ξ

% ωR2

a
@T
@φ

¼ 0 ð3Þ

The temperature field will depend on the angle
φ 2 0; 2π½ ' and a dimensionless radius ξ 2 0; 1½ ', de-
fined as the ratio between r and the radius of the roll
R, with 0 ( r ( R. Various boundary conditions are
considered along thesurface of the roll. They can
greatly influence the temperature field within the
body of the roll. On the first part, delimited by angle
φ1, an applied temperature is considered (Dirichlet
condition), which reproduces the temperature of the
strip. Consequently, the angle φ1 is considered as
the contact arc length between the roll and the strip.
On the remaining part of the roll, different cooling
conditions can be applied (Neumann boundary con-
ditions). For instance, the roll can be cooled by
water or by air jet. Depending on the industrial pro-
cess, these kinds of cooling can occur separately, or
both of them may be be used in conjunction. In this
last case, another angle φ2 is introduced to define the
part of the roll surface cooled by water jet and the
part cooled by air jet.
Finally, both boundary conditions (Dirichlet and

Neumann conditions) can be illustrated as:

ξ ¼ 1; β φð Þ @T
@ξ

þ T % θ φð Þ ¼ 0 ð4Þ

where:

β φð Þ ¼
0 if 0 ( φ ( φ1
λ

Rh φð Þ
if φ1 ( φ ( 2π

8
<

:

and:

θ φð Þ ¼
θ1 if 0 ( φ ( φ1

θ2 φð Þ if φ1 ( φ ( 2π

(

θ1 is the applied temperature, selected so as to be
close to the strip temperature. θ2(φ) is the tempera-
ture of the cooling fluid (water or air). Its value is
constant if only one kind of cooling is considered,
but it can evolve with φ, φ1 ( φ ( 2π if several

kinds of cooling are applied. The thermal exchange
coefficient is represented by h(φ). Its value will
strongly depend on the cooling conditions (fluid and
rate).

3 Temperature as Fourier series
development

The periodicity aspect of problems (3) and (4) re-
quires us to seek the solution as a development of
the Fourier series [25, 26]. The temperature field can
be then written as:

T ξ;φð Þ ¼
XN

n¼%N

Tn ξð Þ einφ ð5Þ

where:

Tn 2 ℂ and T%n ¼ Tn

Tn is the conjugate of Tn

i is such that i2 ¼ %1
and N ! 1:

In fact, the numerical implementation requires an
integer value for N. This point will be discussed later
in the paper.
Introducing Eq. (5) into Eq. (2) and considering

all the terms of the Fourier series, the following
equations are obtained:

@2Tn

@ξ2
þ 1

ξ
@Tn

@ξ
% n2

ξ2
þ i
ε2n

! "
Tn ¼ 0 ð6Þ

where:

1
εn

¼ R

ffiffiffiffiffiffi
nω
a

r
8n ¼ )1; . . . ; )N

It is obvious that the solution of the ordinary dif-
ferential Eq. (6) is provided through a Bessel func-
tion Jn of the first kind of order n. Indeed, the func-
tion Tn(ξ) can be written as:

Tn ξð Þ ¼ AnJn
ξ 1% ið Þffiffiffi

2
p

εn

! "

where An is a constant.



Moreover, an asymptotic expression of the Bessel
function leads to the following form of the equation
[27]:

Tn ξð Þ ¼ τn
ξ
e

1þið Þ ξ%1ð Þffiffi
2

p
εn ð7Þ

where: τn 2 ℂ and its conjugate τn ¼ τ%n.
Hence, the computation of Tn results from the

determination of τn. Representing β(φ) and θ(φ) (see
Eq. (4)) in terms of the Fourier series:

β φð Þ ¼
XN

n¼%N

βn einφ; θ φð Þ ¼
XN

n¼%N

θn einφ ð8Þ

and including Eq. (8) into the boundary condition
Eq. (4), we obtain the Eq. (9) that includes the
boundary conditions.

XNþn

j¼%Nþn

βj
@Tn%j

@ξ
þ Tn % θn ¼ 0; ξ ¼ 1 ð9Þ

8n ¼ 0; )1; . . . ; )N

Then, using Eq. (7) in the previous Eq. (9), the
following form can be found:

Xn%1

j¼%Nþn

τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!

þ
XNþn

j¼nþ1

τj%nβj
1% iffiffiffi
2

p
εj%n

% 1
2

!

þ τn % θn % 1
2 τ0βn ¼ 0

ð10Þ

More details are given in appendix A.
Consequently, the computation of τn from Eq. (10)

completely determines the temperature field. How-
ever, this determination requires knowledge of θn
and βn, which can be derived from the Fourier Series
properties (2π periodicity) of θ(φ) and β(φ).

θ φð Þ ¼
XN

n¼%N

θn einφ

where:

θ0 ¼
1
2π

θ1φ1 þ θ2 2π% φ1ð Þð Þ

θn ¼
1

2πn
θ1 % θ2ð Þðe%inφ1 % 1Þ i

8
>><

>>:

in the case where one type of cooling condition is
applied:

β φð Þ ¼
XN

n¼%N

βn einφ

where:

β0 ¼
λ

2πRh
ð2π% φ1Þ

βn ¼
λ

2πRhn
i 1% e%inφ1
$ %

8
>><

>>:

in the case where two kinds of cooling are applied,
the angle φ2 is introduced, Figure 2.
Hence, some changes need to be introduced in the

formulation of βn.

β0 ¼
1

2πR
λ
h1

ðφ2 % φ1Þ þ
λ
h2

ð2π% φ2Þ
! "

βn ¼
1

2πRn
λ
h1

ðe%inφ2 % e%inφ1Þ
!

þ λ
h2

ð1% e%inφ2Þ
"

8
>>>>>>>><

>>>>>>>>:

Finally, the development in Fourier series pro-
vides an analytical solution of the temperature field
as a function of the radius ratio ξ and the circumfer-
ential angle φ:

T ξ;φð Þ ¼ τ0 þ
2ffiffiffi
ξ

p Re
XN

n¼1

τn e
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

!

ð11Þ

Figure 2. Schematic diagram of the work roll for both kinds of
spray cooling (for instance combined air-water cooling)



Where Re (z) is the real part of the complex num-
ber z.
Following on from this, the thermal gradient dis-

tributions can be computed by derivation from the
previous equation:

@T
@r

ξ;φð Þ ¼ 2
R

ffiffiffi
ξ

p Re
XN

n¼1

τn
1þ iffiffiffi
2

p
εn

% 1
2ξ

! "

* e
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

"

@T
@φ

ξ;φð Þ ¼ 2ffiffiffi
ξ

p Re
XN

n¼1

inτn e
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

!

More developments are given in appendix B.

4 Numerical implementation

The objective of the numerical procedure is to com-
pute the temperature field T and its gradient in the
hot roll during the hot rolling process. This consists
in the computation of τi; i ¼ 0; )1; . . . ; )N from
the system of equations described below.
The objective of the numerical implementa-

tion is to evaluate Eqs. (7) and (10). The main
difficulty is then to calculate the coefficient
τn 8n ¼ 0; )1; . . . ; )N. For this purpose, Eq. (10)
is re-written under a matrix form which leads to the
following relation:

n ¼ 0: β%NαNτN þ . . .þ β%1α1τ1ð Þ

þ β1α1 τ1 þ . . .þ βNαN τNð Þ þ τ0 %
τ0
2

β0 ¼ θ0

..

.

..

.

n ¼ N: β0αNτN þ . . .þ βN%1α1τ1ð Þ

þ βNþ1α1 τ1 þ . . .þ β2NαN τN
$ %

þ τN % τ0
2

βN
¼ θN

with:

αn ¼
1þ iffiffiffi
2

p
εn

% 1
2

The system could be written in matrix form, such
as:

% β0
2

α1β%1 . . . αNβ%N

..

. ..
. . .

. ..
.

% βN
2

α1βN%1 . . . αNβ0

0

BBBBBB@

1

CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

τ0

..

.

τN

0

BBBB@

1

CCCCA

þ

α1β1 . . . αNβN

..

. . .
. ..

.

α1βNþ1 . . . αNβ2N

0

BBB@

1

CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

τ1

..

.

τN

0

BBB@

1

CCCA

|fflfflfflffl{zfflfflfflffl}
!τ

þ

τ0

..

.

τN

0

BBB@

1

CCCA ¼

θ0

..

.

θN

0

BB@

1

CCA

where:

A 2 MNþ1; Nþ1 ℂð Þ; B 2 MNþ1;N ℂð Þ;

τ; !τ 2 ℂN; θ ¼
θ1
..
.

θN

0

B@

1

CA 2 ℂN

We note:

~θ ¼ θ0
θ

! "
2 ℂNþ1; ~τ ¼ τ0

τ

! "
2 ℂNþ1;

~!τ ¼ τ0
!τ

! "
2 ℂNþ1;

~B ¼
0
..
.

0
B

0

@

1

A 2 MNþ1;Nþ1 ℂð Þ

Knowing that ~B!~τ ¼ B!τ, the following linear sys-
tem is obtained:

Aþ INþ1ð Þ ~τþ ~B!~τ ¼ ~θ ð12Þ



where

A ¼ Re Að Þ þ i Im Að Þ
~B ¼ Re ~B

$ %
þ i Im ~B

$ %

~τ ¼ aþ ib; a; b 2 ℝNþ1

8
<

:

and

a ¼
a0
..
.

aN

0

B@

1

CA; b ¼
b0
..
.

bN

0

B@

1

CA

In the previous system, Re (A) (respectively
Im (A)) is the real part of the complex number A
(respectively the imaginary part).
Equaling real and imaginary parts of the Eq. (12),

it follows:

Re Að Þ þ Re ~B
$ %

þ INþ1
$ %

aþ Im ~B
$ %

% Im Að Þ
$ %

b
¼ Re ~θ

$ %

Im Að Þ þ Im ~B
$ %$ %

aþ Re Að Þ % Re ~B
$ %

þ INþ1
$ %

b
¼ Im ~θ

$ %

and we note:

C1 ¼ Re Að Þ þ Re ~B
$ %

þ INþ1

C2 ¼ Im ~B
$ %

% Im Að Þ
C3 ¼ Im Að Þ þ Im ~B

$ %

C4 ¼ Re Að Þ % Re ~B
$ %

þ INþ1

8
>>><

>>>:

It results that the real and imaginary parts of τ can
be obtained from the linear system:

a
b

! "
¼ C1 C2

C3 C4

! "%1 Re ~θ
$ %

Im ~θ
$ %

 !

ð13Þ

Finally, an explicit formulation of the coefficient
Akj (respectively ~Bkj) of the matrix A (respectively of
matrix ~B) completes the numerical implementation.
From Eq. (12), we can write:

A~τþ ~τþ ~B!~τ
$ %

k ¼ ~θk 8k ¼ 1; . . . ; N þ 1

or under index form:

XNþ1

j¼1

ð~Akj~τj þ ~Bkj!~τjÞ þ ~τk ¼ ~θk 8k ¼ 1; . . . ; N þ 1

with:

Akj ¼
% βk%1

2
; 8k ¼ 1; . . . ; N þ 1; j ¼ 1

αj%1βk%j; 8 k; jð Þ ¼ 1; . . . ; N þ 1; j 6¼ 1

8
<

:

ð14Þ

~Bkj ¼
0; 8k ¼ 1; . . . ; Nþ 1; j ¼ 1

αj%1βkþj%2; 8 k; jð Þ ¼ 1; . . . ; Nþ 1;

j 6¼ 1

8
><

>:

The different steps leading to the temperature field
formulation are illustrated, Figure 3.

5 Results

Based on the previous numerical procedure, a pro-
gram was developed under MATLAB software to
solve the distribution of the temperature in the roll.
This methodology can be applied to investigate the
influence of several process parameters, like the strip
temperature and the kinds of cooling employed. The
thermo-physical properties of the roll material and
the process parameters are given, Table 1.

Table 1. Process and physical properties

φ1 = 12π/180 Contact arc length [rad]
R = 0.35 Roll body radius [m]
ω = 0.3 Angular velocity of rotation of the roll [rad/s]
Cp = 510 Heat capacity [J/kg/K]
ρ = 7800 Density [kg/m3]
λ = 16 Thermal conductivity [W/m/K]
θ1 = 885(552) Strip temperature [K (°C)]
θ2 = 293(25) Air or water temperature [K (°C)]
h = 1500 Forced air cooling thermal exchange coefficient [W/m2/K]
h = 36300 Forced water cooling thermal exchange coefficient [W/m2/K]



5.1 Number of terms in Fourier series

The first analysis is related to the number of terms N
considered in the Fourier series in order to obtain re-
levant results. A minimal number of terms of 3000
is required in order to reproduce the boundary condi-
tions on the arc length in contact with the strip. The
model response for different values of the parameter
N is compared, Figure 4. A mean temperature of
824 K (551°C) is found close to those considered in
the Dirichlet boundary condition intended to re-
produce the strip temperature (T = 825 K (552 °C)).

However, smaller values are not suitable, because
they induce an important drop in the temperature
along the arc length, Figure 4.
All the results presented below are computed

using N = 3000.
Different boundary conditions were applied and

predictions of temperature profiles were examined in
comparison with results using the Finite Element
Method and measurements from [9, 28].
The evolution of the temperature versus the roll-

ing angle for different thicknesses is shown, Fig-

Figure 3. Calculation stages of the temperature field

Figure 4. Influence of the number of terms in the Fourier series
on the trend of the temperature fields along the thermal contact

Figure 5. Temperature evolution for air spray cooling at differ-
ent depth locations



ure 5. As can be seen, the temperature at the roll sur-
face reaches 818 K (545°C) along the contact arc of
12°. Afterwards, the temperature decreases rapidly
with the rolling angle. However, a little further from
the surface (10 mm in depth), the temperature barely
reaches 473 K (200°C). From this depth to the roll
center, the temperature does not evolve any more.
The obtained temperature profiles confirm the very
localized heated zone on the roll and are in agree-
ment with results obtained using the finite element
method and available measurements [13, 19, 28].
However, the maximum temperature at the roll sur-
face in the contact arc depends on the roll speed
(contact time), the coefficient of heat transfer, the
roll diameter (contact angle) and the thermo-physical
properties of the roll material.
A comparison of the temperature evolution for

three different spray cooling conditions was plotted
(air or water spray cooling and a combined air-
water cooling), Figure 6. For the water spray cool-
ing, the model prediction shows a rapid decrease in
the temperature from 833 K (560°C) down to 298 K
(25°C), whereas a higher value (around 373 K
(100°C)) was found in the case of air cooling.
The third case is a combination of air and water

spray cooling. First, the air spray cooling is applied
followed by the water spray cooling. The separation
angle is equal to φ2 ¼ 90+ Figure 6.
The temperature distribution obtained at the roll

surface is quite close to the curve obtained with air
spray cooling for the first part φ2 ¼ 90+) and pre-
sents a similar profile to the temperature distribution

in the water spray cooling case in the second part
(90+ < φ2 < 360+).

However, an offset of the curve is observed in the
transition zone (air to water spray cooling).

5.2 Effects of process parameters
on the temperature distribution

The distribution of the temperature in the roll de-
pends on the process parameters, such as the roll
pressure and roll diameter, both of which affect the
contact arc, and is also dependent on the roll speed
which determines the contact time and hence has an
effect on the heat exchange conditions.
In the proposed modelling the temperature dis-

tribution is directly expressed as a function of the
process parameters (contact angle, angles where the
spray cooling is applied and roll speed). In this mod-
el the strip is only represented by the contact arc and
heat exchange coefficient. The impact of roll pres-
sure can be then appreciated through the contact an-
gle.
To examine the influence of the contact angle and

the roll speed on the maximum temperature and the
heat flux on the roll surface, simulations were con-
ducted by varying their values. Results are pre-
sented, Table 2. These results indicate that the in-
crease in the contact angle increases the heat transfer
between the strip and the roll. Furthermore, it is
shown that a low roll speed favors the heat exchange
from the strip to the roll, Figure 7. These results are
consistent and supported by the general observations
in the literature.

5.3 Impact of the contact conditions

The contact between the strip and the roll is not
perfect in general. This is due to the existence of a
thermal resistance Rc which limits the heat transfer.
In the previous results, the contact between the strip
and the roll was assumed as a perfect contact, and
was modelled as a Dirichlet condition. The new

Figure 6. Comparison of the temperature evolution for air or
water spray cooling and for a combined air-water spray cool-
ing

Table 2. Influence of the contact arc length on the mean
temperature and on the thermal flux undergone by the roll

Contact angle
[°]

Tmean
[K (°C)]

Thermal flux
[W/m2]

5 807.5 (534.4) 3.3 × 105

11.7 818 (545) 4.71 × 105

20 821 (548) 5.69 × 105



boundary condition requires some changes in the
model formulation by replacing Dirichlet with
Neumann boundary conditions. The development of
these changes is reported in Appendix C.
The temperature distribution from the roll surface

is plotted for three thicknesses, Figure 8. The curves
obtained have the same trends as the previous ones
but the maximum temperature along the arc length is
lower (T = 791 K (518°C)). Furthermore, it can be
noted that the peak temperature has shifted towards
the rotation direction in accordance with the depth
[29]. This is essentially due to convection caused by
the rotation of the roll.

6 Conclusion

In this work, an analytical methodology was devel-
oped in order to assess the temperature field of work
rolls during the hot rolling process. The model gives
relevant results to predict the very high thermal gra-
dient occurring at the surface of the roll body. This
approach seems to be more suitable than a standard
finite element calculation, which requires a very thin
mesh close to the surface of the roll and conse-
quently will require more time-consuming calcula-
tions without ensuring good reliability. The present
model considers a stationary thermal behaviour and
does not take into account the transient phenomena.
It allows several process parameters to be investi-
gated, such as the arc length in contact with the strip,
the angular velocity of rotation, or the cooling and
heating conditions. Moreover, the number of terms
considered in the Fourier series have to be carefully
calibrated (N > 2000) in order to reproduce the
boundary condition along the thermal contact. From
this investigation, future work will seek to evaluate
the stress levels within the rolls generated by the
thermal gradient.

Appendix A

It is obvious that Eqs. (7) and (9) lead to the follow-
ing form:

XNþn

j¼%Nþn

τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!

þ τn % θn ¼ 0

8n ¼ 0; )1; . . . ; )N

Moreover, the Fourier series properties give
T%n ¼ Tn and then τ%n ¼ τn.

Hence, the previous equation can be re-written as:

% 1
2
τ0βn þ

Xn%1

j¼%Nþn

þ
XNþn

j¼nþ1

!

* τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!!

þ τn % θn ¼ 0

8n ¼ 0; )1; . . . ; )N

Figure 7. Influence of the angular velocity on the temperature
distribution within the roll

Figure 8. Temperature evolution for different thicknesses
within the roll in the case of a thermal contact resistance Rc =
10–5 K ∙ m2 W–1



where:

XNþn

j¼nþ1

τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!

¼
XNþn

j¼nþ1

τj%nβj
1þ i

i
ffiffiffi
2

p
εj%n

% 1
2

!

¼
XNþn

j¼nþ1

τj%nβj
1% iffiffiffi
2

p
εj%n

% 1
2

!

Finally:

% 1
2
τ0βn þ

Xn%1

j¼%Nþn

τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!!

þ
XNþn

j¼nþ1

τj%nβj
1% iffiffiffi
2

p
εj%n

% 1
2

!!

þ τn % θn ¼ 0

8n ¼ 0; )1; . . . ; )N

If only n ¼ %N; . . . ; %1;0 are considered, the
following form is deduced:

% 1
2
τ0βn þ

Xn%1

j¼%Nþn

τn%jβj
1þ iffiffiffi
2

p
εn%j

% 1
2

!!

þ
XNþn

j¼nþ1

τj%nβj
1% iffiffiffi
2

p
εj%n

% 1
2

!!

þ τn % θn ¼ 0

IE:

% 1
2
τ0β%n þ

Xn%1

j¼%Nþn

τj%nβ%j
1% iffiffiffi
2

p
εn%j

% 1
2

!!

þ
XNþn

j¼nþ1

τj%nβ%j
1þ iffiffiffi
2

p
εj%n

% 1
2

!!

þ τ%n % θ%n ¼ 0

A change index leads to:

% 1
2
τ0β%n þ

XN%n

j¼%nþ1

τ%j%nβj
1% iffiffiffi
2

p
εnþj

% 1
2

!!

þ
X%n%1

j¼%N%n

τ%j%nβj
1þ iffiffiffi
2

p
ε%j%n

% 1
2

!!

þ τ%n % θ%n ¼ 0

Now, assuming m = –n, m = 0, …, N, have to be
considered:

% 1
2
τ0βm þ

XNþm

j¼mþ1

τ%jþmβj
1% iffiffiffi
2

p
ε%mþj

% 1
2

!!

þ
Xm%1

j¼%Nþm

τ%jþmβj
1þ iffiffiffi
2

p
ε%jþm

% 1
2

!!

þ τm % θm ¼ 0

And the final formulation is found:

XNþn

j¼nþ1

τ%jþnβj
1% iffiffiffi
2

p
ε%nþj

% 1
2

!!

þ
Xn%1

j¼%Nþn

τ%jþnβj
1þ iffiffiffi
2

p
ε%jþn

% 1
2

!!

þ τn % θn %
1
2
τ0βn ¼ 0

Appendix B

First, we know that: Tn ξð Þ ¼ τn
1ffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn close to

the surface of the roll (ξ ¼ 1). Note that for n ¼ 0, a
constant function provides a solution of the next dif-
ferential equation:

T 00
0 ξð Þ þ 1

ξ
T 0
0 ξð Þ ¼ 0 8ξ 2 0; 1½ '



Thus:

T0 ξð Þ ¼ T0 ξ ¼ 1ð Þ ¼ τ0

Calculation of T ξ;φð Þ:

T ξ;φð Þ ¼
XN

n¼%N

Tn ξð Þ einφ

¼ T0 ξð Þ þ
X%1

n¼%N

þ
XN

n¼1

!

Tn ξð Þ einφ

which implies:

T ξ;φð Þ ¼ τ0 þ
X%1

n¼%N

þ
XN

n¼1

!
τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn einφ

Then:

X%1

n¼%N

τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn einφ ¼
XN

n¼1

τnffiffiffi
ξ

p e
1%ið Þ ξ%1ð Þffiffi

2
p

εn e%inφ

¼
XN

n¼1

τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn einφ

Finally:

T ξ;φð Þ ¼ τ0 þ
XN

n¼1

τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn einφ

þ
XN

n¼1

τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn einφ

and:

T ξ;φð Þ ¼ τ0 þ
2ffiffiffi
ξ

p Re
XN

n¼1

τne
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

! "

Calculation of
@T
@r

ξ;φð Þ:

This form is provided by a derivation of the tem-
perature formulation.

@T
@r

ξ;φð Þ ¼ 1
R
@T
@ξ

ξ;φð Þ

¼ 1
R

X%1

n¼%N

þ
XN

n¼1

!
τnffiffiffi
ξ

p 1þ iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1þið Þ ξ%1ð Þffiffi
2

p
εn

þ inφ

¼ 1
R

ffiffiffi
ξ

p
XN

n¼1

τn
1þ iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1þið Þ ξ%1ð Þffiffi
2

p
εn

þ inφ

þ
XN

n¼1

τn
1% iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1%ið Þ ξ%1ð Þffiffi
2

p
εn

% inφ
!

¼ 1
R

ffiffiffi
ξ

p
XN

n¼1

τn
1þ iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1þið Þ ξ%1ð Þffiffi
2

p
εn

þ inφ

þ
XN

n¼1

τn
1þ iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1þið Þ ξ%1ð Þffiffi
2

p
εn

þ inφ
!

¼ 2
R

ffiffiffi
ξ

p Re
XN

n¼1

τn
1þ iffiffiffi
2

p
εn

% 1
2ξ

! "
e

1þið Þ ξ%1ð Þffiffi
2

p
εn

þ inφ
 !

Calculation of
@T
@φ

ξ;φð Þ

As previously:

@T
@φ

ξ;φð Þ ¼
X%1

n¼%N

þ
XN

n¼1

!

in
τnffiffiffi
ξ

p e
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

! "

¼ 2ffiffiffi
ξ

p Re
XN

n¼1

inτn e
1þið Þ ξ%1ð Þffiffi

2
p

εn
þ inφ

!

Appendix C

The coefficient of the complex Fourier series can be
determined from the coefficient of the real Fourier
series. If we consider a function f, the Fourier series
associated to f is the functions series

P
fn whose

general term is the function fn defined by:

fn tð Þ ¼ an cos ðntÞ þ bn sin ðntÞ



With:

a0 ¼
1
2π

Z2π

0

f tð Þ dt;

an ¼
1
π

Z2π

0

f tð Þ cos ðntÞ dt 8n 2 ℕ,

b0 ¼ 0; bn ¼
1
π

ZT

0

f tð Þ sin ðntÞ dt 8n 2 ℕ,

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

a0, b0, an and bn are the coefficients associated to the
function f.
The complex form of the development in terms of

a Fourier series of a real function f is described by:

f tð Þ ¼
Xþ1

n¼%1
cn einφ

with:

cn ¼
1
2π

Z2π

0

f tð Þ e%inφ dt

In this case, the complex Fourier coefficients cn
can be deduced from the real Fourier coefficients:

c0 ¼ a0

cn ¼
1
2

an % ibnð Þ 8n 2 ℕ, thus: c%n ¼ cn

8
><

>:

The above remarks lead to the following relations
for the Fourier coefficients θn and βn of the functions
θ(φ) and β(φ).
Calculation of θn:

θ0 ¼ a0 ¼
1
2π

Zφ1

0

θ1dφþ
Z2π

φ1

θ2dφ

¼ θ1φ1 þ θ2 2π% φ1ð Þ
2π

and 8n 6¼ 0:

an ¼
1
π

Zφ1

0

θ1 cos ðnφÞ dφþ
Z2π

φ1

θ2 cos ðnφÞ dφ

0

B@

1

CA

Thus:

an ¼
1
nπ

sin ðnφ1Þ θ1 % θ2ð Þ

and:

bn ¼
1
π

Zφ1

0

θ1 sin ðnφÞ dφþ
Z2π

φ1

θ2 sin ðnφÞ dφ

0

B@

1

CA

Lastly, the following formulation is deduced:

bn ¼
1
nπ

θ1 1% cos ðnφ1ð Þð Þ þ θ2 cos ðnφ1ð Þ % 1ÞÞ

¼ 1
nπ

1% cos ðnφ1ð ÞÞ θ1 % θ2ð Þ

thus:

θn ¼
an % ibn

2
¼ 1

2nπ
θ1 % θ2ð Þ e%inφ1 % 1

$ %
i

8n 6¼ 0

Calculation of βn for mixed Dirichlet–Neumann
boundary conditions: this part concerns the case
where an applied temperature is considered for the
arc length in contact with the strip:
one kind of spray cooling:

h is taken to be the thermal exchange coefficient ap-
plied between [φ1, 2π].
Note:

B ¼ λ
h

β0 ¼ a0 ¼
1
2π

Zφ1

0

0 dφþ
Z2π

φ1

B
R
dφ

0

B@

1

CA

¼
B
2πR

2π% φ1ð Þ

8
>>>>>>>>>><

>>>>>>>>>>:



and 8n 6¼ 0:

an ¼
1
π

Z2π

φ1

B
R
cos ðnφÞ dφ

bn ¼
1
π

Z2π

φ1

B
R
sin ðnφÞ dφ

βn ¼
an % ibn

2
¼ B

2πRn
i 1% e%inφ1
$ %

8n 6¼ 0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Both kinds of spray cooling:
h1 respectively h2 is taken to be the thermal ex-
change coefficient applied between [φ1, φ2] respec-
tively between [φ2, 2π].

Note:

B1 ¼
λ
h1

B2 ¼
λ
h2

8
>>><

>>>:

Then:

β0 ¼
1

2πR

Zφ2

φ1

B1 dφþ 1
2πR

Z2π

φ2

B2 dφ β0

¼ 1
2πR

B1 φ2 % φ1ð Þ þ B2 2π% φ2ð Þð Þ

Moreover:

an ¼
1
πR

Zφ2

φ1

B1 cos ðnφÞ dφþ
Z2π

φ2

B2 cos ðnφÞ dφ

0

B@

1

CA

and:

bn ¼
1
πR

Zφ2

φ1

B1 sin ðnφÞ dφþ
Z2π

φ2

B2 sin ðnφÞ dφ

0

B@

1

CA

Finally, the following form is obtained:

βn ¼
an % ibn

2

¼ i
2πRn

B1 e%inφ2 % e%inφ1
$ %

þ B2 1% e%inφ2
$ %$ %

8n ¼ )1; . . .) N

Calculation of βn for Neumann boundary condi-
tions: this part concerns the case where a thermal
contact resistance (Rc) is considered for the arc
length in contact with the strip.
Similar calculations to those considered pre-

viously provide the following results:
one kind of spray cooling:

β0 ¼
1

2πR
λRcφ1 þ B 2π% φ1ð Þð Þ

βn ¼
i

2πRn
B% λRcð Þ 1% e%inφ1

$ %
8n 6¼ 0

Both kinds of spray cooling:

β0 ¼
1

2πR
ðλRcφ1 þ B1ðφ2 % φ1Þ þ B2ð2π% φ2ÞÞ

βn ¼
i

2πRn
ðλRcðe%inφ1 % 1Þ þ B1ðe%inφ2 % e%inφ1Þ

þ B2ð1% e%inφ2ÞÞ 8n ¼ )1; . . .) N
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