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ABSTRACT
Time Slotted Channel Hopping (TSCH) is among the pro-
posed Medium Access Control (MAC) layer protocols of the
IEEE 802.15.4-2015 standard for low-power wireless com-
munications in Internet of Things (IoT). TSCH aims to
guarantee high network reliability by exploiting channel hop-
ping and keeping the nodes time-synchronized at the MAC
layer. In this paper, we focus on the traffic isolation issue,
where several clients and applications may cohabit under the
same wireless infrastructure without impacting each other.
To this end, we present an autonomous version of 6TiSCH
where each device uses only local information to select their
timeslots. Moreover, we exploit 6TiSCH tracks to guaran-
tee flow isolation, defining the concept of shared (best-effort)
and dedicated (isolated) tracks. Our thorough experimen-
tal performance evaluation campaign, conducted over the
open and large scale FIT IoT-LAB testbed (by employing
the OpenWSN), highlight the interest of this solution to
provide reliability and low delay while not relying on any
centralized component.
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1. INTRODUCTION
During the last years we have experienced the emergence

of a new paradigm called Internet of Things (IoT) in which
smart and connected objects cooperatively construct a (wire-
less) network of things [1].

In an IoT deployment, energy-efficiency is one of the most
important parameters, since smart objects have to save en-
ergy to meet the lifetime requirements of typical applica-
tions. Since MAC layer is responsible for controlling the
main source of energy consumption [2], therefore, a strong
focus has been put on the medium access: the devices should
turn OFF their radio for most of the time.
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Besides, many modern applications cannot accommodate
the best effort approach. For instance, losing one packet for
a smart meter application means the measures are incorrect
for this subscriber. More importantly, several applications
or even clients should cohabit under the same wireless in-
frastructure to reduce the cost of deployment [3]. These
requirements lead researchers to design deterministic algo-
rithms for medium access. Thus, the wireless infrastructure
is able to provide stable and predictable performance.

IEEE 802.15.4-2015 standard was published in 2016 [4], to
offer a certain quality of service for deterministic industrial-
type applications. Among the MAC schemes defined in
this standard, Time-Slotted Channel Hopping (TSCH) is for
lower-power and reliable networking solutions. Indeed, by
adopting a channel hopping approach, the standard makes
the transmissions more reliable [5]. Besides, TSCH relies on
scheduling where the contention is solved deterministically,
and each radio link receives a given amount of bandwidth.
Thus, TSCH is particularly efficient to save energy: a node
has to stay awake only when it transmits or receives a frame.

6TiSCH IETF Working Group (WG) is currently defining
a set of protocols to fill the gap between IPv6 and TSCH [6].
It aims at executing IPv6 over a reservation based MAC by
reserving TSCH slots. Moreover, 6TiSCH introduces the
concept of tracks, where certain timeslots are mapped to
a given flow, guaranteeing thus traffic isolation. Different
flows from different applications are mapped to different
tracks. We consider this feature as a key enabler for reli-
ability in IoT. Recently, Orchestra proposed an innovative
way to exploit the 6TiSCH architecture, highlighting the
relevance of a distributed version [7]. However, it does not
guarantee traffic isolation since it does not implement any
track management solution.

Our 6TiSCH version is resilient: we propose to adapt the
schedule locally, based on the radio link quality and the ac-
tual amount of traffic to forward. We do not rely on a cen-
tralized component which would increase the delay to react
to changes. In this paper, we present a distributed version
of 6TiSCH to guarantee traffic isolation and deterministic
performance.

The contributions presented in this paper are threefold:

1. We first propose a distributed implementation of 6TiSCH
with traffic isolation using tracks, where each pair of
nodes negotiates the required bandwidth.

2. We then describe mechanisms so that each node de-
cides locally which timeslot to use, and for which track;



3. We perform a thorough experimental evaluation over
the FIT IoT-LAB testbed, to highlight the feasibility
of an high reliability and low delay solution.

2. BACKGROUND AND RELATED WORK
Hereafter, we first provide the necessary background about

TSCH and 6TiSCH. We then review the existing contribu-
tions that provide high reliability with deterministic perfor-
mance for Low-Power Lossy Networks (LLNs).

2.1 TSCH Overview
As previously mentioned, TSCH is among the MAC proto-

cols defined in the IEEE 802.15.4-2015 standard [4] that pro-
vide high-level reliability and low-power operation in LLNs.

In TSCH networks, a schedule is computed and distributed
among the nodes, therefore nodes must remain time synchro-
nized throughout the network deployment. Moreover, un-
der TSCH operation, time is divided into timeslots of equal
length, large enough to transmit a frame and to receive an
acknowledgement. A set of timeslots constructs a slotframe.
At each timeslot, a node may transmit or receive a frame, or
it may turn its radio OFF for saving energy. Finally, each
timeslot is labelled with Absolute Sequence Number (ASN),
a variable which counts the number of timeslots since the
network was established. Thus, based on ASN and its sched-
uler, each node decides when to transmit or receive a frame.

Furthermore, to defeat noise and interference, and con-
sequently to enable high reliability, TSCH proposes to im-
plement a channel hopping scheme. To each transmission
opportunity is attached a channel offset. In TSCH, a cell is
a transmission opportunity described by a pair of timeslot
and channel offset. Thus, at the beginning of each times-
lot, the selection of the actual channel is derived from the
channel offset and the ASN.

Finally, in TSCH, a cell may be either shared or dedi-
cated, see Fig. 1. In the former mode, several interfering
nodes are authorized to transmit: they must execute a slot-
ted CSMA-CA mechanism to avoid collisions. In the latter
case, a collection of non interfering transmitters are the own-
ers of the cell: they transmit in contention-free mode.

2.2 6TiSCH Overview
6TiSCH IETF WG aims at defining protocols to bind IPv6

(i.e., 6LoWPAN) and reservation based MAC layer (i.e.,
TSCH). In 6TiSCH minimal [8], one shared cell is reserved
at the beginning of the slotframe to exchange control pack-
ets (cf. Fig. 1). For instance, Enhanced Beacons (EBs) are
transmitted during the shared timeslot so that the neighbors
may associate with the existing network, while the rest of
the slotframe comprises dedicated cells.

Furthermore, 6TiSCH makes a distinction between the
protocol which defines how to negotiate the cells (i.e. 6P [9])
and the algorithm deciding how much cells to allocate in the
schedule (the Scheduling Function such as SF0 [10]). The
solution is very flexible since any scheduling algorithm may
be practically implemented: a new Scheduling Function has
just to be defined and interfaced with 6P. Thus, 6P may
work either in a centralized manner (e.g. a node asks a
Path Computation Element for new cells to use) or in a
distributed manner (e.g. SF0 decides how many cells to
allocate based on the local measures).

6TiSCH introduces the concept of track [11]. A track cor-
responds to dedicated radio resource, along with a multihop

A
B

R

C

track

radio link
 in the DODAG

slotframe

track 1 track 2

dedicated cells

4

3 A▶︎B B▶︎R

A▶︎B

B▶︎R2

1

channel
offset

shared 
cells

B▶︎R

B▶︎R

C▶︎B

…

…

un
us

ed
 c

el
ls

0

Figure 1: Schedule in a 6TiSCH network, using two different
tracks for traffic isolation.

path. More precisely, a set of cells (a bundle) is reserved for
each hop. By selecting different cells for different data flow,
6TiSCH may provide traffic isolation. A track forwarding
scheme is in this case applied: when 6P receives a frame to
forward, it automatically finds the outgoing bundle associ-
ated with the incoming cells.

Furthermore, 6TiSCH introduces the concept of chunk :
each node is able to separate the scheduling matrix in non
overlapping chunks[12]. Then, the churns are allocated (in a
centralized or distributed manner) to different nodes, so that
each of them can pick in its churn when it has to allocate
new cells.

In Fig. 1, the flow from A to the border router R, via
node B, will be assigned to track 1. Besides, the same node
(e.g., B) may forward an additional flow, for instance from
C, using a different track (i.e., 2).

2.3 Scheduling
6TiSCH may rely either on an centralized scheduler (i.e.,

the Path Computation Element (PCE)) or on a distributed
algorithm.

2.3.1 Centralized Scheduling
Several scheduling algorithms can be used by 6P. In [13],

the tradeoff between a centralized and a distributed schedul-
ing is studied. By adopting a queue theory approach, the
authors showed that a centralized one is more efficient.

Ghosh et al. [14] proposed to minimize the schedule length
in a multichannel TDMA environment. Similarly, TASA
proposed to construct a centralized scheduling for a multi-
hop TSCH network achieving the same objective [15].

Yigit et al. [16] studied the impact of routing on schedul-
ing. The nodes have to use a larger number of timeslots
when the radio links are unreliable. Schedex [17] proposed
to schedule additional timeslots until an end-to-end delay
constraint is not anymore respected.

All these centralized approaches assume the interference
can be estimated accurately. They are particularly well
suited for industrial networks in controlled environments.

2.3.2 Distributed Solutions
To not rely on a centralized controller, certain distributed

solutions have been proposed. DeTAS presented a decen-



tralized version of TASA [18], assembling micro-schedules.
Phung et al. [19] proposed to use a Reinforcement Learn-
ing based scheduling algorithm to cope with a variable traf-
fic. However, the authors do not propose dedicated cells:
the nodes have always to execute a CSMA-CA phase before
transmitting their packets. In the same way, Z-MAC [20]
proposes a mix between CSMA and TDMA, where timeslots
are assigned distributively, solving iteratively the collisions.

Orchestra was proposed recently [7]. As exposed previ-
ously, Orchestra uses dedicated cells selected according to a
pseudo-random sequence. However, it does not implement
tracks (i.e., traffic isolation) and, thus, may suffer from the
funneling effect [21], since each nodes reserves the same num-
ber of timeslots with its parent.

SF0 [10] proposed a Scheduling Function to compute the
number of cells to allocate/remove. Palattella proposed also
to use an hysteresis function to decide when new cells have
to be added or removed [22]. While it presents a promis-
ing approach, they did not present experimental evaluation,
and moreover, they didn’t describe the integration of tracks
to provide traffic isolation (the bandwidth estimation algo-
rithm is let to a future work).

3. A FULLY DISTRIBUTED VERSION OF
6TISCH

Hereafter, we will present our distributed 6TiSCH archi-
tecture where all decisions are taken locally, and guarantee-
ing traffic isolation: different applications may be assigned
to different tracks, and use consequently different cells.

• the shared cells are only used to transmit 6P packets
(unicast) and Enhanced Beacons and DIO (broadcast);

• the other unicast packets such as DAO or data packets
use dedicated cells, reserved for a given track.

In other words, data transmissions use the deterministic part
of TSCH, while random access is only reserved for 6P nego-
tiations and beacons.

3.1 Track Management
6TiSCH track consists in one track owner (64 bits) and

one track ID (16 bits). We propose here a way to exploit
these tracks to enable the following features:

Isolated track: a source node has to reserve one end-to-
end track for its flow. To guarantee traffic isolation,
the track must be only used by one data flow. Thus,
the track owner is its own MAC address (64 bits) and
the track ID (16 bits) corresponds to the application in
execution on the node. The track ID may be assigned
uniquely before the deployment, following the same
approach as the well known ports. Thus, a network
may support at most 65,535 different applications.

Convergent track (shared track, e.g., alarms): because
data transmissions are in this case unfrequent, reserv-
ing one cell during each slotframe may waste band-
width. However, we must guarantee small end-to-end
delays for alarms, and the maximum time between two
cells should be minimized. In particular, if an event is
detected by several nodes, the delay of the first exem-
plary received by the border router is the most impor-
tant one.
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Figure 2: Mixing heterogeneous applications in the same
6TiSCH instance.

We propose for these applications to reserve a com-
mon convergecast track, shared among all the sources
of the same application. Thus, the track owner is the
address of the destination, and the track ID is specific
to the application. All the other nodes which gener-
ate data packets to this destination will, by definition,
use the same track. It is important to note that the
packets from different sources do not collide: they use
dedicated cells. However, the packets after the first
one have to be buffered, increasing the delay, and the
probability of a buffer overflow if a large amount of
traffic is generated at the same time.

When packets are routed via the border router, the
track owner is extracted from the RPL DAG Informa-
tion Object (DIO).

Furthermore, we may mix different applications in the
same network. In Fig. 2, the smart metering application
uses isolated tracks (blue and green for two applications).
Bandwidth reserved for the the blue track cannot be used
by the green flow. On the contrary, the application on A and
C use a convergent track (in red). Let’s imagine that both
A and C generate one packet during the same slotframe. B
has only one outgoing cell to forward the two packets: the
second one has to be forwarded in the next slotframe.

The convergent track strategy represents well the behavior
of classical wireless sensor networks: each source may gen-
erate an indefinite number of packets, and the relay nodes
expects to forward them in a best effort manner. However,
different applications use different tracks, and therefore or-
thogonal radio resources. In other words, we multiplex only
the transmissions from the same application (and different
source nodes).

Note that we do not implement a GMPLS-like approach to
manage the tracks, as advocated by [11]. We insert rather
information in the 6P transaction to specify which track
is associated with the cells to insert in the schedule. For
this purpose, our Scheduling Function may use the metadata
field of the 6P Add Request message. Later, when a node
receives a data frame, it has to extract the track associated
with the incoming cell, and tag the frame accordingly in the
queue. We also implemented a FIFO discipline: the node



picks up the first packet from the queue with the trackID
corresponding to the outgoing dedicated cell.

3.2 Bandwidth Requirement Estimation with
SF

We propose a simple strategy to allocate the bandwidth
on-demand. The Scheduling Function SF0 [10] collects the
bandwidth requirements from neighbor nodes. Note that it
does not detail how per track requirements are computed.
We here propose a Scheduling Function SFloc which takes
decisions considering only local information. Besides, SFloc

allocates different cells for different tracks. In this way, we
are able to compute a schedule in a distributed manner while
maintaining traffic isolation: two applications using different
tracks will be managed independently by SFloc. Besides, we
do not require each application defines a priori its require-
ments: SFloc is self-adaptive and learns from the forwarded
packets.

In our explanations, we focus on the convergecast traffic
pattern. A node has consequently to negotiate with its RPL
preferred parent a list of cells to use for each of its tracks.
A node, which has to decide how many cells to reserve, con-
siders only its own buffer and its schedule utilization.

3.2.1 Cell insertion
We have to decide when a new cell has to be negotiated

with a neighbor. We follow a similar approach to SF0, while
only using the amount of forwarded traffic to compute the
bandwidth requirements:

1. when a packet is inserted in the queue, SFloc is trig-
gered;

2. if the node already has an on-going 6P transaction,
SFloc stops: only one track may be modified at the
same time;

3. for each track tr, the node computes:

(a) the list of outgoing cells Cout toward the par-
ent and the average number of transmissions re-
quired before receiving an acknowledgment (∀k ∈
Cout, ETX(k));

(b) the number of packets present in the queue for
this track Npk(tr)

(c) if the following condition does not hold:∑
k∈Cout

1

ETX(k)
≥ Npk(tr) (1)

SFloc asks 6P to reserve the following number of
cells:

Npk(t)−
∑

k∈Cout

1

ETX(k)
(2)

(upper bounded by 3 since an 6P Information El-
ement may contain at most 3 timeslots).

Our approach is robust to interference: a colliding cell will
present a larger Expected Transmission Count (ETX), and
will be detected quickly, using the same mechanism as [23]
(tx-housekeeping feature). A bootstrapping node will reserve
quickly new cells for the given track: this over-provisioning
efficiently deals with lossy links. The colliding cells will be
detected and removed later.

We plan in the future to implement a more sophisticated
mechanism. Recently, Domingo-Prieto et al. [24] proposed
to avoid oscillations by considering the dynamics of the band-
width requirement. The solution was evaluated by simula-
tions and seems promising.

We will detail in the next subsection how 6P selects the
actual cells (timeslot and channel offset) to use.

3.2.2 Cell removal
The routing topology might changes since RPL is dy-

namic. In the same way, a node may be too aggressive and
may have reserved too much bandwidth, when e.g., a new
parent is selected and it has to empty its buffer. A node has
to later remove the unused cells.

To select the cells to remove, we consider a given cell be-
comes useless if no ack is received during a long time. This
cell is considered useless even if unicast packets are trans-
mitted but not acknowledged. In this way, we remove both
the colliding and the unused cells. Indeed, no contention is
implemented for dedicated cells: the data packets will be
deterministically lost if a pair of interfering radio links uses
the same cell.

To this end, we propose a simple timeout based approach:
when a cell is not used during at least T imeoutSFloc−tx sec-
onds, the owner of the cell (the transmitter) asks the receiver
to release this cell. More precisely, 6P sends a link-removal

request, which specifies the timeslot and the channel offset
to remove from the schedule.

Possibly, the radio link may not be anymore usable. Thus,
the transmitter removes silently a cell if the 6P link-removal

failed after all the possible retransmissions.
Inversely, a receiver removes silently a cell if it is unused

during T imeoutSFloc−rx. To avoid inconsistent decisions,
the following condition must hold:

T imeoutSFloc−tx << TimeoutSFloc−rx (3)

In particular, it must take into account the time to transmit
the link-removal request and to receive the associated ACK.

3.3 Distributed Scheduling With 6P
To make 6TiSCH entirely distributed, a pair of nodes must

be able to decide which cell should be used to exchange
packets, without the help of a centralized PCE.

We present here two different approaches to either reduce
the number of collisions (random) or to reduce the end-to-
end delay (contiguous).

3.3.1 Random Scheduling
When the nodes select autonomously the cells to use with

their parent, they do not have a vision of the cells already
reserved by an interfering transmitter. To reduce the prob-
ability of collision, we propose to select randomly the cells
to use: we minimize the probability to have colliding cells
in the global schedule. As it is shown in performance eval-
uation Section, this simple and greedy approach is efficient
and robust.

When a node has to reserve k new cells, 6P must ask its
preferred parent to reserve some additional bandwidth for a
given track, using a 2-step 6P transaction:

1. the transmitter Nt selects j timeslots (j ≥ k), selected
randomly among the available timeslots in its schedule.
It selects one random channel offset for each of these
timeslots;



2. Nt constructs a link-request including these cells and
transmits the packet during a shared cell;

3. the receiver Nr selects the first k cells present in the
link-request and available in its schedule. It en-
queues a link-reply, which will be transmitted during
one shared slot. If there is not enough available cells
(< k), Nr refuses the transaction and sends an empty
negative link-reply. Else, the reply includes the list
of the selected cells.

4. Nt receives the link-reply and updates its schedule
with the cells allocated by its parent if the reply is
positive.

Selecting randomly the cells to use minimizes the proba-
bility of collision, but tends to increase the end-to-end delay.
Intuitively, the outgoing and incoming cells being chosen
randomly, the end-to-end delay equals on average:

delay =
hops ∗ SFlength ∗ Tslot

2
(4)

With hops being the number of hops in the route, SFlength

the slotframe length, and Tslot the timeslot duration (by de-
fault 15ms). Besides, a node, which forwards many flows,
will have to buffer many packets since the outgoing and in-
coming cells may be far away. Thus, some packets may be
dropped because of buffer overflows. However, as we high-
lighted in our experiments this effect is limited.

3.3.2 Contiguous Scheduling
In this second approach, we focus on minimizing the end-

to-end delay. To this aim, we propose to minimize the buffer-
ing delay:

1. With SFloc, the transmitter Nt computes the number
of cells (= k) to reserve toward its parent for the track
tr. It identifies in its schedule the last slot number
Trx last(tr) which is used to receive a packet for the
track tr.

• If no incoming cell exists (i.e., Nt generated the
packet), Trx last(tr) is chosen randomly;

2. Nt selects the first available cells after Trx last(tr) and
chooses randomly one channel offset for each of them.
It constructs a link-request to piggyback this list;

3. The receiver Nr selects the first k cells from the link-

request also available in its schedule. The following
cases may occur:

(a) at least k cells are available: Nr selects the k
first of them, and constructs the associated link-

reply as usually;

(b) not enough cells are available:

i. Nr constructs a link-reply and piggybacks
an Information Element which lists the busy
cells.

ii. Nt receives this link-reply and will insert in
its own schedule the blacklisted cells, linked
with the parent. When Nt will send another
link-request to Nr, theses busy cells cannot
be selected.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
Our experimental campaign was conducted over the FIT

IoT-LAB platform in Grenoble [25]. This federated platform
provides access to a large collection of motes. We employed
the m3 nodes, based on a STM32 (ARM Cortex M3) micro-
controller (ST2M32F103REY). It embeds an AT86RF231
radio chipset, providing thus, an IEEE 802.15.4 compliant
PHY layer.

4.1.1 Topology
FIT IoT-LAB allows for several experiments to be ex-

ecuted concurrently. Thus, we evaluate the behavior of
6TiSCH under real-world conditions, with potential exter-
nal interference. The nodes are placed in corridors, in false
ceilings and floors, to mimic smart buildings scenarios. To
construct multihop topologies, we select nodes sufficiently
far from each other: we alternate between ceils and floors,
and two consecutive nodes are separated by approximatively
1.5meters. We selected the nodes in the corridor located in
the middle (cf. Fig. 3).

4.1.2 Default parameters
Furthermore, we employed the OpenWSN∗, that provides

an open-source implementation of the 6TiSCH stack (i.e.,
IEEE802.15.4-2015 TSCH, 6P, SF, 6LoWPAN and RPL).
We implemented in OpenWSN our proposal to handle tracks,
schedule appropriately the cells, etc. Our modifications are
freely available on GitHub†.

We use the default parameters value as depicted in Ta-
ble 1. All nodes take local decisions, based on the informa-
tion exchanged with their neighbors (EBs, 6P requests and
replies). Each mote sends its packets to the border router
according to a CBR traffic, see Table 1. To dissociate the
impact of traffic and of the network size, we maintain the
number of packets generated constant in the network, what-
ever the number of nodes. Thus, each node generates by
default one data packet every 10 ∗ nbNodes seconds.

4.1.3 Queue management
Because of tracks, the buffer does not follow a FIFO ap-

proach: data packets assigned to a track are buffered until
the node enters in a dedicated cell for this particular track.
Due to memory constraints, the data buffer is limited, and
thus, it may be filled quickly. To guarantee sufficient space
for the control packets in the buffer, we reserve by defaults
4 slots in a buffer of 10 frames (cf. Table 1). To avoid privi-
leging old packets in the queues, we implemented a timeout
based mechanism, where each data packet is tagged at re-
ception and is dropped after 8 seconds (≈6 slotframes) if it
is still present in the queue.

4.2 Convergence in a simple topology
∗openwsn - open-source implementations of protocol

stacks based on Internet of Things standards, https://
openwsn.atlassian.net/
†https://github.com/ftheoleyre/openwsn-fw/ and https:

//github.com/ftheoleyre/openwsn-sw/
†In this way, we have a constant number of packets gener-

ated in the whole network, even when increasing the number
of nodes.
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Table 1: Default parameter values
(the inter-packet time depends on the number of nodes to maintain a

constant load with a variable number of nodes)

Experiments Duration 1.5 hours
Topology line (floors and ceils)
Separation ≈ 1.5 meters
Slotframe length 101

TSCH Nb. shared cells
(Nshared)

5

Timeslot duration 15 ms
RPL DAO period 50 s

DIO period 8.5 s
CoAP CBR 10 s * nbNodes

6TiSCH T imeoutSFloc−rx 25 s
T imeoutSFloc−tx 20 s

Queues Timeouts 8 s
Queue size 10 packets
incl. data packets at most 6 packets

We first study the network behavior during the conver-
gence, on a simple 2 hops topology, by selecting an appro-
priate set of nodes in the same corridor of the Grenoble’s
IoT Lab topology (cf. Fig. 3). The DODAG is constructed
by RPL in a distributed manner.

We first measure the delay performance (see Fig. 4a). As
it can be observed, most of the packets are delivered very
quickly to the border router, even for nodes several hops far
from the sink. A few packets need more time to be delivered:
they correspond to retransmissions, since radio links may be
unreliable. Finally, only a few packets are delivered in more
than 101 slots (i.e., the slotframe length, 1, 010 ms).

Considering the packet losses distribution (see Fig. 4b),
we can remark that most of the packets are lost at the be-
ginning, during the convergence time. Indeed, each node has
to request bandwidth to its parent, negotiating which time-
slots and channel offsets should be used for the transmis-
sion. Meanwhile, the packets are buffered, and are dropped
when they are stored in the buffer for a long duration (i.e., 8
seconds). However, after the convergence period, the relia-
bility significantly increases, only a few packets are dropped,
mainly due to the external interference (i.e., other experi-
ments are executed simultaneously on the same testbed).

It is worth mentioning that medium access is determin-
istic after the convergence: the schedule does not change
anymore, and the same cells are used for a given track (i.e.,
application).
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Figure 4: 6TiSCH behavior during the convergence - topol-
ogy with 12 nodes and one sink (1.5 hours).

4.3 Contiguous versus Uniformly Distributed
Shared Cells

In 6TiSCH, a node may use a shared cell to transmit a
frame under contention. Typically, these shared cells are
used for EBs, broadcast packets (e.g., DIO), as well as to
reserve bandwidth (Link-Request, and Link-Replies). By
default, the Nshared first cells are shared in the slotframe
(i.e., the contiguous scenario).

We here propose rather to distribute uniformly the shared
cells. Indeed, IEEE802.15.4-2015-TSCH does not use a back-
off at the beginning of a shared cell. It rather implements a
CSMA-CA slotted approach among the shared cells: the
backoff counts the number of shared cells to wait before
transmitting a packet. Thus, collisions are very frequent
during the shared cells.

We compare the contiguous and the distributed strategies
during the convergence (Fig. 5). We measure the packet
losses in a topology with 10 nodes and one sink. With con-
tiguous cells, many collisions occur in the shared cells: links
requests tend to be lost, retransmitted, and a node has to
wait for a long time before receiving a dedicated cell to use.
On the contrary, having uniformly distributed cells in the
slotframe tends to reduce the collisions and to accelerate
the convergence. Thus, we should either use very short slot-
frames with one single shared cell, or a long slotframe with
uniformly distributed shared cells.
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Figure 5: Packet losses / received during an experiment of
30 minutes with 10 nodes and one sink.

4.4 RPL metric
RPL may use any objective function to compute the DAG

rank of the nodes. However, minimizing the number of hops
tends to perform poorly [26]. Thus, the ETX metric is often
privileged: it consists in estimating the number of transmis-
sions before receiving an acknowledgement.

To highlight the impact of the routing metric, we evaluate
the behavior of the 6TiSCH stack with the following routing
metrics:

Minhops: we minimize here the number of hops: the link
metric is set to minHopRankIncrease for all the links;

ETX: we use ETX, reported by the MAC layer: ratio of
the number of acknowledged packets and the number
of transmitted packets for a given neighbor;

RSSI: all links with a RSSI superior than a threshold value
have the best link quality (=1). Then, the link metric
is incremented for each dBm less.

To compute the DAG rank, a node sums the rank of its
parent, and the link cost (i.e. the OF0 objective function in
RPL).

Besides, we maintain the default blacklisting method of
OpenWSN: a radio link is marked as stable when its RSSI
exceeds −80 dBm for 3 consecutive different packets. In-
versely, links become unstable when its RSSI is inferior than
−80 dBm for 3 consecutive packets.

Figure 6 presents the impact of the routing metric on the
reliability. ETX converges slowly: a significant part of the
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Figure 6: Packet losses / received during an experiment of
1.5 hours with 20 nodes and one sink.

packets is lost during the beginning (first hour). On the con-
trary, the packet losses decrease more quickly with minhop.
Finally, using the RSSI metric constitutes a tradeoff between
minhop and ETX.

After 20 minutes, the packet losses increase drastically
with minhop. A link performs badly and the RPL DAG
structure is reconfigured: minHop tends to select unreliable
long links. Thus, a large ratio of the nodes have to change
their preferred parent, and a storm of requests use the shared
cells. The network re-converges very slowly to a legal state.
On the contrary, RSSI and ETX perform better: the perfor-
mance is more stable after 1.5 hours.

In conclusion, ETX needs more time to converge because
it represents an instantaneous metric and is subject to large
variations, caused by the radio instability and the depen-



dency on the traffic (i.e., more packets on a route impacts
negatively the link quality) [27]. However, 6TiSCH achieves
to exhibit stable performance after the network convergence.

4.5 Scheduling algorithm
We finally evaluated the performance of the scheduling

algorithms (Fig. 7), comparing our random strategy and the
random contiguous strategy.

The random contiguous strategies selects the outgoing
cells to minimize the buffering delay. Mechanically, the ran-
dom contiguous strategy achieves a smaller end to end delay
than the random strategy.

Besides, we can remark a reconfiguration with the ran-
dom strategy: after 30 minutes, the DODAG is reconfigured,
leading to better performance. However, the end-to-end de-
lay remains superior to that of the contiguous scheduling
strategy.

Due to lack of space, we did not represent here the per-
formance for larger topologies. While the random contigu-
ous strategy keeps on reducing the buffering delay, the con-
vergence time is longer: more link-requests have to be
transmitted before finding an available cell. Besides, shared
cells suffer from many collisions when we have more than 20
nodes. Thus, the packet delivery ratio is lower with the ran-
dom contiguous strategy during the convergence time (30%
versus 50% after 30 minutes). In conclusion, 6P has to be
improved to enable more reliable transactions.

5. LESSONS

5.1 Guidelines
Based on our experimental results, we conclude the fol-

lowing guidelines should be applied in 6TiSCH:

Non contiguous shared cells: when shared cells are all
placed at the beginning of the slotframe, all the re-
quests are buffered during a whole slotframe before
being transmitted in the first shared cells. The colli-
sions are consequently very frequent.

On the contrary, we propose to distribute uniformly
the shared cells in the slotframe, decreasing thus the
pressure, and making 6TiSCH much more efficient.

Routing metric: a blacklisting approach is surprisingly ef-
ficient, while the minhop metric converges quickly to
a legal schedule. However, it selects the worst radio
links, which may dysfunction: these local faults im-
pact globally the network, penalizing the convergence.

On the contrary, both the ETX and RSSI metrics per-
form better. However, some heuristics should be pro-
posed to accelerate the convergence.

5.2 Open Challenges
While our distributed version of 6TiSCH works efficiently

in many situations, we highlighted several challenges that
still have to be addressed:

Radio link quality estimation: a node has currently to
select a parent without exchanging packets (i.e., no
dedicated cells has been reserved so far with this pos-
sible parent).

However, RSSI or the packet losses of EBs may be mis-
leading to estimate the link quality [28]. Worse, the
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Figure 7: Packet delays during an experiment of 1.5hours
with 5 nodes and one sink

link might be asymmetrical: while EBs are received
correctly, a link-request may never be received cor-
rectly by this parent. This process wastes bandwidth
and energy.

We should propose a mechanism to estimate the link
quality of a possible parent, while not being already
attached to this node;

Dense topologies: the radio link quality estimation is even
exacerbated with dense topologies: which neighbor should
be selected as parent? While the path metric (its DAG
rank) is important, the link quality is also of prime im-
portance. We have to propose schemes, that discover
an acceptable parent, with a tradeoff between discovery
cost and optimality.

Centralized versus Distributed: we expect in the future
work to compare quantitatively the performance of
a centralized and a distributed scheduling solution.
However, we must be able to report to the PCE the
link quality of all the neighbors and to estimate the
level of interference: this constitutes a challenging ob-
jective. Besides, the shared cells are subject to many
collisions: how could we increase the end-to-end relia-
bility of the communication to the PCE?

6. CONCLUSION AND PERSPECTIVES



In this paper, we presented a distributed solution of 6TiSCH:
a node decides autonomously when and which cells to use
with its parent. Moreover, we proposed to exploit isolated
tracks to provide flow isolation, and to make the transmis-
sions reliable and independent: each application has ded-
icated (i.e., reserved) bandwidth for its packets transmis-
sions. Inversely, we are also able to mutualize the band-
width reservation, using a convergent track : all the DAO in
our experiments use the same convergent track toward the
border router. This flexibility of the 6TiSCH architecture
and the stability of the performance prove the relevance of
a deterministic network for the low power lossy networks.

In a future work, we plan to explore the impact of very
large topologies, and to study in depth the maximum dis-
tance and traffic TSCH may support efficiently. We also plan
to study how we could accelerate the convergence time: we
should first reduce the number of collisions among the 6P
requests and replies, which increase the delay to negotiate a
set of cells with its parents. Furthermore, we should explore
which routing metric should be used to avoid re-changing the
parent when the radio link quality is initially misestimated.
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